Silica Pervaporation Membranes: Comparison
Please note this is a comparison between Version 2 by Catherine Yang and Version 1 by Seeram Ramakrishna.

Solvents are very critical not only to produce lifesaving drugs, but also to manufacture many household products. Hence, they are widely used in the pharmaceutical industry, petroleum refineries, paints and coatings, adhesives, printing inks, industrial cleaning and research essential to the fields of medicine and disease diagnosis. Conventional technologies such as distillation which are used to recover those solvents, are energy-intensive, inefficient and suffer from high operating and maintenance costs. Pervaporation based membrane separation overcomes these challenges and in conjunction with the utilization of inorganic membranes derived from non-toxic, sufficiently abundant and hence expendable, silica, allows for high operating temperatures and enhanced chemical and structural integrity, raw material abundance and easy disposability.

However, silica membranes possess some disadvantages, such as an inadequacy in the complete understanding of the governing mechanism as well as compromised structural integrity towards dilute aqueous organic mixtures.

 Membrane-based separation is predicted to dominate the industry in the coming decades, as the process is being understood at a deeper level, leading to the fabrication of tailored membranes for niche applications. The current review aims to compile and present the extensive and often dispersive scientific investigations to the reader and highlight the current scenario as well as the limitations suffered by this mature field.        In addition, viable alternative to the conventional methodologies, as well as other rival materials in existence to achieve membrane-based pervaporation are highlighted.

Solvents are very critical not only to produce lifesaving drugs, but also to manufacture many household products. Hence, they are widely used in the pharmaceutical industry, petroleum refineries, paints and coatings, adhesives, printing inks, industrial cleaning and research essential to the fields of medicine and disease diagnosis. Conventional technologies such as distillation which are used to recover those solvents, are energy-intensive, inefficient and suffer from high operating and maintenance costs. Pervaporation based membrane separation overcomes these challenges and in conjunction with the utilization of inorganic membranes derived from non-toxic, sufficiently abundant and hence expendable, silica, allows for high operating temperatures and enhanced chemical and structural integrity, raw material abundance and easy disposability. However, silica membranes possess some disadvantages, such as an inadequacy in the complete understanding of the governing mechanism as well as compromised structural integrity towards dilute aqueous organic mixtures.  Membrane-based separation is predicted to dominate the industry in the coming decades, as the process is being understood at a deeper level, leading to the fabrication of tailored membranes for niche applications. The current review aims to compile and present the extensive and often dispersive scientific investigations to the reader and highlight the current scenario as well as the limitations suffered by this mature field. In addition, viable alternative to the conventional methodologies, as well as other rival materials in existence to achieve membrane-based pervaporation are highlighted.

  • Silica membranes: Solvent Recovery
  • Sustainability: Solvent Dehydration
Please wait, diff process is still running!

References

  1. Araki, S.; Imasaka, S.; Tanaka, S.; Miyake, Y. Pervaporation of organic/water mixtures with hydrophobic silica membranes functionalized by phenyl groups. J. Membr. Sci. 2011, 380, 41–47.
  2. Asaeda, M.; Sakou, Y.; Yang, J.; Shimasaki, K. Stability and performance of porous silica–zirconia composite membranes for pervaporation of aqueous organic solutions. J. Membr. Sci. 2002, 209, 163–175.
  3. Asaeda, M.; Ishida, M.; Waki, T. Pervaporation of aqueous organic acid solutions by porous ceramic membranes. J. Chem. Eng. Jpn. 2005, 38, 336–343.
  4. Boffa, V. Fabrication of ultramicroporous silica membranes for pervaporation and gas separation. In Molecules at Work: Selfassembly, Nanomaterials, Molecular Machinery; Pignataro, B., Ed.; Wiley VCH: Singapore, 2012; pp. 177–205. ISBN 978-3-527-64581-7.
  5. Nagasawa, H.; Tsuru, T. Silica Membrane Application for Pervaporation Process. In Current Trends and Future Developments on (Bio-) Membranes; Basile, A., Annesini, M.C., Piemonte, V., Charcosset, C., Eds.; Elsevier: Cambridge, MA, USA, 2017; pp. 217–241. ISBN 978-0-12-814225-7.
  6. Klein, L.C.; Gallagher, D. Pore structures of sol-gel silica membranes. J. Membr. Sci. 1988, 39, 213–220.
  7. Kitao, S.; Asaeda, M. Separation of organic acid/water mixtures by thin porous silica membrane. J. Chem. Eng. Jpn. 1990, 23, 367–370.
  8. Brinker, C.J.; Ward, T.L.; Sehgal, R.; Raman, N.K.; Hietala, S.L.; Smith, D.M.; Hua, D.W.; Headley, T.J. “Ultramicroporous” silica-based supported inorganic membranes. J. Membr. Sci. 1993, 77, 165–179.
  9. Ryoo, R.; Ko, C.H.; Cho, S.J.; Kim, J.M. Optically transparent, single-crystal-like oriented mesoporous silica films and plates. J. Phys. Chem. B 1997, 101, 10610–10613.
  10. Tsuru, T.; Wada, S.I.; Izumi, S.; Asaeda, M. Silica–zirconia membranes for nanofiltration. J. Membr. Sci. 1998, 149, 127–135.
  11. Wynn, N. Dehydration with silica pervaporation membranes. Membr. Technol. 2001, 2001, 10–11.
  12. Van Veen, H.M.; Van Delft, Y.C.; Engelen, C.W.R.; Pex, P.P.A.C. Dewatering of organics by pervaporation with silica membranes. Sep. Purif. Technol. 2001, 22, 361–366.
  13. Verkerk, A.W.; Van Male, P.; Vorstman, M.A.G.; Keurentjes, J.T.F. Description of dehydration performance of amorphous silica pervaporation membranes. J. Membr. Sci. 2001, 193, 227–238.
  14. Wolf, H.E.; Schlünder, E.U. Adsorption equilibrium of solvent mixtures on silica gel and silica gel coated ceramics. Chem. Eng. Process. 1999, 38, 211–218.
  15. Constantino, D.S.; Faria, R.P.; Ribeiro, A.M.; Loureiro, J.M.; Rodrigues, A.E. Performance evaluation of pervaporation technology for process intensification of butyl acrylate synthesis. Ind. Eng. Chem. Res. 2017, 56, 13064–13074.
  16. Schleger, M.; Sommer, S.; Melin, T. Module arrangement for solvent dehydration with silica membranes. Desalination 2004, 163, 281–286.
  17. Sommer, S.; Melin, T. Influence of operation parameters on the separation of mixtures by pervaporation and vapor permeation with inorganic membranes. Part 1: Dehydration of solvents. Chem. Eng. Sci. 2005, 60, 4509–4523.
  18. Sommer, S.; Melin, T. Performance evaluation of microporous inorganic membranes in the dehydration of industrial solvents. Chem. Eng. Process. 2005, 44, 1138–1156.
  19. Sommer, S.; Klinkhammer, B.; Melin, T. Integrated system design for dewatering of solvents with microporous silica membranes. Desalination 2002, 149, 15–21.
  20. Gallego-Lizon, T.; Edwards, E.; Lobiundo, G.; dos Santos, L.F. Dehydration of water/t-butanol mixtures by pervaporation: Comparative study of commercially available polymeric, microporous silica and zeolite membranes. J. Membr. Sci. 2002, 197, 309–319.
  21. Urtiaga, A.M.; Casado, C.; Ortiz, I. Pervaporative dehydration of an industrial ketonic solvent using ceramic silica membranes. MRS Online Proc. Libr. Arch. 2002, 752.
  22. Chowdhury, S.R.; Schmuhl, R.; Keizer, K.; ten Elshof, J.E.; Blank, D.H. Pore size and surface chemistry effects on the transport of hydrophobic and hydrophilic solvents through mesoporous γ-alumina and silica MCM-48. J. Membr. Sci. 2003, 225, 177–186.
  23. Casado, C.; Urtiaga, A.; Gorri, D.; Ortiz, I. Pervaporative dehydration of organic mixtures using a commercial silica membrane: Determination of kinetic parameters. Sep. Purif. Technol. 2005, 42, 39–45.
  24. Bettens, B.; Dekeyzer, S.; Van der Bruggen, B.; Degrève, J.; Vandecasteele, C. Transport of pure components in pervaporation through a microporous silica membrane. J. Phys. Chem. B 2005, 109, 5216–5222.
  25. Boutikos, P.; Pereira, C.S.; Silva, V.M.; Rodrigues, A.E. Performance evaluation of silica membrane for water–n-butanol binary mixture. Sep. Purif. Technol. 2014, 127, 18–28.
  26. Campaniello, J.; Engelen, C.W.; Haije, W.G.; Pex, P.P.; Vente, J.F. Long-term pervaporation performance of microporous methylated silica membranes. Chem Commun. 2004, 7, 834–835.
  27. Bettens, B.; Verhoef, A.; van Veen, H.M.; Vandecasteele, C.; Degrève, J.; Van der Bruggen, B. Pervaporation of binary water–alcohol and methanol–alcohol mixtures through microporous methylated silica membranes: Maxwell–Stefan modeling. Comput. Chem. Eng. 2010, 34, 1775–1788.
  28. Jin, T.; Ma, Y.; Matsuda, W.; Masuda, Y.; Nakajima, M.; Ninomiya, K.; Hiraoka, T.; Fukunaga, J.Y.; Daiko, Y.; Yazawa, T. Preparation of surface-modified mesoporous silica membranes and separation mechanism of their pervaporation properties. Desalination 2011, 280, 139–145.
  29. Wang, J.; Tsuru, T. Cobalt-doped silica membranes for pervaporation dehydration of ethanol/water solutions. J. Membr. Sci. 2011, 369, 13–19.
  30. Pereira, C.S.; Silva, V.M.; Pinho, S.P.; Rodrigues, A.E. Batch and continuous studies for ethyl lactate synthesis in a pervaporation membrane reactor. J. Membr. Sci. 2010, 361, 43–55.
  31. Brinkman, H.W.; Castricum, H.L.; ten Elshof, J.E.; Kreiter, R.; Vente, J.F. Breakthrough in pervaporation membrane for dehydration of solvent streams. NPT Process Technol. 2008, 15, 18–19.
  32. van Gemert, R.W.; Cuperus, F.P. Newly developed ceramic membranes for dehydration and separation of organic mixtures by pervaporation. J. Membr. Sci. 1995, 105, 287–291.
  33. Cuperus, F.P.; van Gemert, R.W. Dehydration using ceramic silica pervaporation membranes—The influence of hydrodynamic conditions. Sep. Purif. Technol. 2002, 27, 225–229.
  34. Sekulić, J.; Luiten, M.W.J.; Ten Elshof, J.E.; Benes, N.E.; Keizer, K. Microporous silica and doped silica membrane for alcohol dehydration by pervaporation. Desalination 2002, 148, 19–23.
  35. Peters, T.A.; Fontalvo, J.; Vorstman, M.A.G.; Benes, N.E.; Van Dam, R.A.; Vroon, Z.A.E.P.; van Soest-Vercammen, E.L.J.; Keurentjes, J.T.F. Hollow fibre microporous silica membranes for gas separation and pervaporation: Synthesis, performance and stability. J. Membr. Sci. 2005, 248, 73–80.
  36. Asaeda, M. Pervaporation of Aqueous Organic Acid Solutions by Porous Silica Membrane Prepared by Sol-Gel Methods. In Proceedings of the 5th International Conference on Inorganic Membranes, Nagoya, Japan, 22–26 June 1998.
  37. Sekulić, J.; ten Elshof, J.E.; Blank, D.H. Separation mechanism in dehydration of water/organic binary liquids by pervaporation through microporous silica. J. Membr. Sci. 2005, 254, 267–274.
  38. Johan, E.; Abadal, C.R.; Sekulić, J.; Chowdhury, S.R.; Blank, D.H. Transport mechanisms of water and organic solvents through microporous silica in the pervaporation of binary liquids. Microporous Mesoporous Mater. 2003, 65, 197–208.
  39. Yamashita, T.; Kodama, S.; Ohto, M.; Nakayama, E.; Hasegawa, S.; Takayanagi, N.; Kemmei, T.; Yamaguchi, A.; Teramae, N.; Saito, Y. Permeation flux of organic molecules through silica-surfactant nanochannels in a porous alumina membrane. Anal. Sci. 2006, 22, 1495–1500.
  40. Carroll, N.J.; Rathod, S.B.; Derbins, E.; Mendez, S.; Weitz, D.A.; Petsev, D.N. Droplet-based microfluidics for emulsion and solvent evaporation synthesis of monodisperse mesoporous silica microspheres. Langmuir 2008, 24, 658–661.
  41. Clark Wooten, M.K.; Koganti, V.R.; Zhou, S.; Rankin, S.E.; Knutson, B.L. Synthesis and nanofiltration membrane performance of oriented mesoporous silica thin films on macroporous supports. ACS Appl. Mater. Interfaces 2016, 8, 21806–21815.
  42. Tsuru, T.; Miyawaki, M.; Yoshioka, T.; Asaeda, M. Reverse osmosis of nonaqueous solutions through porous silica-zirconia membranes. AIChE J. 2006, 52, 522–531.
  43. Sommer, S.; Melin, T. Design and optimization of hybrid separation processes for the dehydration of 2-propanol and other organics. Ind. Eng. Chem. Res. 2004, 43, 5248–5259.
  44. ten Hove, M.; Luiten-Olieman, M.W.; Huiskes, C.; Nijmeijer, A.; Winnubst, L. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes. Sep. Purif. Technol. 2017, 189, 48–53.
  45. Xu, C.; Lu, X.; Wang, Z. Effects of sodium ions on the separation performance of pure-silica MFI zeolite membranes. J. Membr. Sci. 2017, 524, 124–131.
  46. Araki, S.; Okabe, A.; Ogawa, A.; Gondo, D.; Imasaka, S.; Hasegawa, Y.; Sato, K.; Li, K.; Yamamoto, H. Preparation and pervaporation performance of vinyl-functionalized silica membranes. J. Membr. Sci. 2018, 548, 66–72.
  47. Kanezashi, M.; Murata, M.; Nagasawa, H.; Tsuru, T. Fluorine doping of microporous organosilica membranes for pore size control and enhanced hydrophobic properties. ACS Omega 2018, 3, 8612–8620.
  48. Wu, Z.; Zhang, C.; Peng, L.; Wang, X.; Kong, Q.; Gu, X. Enhanced stability of MFI zeolite membranes for separation of ethanol/water by eliminating surface Si–OH groups. ACS Appl. Mater. Interfaces 2018, 10, 3175–3180.
  49. Zhang, H.Y.; Wen, J.L.; Shao, Q.; Yuan, A.; Ren, H.T.; Luo, F.Y.; Zhang, X.L. Fabrication of La/Y-codoped microporous organosilica membranes for high-performance pervaporation desalination. J. Membr. Sci. 2019, 584, 353–363.
  50. Klinov, A.V.; Akberov, R.R.; Fazlyev, A.R.; Farakhov, M.I. Experimental investigation and modeling through using the solution-diffusion concept of pervaporation dehydration of ethanol and isopropanol by ceramic membranes HybSi. J. Membr. Sci. 2017, 524, 321–333.
  51. La Rocca, T.; Carretier, E.; Dhaler, D.; Louradour, E.; Truong, T.; Moulin, P. Purification of pharmaceutical solvents by pervaporation through hybrid silica membranes. Membranes 2019, 9, 76.
  52. Lan, J.; Saulat, H.; Wu, H.; Li, L.; Yang, J.; Lu, J.; Zhang, Y. Manipulation on microstructure of MFI membranes by binary structure directing agents. Microporous Mesoporous Mater. 2020, 110128.
  53. da Silva, D.A.R.O.; Zuge, L.C.B.; de Paula Scheer, A. Preparation and characterization of a novel green silica/PVA membrane for water desalination by pervaporation. Sep. Purif. Technol. 2020, 116852.
  54. Wang, Z.; Hao, L.; Yang, F.; Wei, Q. Mesoporous Silica Membranes Silylated by Fluorinated and Non-Fluorinated Alkylsilanes for the Separation of Methyl Tert-Butyl Ether from Water. Membranes 2020, 10, 70.
  55. Ueno, K.; Negishi, H.; Okuno, T.; Saito, T.; Tawarayama, H.; Ishikawa, S.; Miyamoto, M.; Uemiya, S.; Sawada, Y.; Oumi, Y. A simple secondary growth method for the preparation of silicalite-1 membrane on a tubular silica support via gel-free steam-assisted conversion. J. Membr. Sci. 2017, 542, 150–158.
  56. Raza, W.; Yang, J.; Wang, J.; Saulat, H.; He, G.; Lu, J.; Zhang, Y. HCl modification and pervaporation performance of BTESE membrane for the dehydration of acetic acid/water mixture. Sep. Purif. Technol. 2020, 235, 116102.
  57. Sommer, S.; Klinkhammer, B.; Schleger, M.; Melin, T. Performance efficiency of tubular inorganic membrane modules for pervaporation. AIChE J. 2005, 51, 162–177.
More
Video Production Service