Incorporation of Barium into Biomaterials: Dangerous or Revolutionary?: Comparison
Please note this is a comparison between Version 1 by Dagnija Loca and Version 4 by Nora Tang.

In the present manuscript, a brief overview on barium, its possible utilization, and the aftermath of its behavior in organisms has been presented. A number of studies have exhibited both the unwanted outcome barium displayed and the advantages of barium laden compounds, tested in in vitro and in vivo settings. The plethora of prospective manipulations covered the area of hydrogels and calcium phosphates, with an end goal of examining barium’s future in the tissue engineering. Can barium be used as a substitute for other biologically relevant divalent cations? Will the incorporation of barium ions hamper the execution of the essential processes in the organism? Most importantly, can the benefits outweigh the harm?

In the present manuscript, a brief overview on barium, its possible utilization, and the

aftermath of its behavior in organisms has been presented. As a bivalent cation, barium has the

potential to be used in a myriad of biochemical reactions. A number of studies have exhibited

both the unwanted outcome barium displayed and the advantages of barium laden compounds,

tested in in vitro and in vivo settings. The plethora of prospective manipulations covered the area

of hydrogels and calcium phosphates, with an end goal of examining barium’s future in the tissue

engineering. However, majority of data revert to the research conducted in the 20th century, without

investigating the mechanisms of action using current state-of-the-art technology. Having this in mind,

set of questions that are needed for possible future research arose. Can barium be used as a substitute

for other biologically relevant divalent cations? Will the incorporation of barium ions hamper the

execution of the essential processes in the organism? Most importantly, can the benefits outweigh

the harm?

DOI: https://doi.org/10.3390/ma14195772

  • barium
  • biomaterials
  • hydrogels
  • physiology
  • bone tissue regeneration
  • calcium phosphate
Please wait, diff process is still running!

References

  1. Bendtsen, S.T.; Wei, M. Synthesis and characterization of a novel injectable alginate–collagen–hydroxyapatite hydrogel for bone tissue regeneration. J. Mater. Chem. B 2015, 3, 3081–3090. [1] S.T. Bendtsen, M. Wei, Synthesis and characterization of a novel injectable alginate–collagen–hydroxyapatite hydrogel for bone tissue regeneration, J. Mater. Chem. B. (2015). https://doi.org/10.1039/C5TB00072F.
  2. Dorozhkin, S.V. Calcium orthophosphates (CaPO4): Occurrence and properties. Prog. Biomater. 2016, 5, 9–70. [2] S. V. Dorozhkin, Calcium orthophosphates (CaPO4): occurrence and properties, 2016. https://doi.org/10.1007/s40204-015-0045-z.
  3. Dorozhkin, S.; Epple, M. Biological and Medical Significance of Calcium Phosphates. Angew. Chem. Int. Ed. 2002, 41, 3130–3146. [3] S. V Dorozhkin, M. Epple, Biological and Medical Significance of Calcium Phosphates, Angew. Chem. Int. Ed. 41 (2002) 3130–3146.
  4. Dorozhkin, S.V. A review on the dissolution models of calcium apatites. Prog. Cryst. Growth Charact. Mater. 2002, 44, 45–61. [4] S. V. Dorozhkin, A review on the dissolution models of calcium apatites, Prog. Cryst. Growth Charact. Mater. 44 (2002) 45–61. https://doi.org/10.1016/S0960-8974(02)00004-9.
  5. Habraken, W.; Habibovic, P.; Epple, M.; Bohner, M. Calcium phosphates in biomedical applications: Materials for the future? Mater. Today 2016, 19, 69–87. [5] W. Habraken, P. Habibovic, M. Epple, M. Bohner, Calcium phosphates in biomedical applications: Materials for the future?, Mater. Today. 19 (2016) 69–87. https://doi.org/10.1016/j.mattod.2015.10.008.
  6. Dorozhkin, S.V. Calcium orthophosphates and human beings. Biomatter 2012, 2, 53–70. [6] S. V. Dorozhkin, Calcium orthophosphates and human beings: a historical perspective from the 1770s until 1940., Biomatter. 2 (2012) 53–70. https://doi.org/10.4161/biom.21340.
  7. Dorozhkin, S.V. A hierarchical structure for apatite crystals. J. Mater. Sci. Mater. Electron. 2007, 18, 363–366. [7] S. V. Dorozhkin, A hierarchical structure for apatite crystals, J. Mater. Sci. Mater. Med. 18 (2007) 363–366. https://doi.org/10.1007/s10856-006-0701-x.
  8. Habraken, W.J.E.M.; Tao, J.; Brylka, L.J.; Friedrich, H.; Bertinetti, L.; Schenk, A.; Verch, A.; Dmitrovic, V.; Bomans, P.H.H.; Frederik, P.M.; et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun. 2013, 4, 1507. [8] W.J.E.M. Habraken, J. Tao, L.J. Brylka, H. Friedrich, L. Bertinetti, A.S. Schenk, A. Verch, V. Dmitrovic, P.H.H. Bomans, P.M. Frederik, J. Laven, P. Van Der Schoot, B. Aichmayer, G. De With, J.J. DeYoreo, N.A.J.M. Sommerdijk, Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate, Nat. Commun. 4 (2013) 1507–1512. https://doi.org/10.1038/ncomms2490.
  9. Tung, M.S. Calcium Phosphates: Structure, Composition, Solubility, and Stability. Calcium Phosphates Biol. Ind. Syst. 1998, 1–19. [9] M.S. Tung, Calcium Phosphates: Structure, Composition, Solubility, and Stability, Calcium Phosphates Biol. Ind. Syst. (1998) 1–19. https://doi.org/10.1007/978-1-4615-5517-9_1.
  10. Garbo, C.; Locs, J.; D’Este, M.; Demazeau, G.; Mocanu, A.; Roman, C.; Horovitz, O.; Tomoaia-Cotisel, M. Advanced Mg, Zn, Sr, Si Multi-Substituted Hydroxyapatites for Bone Regeneration. Int. J. Nanomed. 2020, 15, 1037–1058. [10] C. Garbo, J. Locs, M. D’este, G. Demazeau, A. Mocanu, C. Roman, O. Horovitz, M. Tomoaia-Cotisel, Advanced Mg, Zn, Sr, Si multi-substituted hydroxyapatites for bone regeneration, Int. J. Nanomedicine. 15 (2020) 1037–1058. https://doi.org/10.2147/IJN.S226630.
  11. Mouriño, V.; Cattalini, J.P.; Boccaccini, A.R. Metallic ions as therapeutic agents in tissue engineering scaffolds: An overview of their biological applications and strategies for new developments. J. R. Soc. Interface 2011, 9, 401–419. [11] V. Mouriño, J.P. Cattalini, A.R. Boccaccini, Metallic ions as therapeutic agents in tissue engineering scaffolds: An overview of their biological applications and strategies for new developments, J. R. Soc. Interface. 9 (2012) 401–419. https://doi.org/10.1098/rsif.2011.0611.
  12. Dubnika, A.; Loca, D.; Rudovica, V.; Parekh, M.B.; Berzina-Cimdina, L. Functionalized silver doped hydroxyapatite scaffolds for controlled simultaneous silver ion and drug delivery. Ceram. Int. 2017, 43, 3698–3705. [12] A. Dubnika, D. Loca, V. Rudovica, M.B. Parekh, L. Berzina-Cimdina, Functionalized silver doped hydroxyapatite scaffolds for controlled simultaneous silver ion and drug delivery, Ceram. Int. 43 (2017) 3698–3705. https://doi.org/10.1016/j.ceramint.2016.11.214.
  13. Glenske, K.; Donkiewicz, P.; Köwitsch, A.; Milosevic-Oljaca, N.; Rider, P.; Rofall, S.; Franke, J.; Jung, O.; Smeets, R.; Schnettler, R.; et al. Applications of Metals for Bone Regeneration. Int. J. Mol. Sci. 2018, 19, 826. [13] K. Glenske, P. Donkiewicz, A. Köwitsch, N. Milosevic-Oljaca, P. Rider, S. Rofall, J. Franke, O. Jung, R. Smeets, R. Schnettler, S. Wenisch, M. Barbeck, Applications of metals for bone regeneration, 2018. https://doi.org/10.3390/ijms19030826.
  14. Lin, S.H.; Zhang, W.J.; Jiang, X.Q. Applications of Bioactive Ions in Bone Regeneration. Chin. J. Dent. Res. Off. J. Sci. Sect. Chin. Stomatol. Assoc. (CSA) 2019, 22, 93–104. [14] S.H. Lin, W.J. Zhang, X.Q. Jiang, Applications of Bioactive Ions in Bone Regeneration, Chin. J. Dent. Res. 22 (2019) 93–104. https://doi.org/10.3290/j.cjdr.a42513.
  15. Laskus, A.; Kolmas, J. Ionic Substitutions in Non-Apatitic Calcium Phosphates. Int. J. Mol. Sci. 2017, 18, 2542. [15] A. Laskus, J. Kolmas, Ionic substitutions in non-apatitic calcium phosphates, Int. J. Mol. Sci. 18 (2017) 1–22. https://doi.org/10.3390/ijms18122542.
  16. Boanini, E.; Gazzano, M.; Bigi, A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010, 6, 1882–1894. [16] E. Boanini, M. Gazzano, A. Bigi, Ionic substitutions in calcium phosphates synthesized at low temperature, Acta Biomater. 6 (2010) 1882–1894. https://doi.org/10.1016/j.actbio.2009.12.041.
  17. O’Neill, E.; Awale, G.; Daneshmandi, L.; Umerah, O.; Lo, K.W.-H. The roles of ions on bone regeneration. Drug Discov. Today 2018, 23, 879–890. [17] E. O’Neill, G. Awale, L. Daneshmandi, O. Umerah, K.W.H. Lo, The roles of ions on bone regeneration, Drug Discov. Today. 23 (2018) 879–890. https://doi.org/10.1016/j.drudis.2018.01.049.
  18. Shi, H.; Ye, X.; Wu, T.; Zhang, J.; Ye, J. Regulating the physicochemical and biological properties in vitro of octacalcium phosphate by substitution with strontium in a large doping range. Mater. Today Chem. 2017, 5, 81–91. [18] H. Shi, X. Ye, T. Wu, J. Zhang, J. Ye, Regulating the physicochemical and biological properties in vitro of octacalcium phosphate by substitution with strontium in a large doping range, Mater. Today Chem. 5 (2017) 81–91. https://doi.org/10.1016/j.mtchem.2017.07.003.
  19. Shi, H.; He, F.; Ye, J. Synthesis and structure of iron- and strontium-substituted octacalcium phosphate: Effects of ionic charge and radius. J. Mater. Chem. B 2016, 4, 1712–1719. [19] H. Shi, F. He, J. Ye, Synthesis and structure of iron- and strontium-substituted octacalcium phosphate: Effects of ionic charge and radius, J. Mater. Chem. B. 4 (2016) 1712–1719. https://doi.org/10.1039/c5tb02247a.
  20. Sarker, A.I.; Izadifar, M.; Schreyer, D.; Chen, X. Influence of ionic crosslinkers (Ca2+/Ba2+/Zn2+) on the mechanical and biological properties of 3D Bioplotted Hydrogel Scaffolds. J. Biomater. Sci. Polym. Ed. 2018, 29, 1126–1154. [20] A.I. Sarker, M. Izadifar, D. Schreyer, Influence of ionic cross linkers ( Ca / Ba / Zn ) on the Mechanical and Biological Properties of 3D Bioplotted Hydrogel Scaffolds, J. Biomater. Sci. Polym. Ed. 5063 (2018) 0–1. https://doi.org/10.1080/09205063.2018.1433420.
  21. Hu, W.; Wang, Z.; Xiao, Y.; Zhang, S.; Wang, J. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 2019, 7, 843–855. [21] W. Hu, Z. Wang, Y. Xiao, S. Zhang, J. Wang, Advances in crosslinking strategies of biomedical hydrogels, Biomater. Sci. (2019). https://doi.org/10.1039/c8bm01246f.
  22. Akbar, I.; Kim, S. Characteristic of magnesium substituted octacalcium phosphate prepared by precipitation method. AIP Conf. Proc. 2019, 2092, 020009. [22] I. Akbar, S. Kim, Characteristic of magnesium substituted octacalcium phosphate prepared by precipitation method, AIP Conf. Proc. 2092 (2019). https://doi.org/10.1063/1.5096677.
  23. Stipniece, L.; Salma-Ancane, K.; Loca, D.; Pastare, S. Synthesis of Strontium Substituted Hydroxyapatite through Different Precipitation Routes. Key Eng. Mater. 2016, 674, 3–8. [23] L. Stipniece, K. Salma-Ancane, D. Loca, S. Pastare, Synthesis of strontium substituted hydroxyapatite through different precipitation routes, Key Eng. Mater. 674 (2016) 3–8. https://doi.org/10.4028/www.scientific.net/KEM.674.3.
  24. Strutynska, N.; Livitska, O.; Prylutska, S.; Yumyna, Y.; Zelena, P.; Skivka, L.; Malyshenko, A.; Vovchenko, L.; Strelchuk, V.; Prylutskyy, Y.; et al. New nanostructured apatite-type (Na+,Zn2+,CO32−)-doped calcium phosphates: Preparation, mechanical properties and antibacterial activity. J. Mol. Struct. 2020, 1222, 128932. [24] N. Strutynska, O. Livitska, S. Prylutska, Y. Yumyna, P. Zelena, L. Skivka, A. Malyshenko, L. Vovchenko, V. Strelchuk, Y. Prylutskyy, N. Slobodyanik, U. Ritter, New nanostructured apatite-type (Na+,Zn2+,CO32−)-doped calcium phosphates: Preparation, mechanical properties and antibacterial activity, J. Mol. Struct. 1222 (2020) 128932. https://doi.org/10.1016/j.molstruc.2020.128932.
  25. Kravchenko, J.; Darrah, T.H.; Miller, R.K.; Lyerly, H.; Vengosh, A. A review of the health impacts of barium from natural and anthropogenic exposure. Environ. Geochem. Health 2014, 36, 797–814. [25] J. Kravchenko, T.H. Darrah, R.K. Miller, H.K. Lyerly, A. Vengosh, A review of the health impacts of barium from natural and anthropogenic exposure, Environ. Geochem. Health. 36 (2014) 797–814. https://doi.org/10.1007/s10653-014-9622-7.
  26. Colman, J.; Ingerman, L.; Robbins, P. Toxicological Review of Barium and Compounds. In Support of Summary Information on the Integrated Risk Information System; EPA: Washington, DC, USA, 2005. [26] J. Colman, L. Ingerman, P. Robbins, TOXICOLOGICAL REVIEW OF BARIUM AND COMPOUNDS, Support Summ. Inf. Integr. Risk Inf. Syst. (2005).
  27. Harring, T.R.; Deal, N.S.; Kuo, D.C. Disorders of Sodium and Water Balance. Emerg. Med. Clin. N. Am. 2014, 32, 379–401. [27] T.R. Harring, N.S. Deal, D.C. Kuo, Disorders of sodium and water balance, Emerg. Med. Clin. North Am. 32 (2014) 379–401. https://doi.org/10.1016/j.emc.2014.01.001.
  28. Kaur, G.; Kaur, N. Estimation of sodium ions using easily engineered organic nanoparticles-based turn-on fluorescent sensor: Application in biological and environmental samples. Sens. Actuators B Chem. 2018, 265, 134–141. [28] G. Kaur, N. Kaur, Estimation of sodium ions using easily engineered organic nanoparticles-based turn-on fluorescent sensor: Application in biological and environmental samples, Sensors Actuators, B Chem. 265 (2018) 134–141. https://doi.org/10.1016/j.snb.2018.02.063.
  29. Vašák, M.; Schnabl, J. Sodium and Potassium Ions in Proteins and Enzyme Catalysis. In The Alkali Metal Ions: Their Role for Life; Springer: Berlin/Heidelberg, Germany, 2016; pp. 259–290. [29] M. Vašák, J. Schnabl, Sodium and Potassium Ions in Proteins and Enzyme Catalysis, in: Alkali Met. Ions Their Role Life, 2016: pp. 485–556. https://doi.org/10.1007/978-3-319-21756-7.
  30. Sakai, H.; Fujii, T.; Takeguchi, N. Proton-Potassium (H +/K +) ATPases: Properties and Roles in Health and Diseases. In The Alkali Metal Ions: Their Role for Life; Springer: Berlin/Heidelberg, Germany, 2016; pp. 459–483. [30] N.T. Hideki Sakai , Takuto Fujii, Proton-Potassium (H + /K + ) ATPases: Properties and Roles in Health and Diseases, in: Alkali Met. Ions Their Role Life, 2016: pp. 485–556. https://doi.org/10.1007/978-3-319-21756-7.
  31. Pang, X.; Lin, L.; Tang, B. Unraveling the role of Calcium ions in the mechanical properties of individual collagen fibrils. Sci. Rep. 2017, 7, srep46042. [31] X. Pang, L. Lin, B. Tang, Unraveling the role of Calcium ions in the mechanical properties of individual collagen fibrils, Sci. Rep. 7 (2017) 1–8. https://doi.org/10.1038/srep46042.
  32. Beto, J.A. The Role of Calcium in Human Aging. Clin. Nutr. Res. 2015, 4, 1–8. [32] J.A. Beto, The Role of Calcium in Human Aging, Clin. Nutr. Res. 4 (2015) 1–8. https://doi.org/10.7762/cnr.2015.4.1.1.
  33. Choi, S.; Kim, K.-J.; Cheon, S.; Kim, E.-M.; Kim, Y.-A.; Park, C.; Kim, K.K. Biochemical activity of magnesium ions on human osteoblast migration. Biochem. Biophys. Res. Commun. 2020, 531, 588–594. [33] S. Choi, K.J. Kim, S. Cheon, E.M. Kim, Y.A. Kim, C. Park, K.K. Kim, Biochemical activity of magnesium ions on human osteoblast migration, Biochem. Biophys. Res. Commun. 531 (2020) 588–594. https://doi.org/10.1016/j.bbrc.2020.07.057.
  34. Qi, T.; Weng, J.; Yu, F.; Zhang, W.; Li, G.; Qin, H.; Tan, Z.; Zeng, H. Insights into the Role of Magnesium Ions in Affecting Osteogenic Differentiation of Mesenchymal Stem Cells. Biol. Trace Elem. Res. 2021, 199, 559–567. [34] T. Qi, J. Weng, F. Yu, W. Zhang, G. Li, H. Qin, Z. Tan, H. Zeng, Insights into the Role of Magnesium Ions in Affecting Osteogenic Differentiation of Mesenchymal Stem Cells, Biol. Trace Elem. Res. 199 (2020) 559–567. https://doi.org/10.1007/s12011-020-02183-y.
  35. Loca, D.; Smirnova, A.; Locs, J.; Dubnika, A.; Vecstaudza, J.; Stipniece, L.; Makarova, E.; Dambrova, M. Development of local strontium ranelate delivery systems and long term in vitro drug release studies in osteogenic medium. Sci. Rep. 2018, 8, 16754. [35] D. Loca, A. Smirnova, J. Locs, A. Dubnika, J. Vecstaudza, L. Stipniece, E. Makarova, M. Dambrova, Development of local strontium ranelate delivery systems and long term in vitro drug release studies in osteogenic medium, Sci. Rep. 8 (2018) 1–10. https://doi.org/10.1038/s41598-018-35197-7.
  36. Pilmane, M.; Salma-Ancane, K.; Loca, D.; Locs, J.; Berzina-Cimdina, L. Strontium and strontium ranelate: Historical review of some of their functions. Mater. Sci. Eng. C 2017, 78, 1222–1230. [36] M. Pilmane, K. Salma-Ancane, D. Loca, J. Locs, L. Berzina-Cimdina, Strontium and strontium ranelate: Historical review of some of their functions, Mater. Sci. Eng. C. 78 (2017) 1222–1230. https://doi.org/10.1016/j.msec.2017.05.042.
  37. Chan, W.Y.; Rennert, O.M. The role of copper in iron metabolism. Ann. Clin. Lab. Sci. 1980, 10, 338–344. [37] W.Y. Chan, O.M. Rennert, The role of copper in iron metabolism, Ann. Clin. Lab. Sci. 10 (1980) 338–344.
  38. Osredkar, J.; Sustar, N. Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance. J. Clin. Toxicol. 2011, 3, 495. [38] J. Osredkar, N. Sustar, Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance, J Clin. Toxicol. 3 (2011). https://doi.org/http://dx.doi.org/10.4172/2161-0494.S3-001.
  39. Cummings, J.E.; Kovacic, J.P. The ubiquitous role of zinc in health and disease. J. Vet. Emerg. Crit. Care 2009, 19, 215–240. [39] J.E. Cummings, J.P. Kovacic, The ubiquitous role of zinc in health and disease, J. Vet. Emerg. Crit. Care. 19 (2009) 215–240. https://doi.org/10.1111/j.1476-4431.2009.00418.x.
  40. Van Swelm, R.P.L.; Wetzels, J.F.M.; Swinkels, D.W. The multifaceted role of iron in renal health and disease. Nat. Rev. Nephrol. 2020, 16, 77–98. [40] R.P.L. van Swelm, J.F.M. Wetzels, D.W. Swinkels, The multifaceted role of iron in renal health and disease, Nat. Rev. Nephrol. 16 (2020) 77–98. https://doi.org/10.1038/s41581-019-0197-5.
  41. Gupta, C.P. Role of Iron (Fe) in Body. IOSR J. Appl. Chem. 2014, 7, 38–46. [41] D.C.P. Gupta, Role of Iron (Fe) in Body, IOSR J. Appl. Chem. 7 (2014) 38–46. https://doi.org/10.9790/5736-071123846.
  42. Williams, R.J.P. Metal ions in biological systems. Biol. Rev. 1953, 28, 381–412. [42] T. Theophanides, Metal Ions in Biological Systems, Int. J. Quantum Chem. 26 (1984) 933–941. https://doi.org/10.1111/j.1469-185X.1953.tb01384.x.
  43. Padan, E.; Landau, M. Sodium-Proton (Na+/H+) Antiporters: Properties and Roles in Health and Disease. Alkali Met. Ions Role Life 2016, 16, 391–458. [43] A. Sigel, H. Sigel, R.K.O. Sigel, The Alkali Metal Ions: Their Role for Life, 2016. https://doi.org/10.1007/978-3-319-21756-7_12.
  44. Schroeder, H.A.; Tipton, I.H.; Nason, A.P. Trace metals in man: Strontium and barium. J. Chronic Dis. 1972, 25, 491–517. [44] Henry A. Schroeder, I.H. Tipton, A.P. Nason, TRACE METALS IN MAN : STRONTIUM AND BARIUM *, J Chron Dis. 25 (1972) 491–517.
  45. Fischer, A.; Malara, P.; Wiechuła, D. The Study of Barium Concentration in Deciduous Teeth, Impacted Teeth, and Facial Bones of Polish Residents. Biol. Trace Element Res. 2014, 161, 32–37. [45] A. Fischer, P. Malara, D. Wiechuła, The Study of Barium Concentration in Deciduous Teeth, Impacted Teeth, and Facial Bones of Polish Residents, Biol. Trace Elem. Res. 161 (2014) 32–37. https://doi.org/10.1007/s12011-014-0061-1.
  46. Austin, C.; Smith, T.M.; Bradman, A.; Hinde, K.; Joannes-Boyau, R.; Bishop, D.; Hare, D.; Doble, P.; Eskenazi, B.; Arora, M. Barium distributions in teeth reveal early-life dietary transitions in primates. Nat. Cell Biol. 2013, 498, 216–219. [46] C. Austin, T.M. Smith, A. Bradman, K. Hinde, R. Joannes-Boyau, D. Bishop, D.J. Hare, P. Doble, B. Eskenazi, M. Arora, Barium distributions in teeth reveal early-life dietary transitions in primates, Nature. 498 (2013) 216–219. https://doi.org/10.1038/nature12169.
  47. Sowden, E.M.; Stitch, S.R. Trace elements in human tissue. 2. Estimation of the concentrations of stable strontium and barium in human bone. Biochem. J. 1957, 67, 104–109. [47] E.M. SOWDEN, S.R. STITCH, Trace elements in human tissue. 2. Estimation of the concentrations of stable strontium and barium in human bone., Biochem. J. 67 (1957) 104–109. https://doi.org/10.1042/bj0670104.
  48. Panahifar, A.; Chapman, L.D.; Weber, L.; Samadi, N.; Cooper, D.M.L. Biodistribution of strontium and barium in the developing and mature skeleton of rats. J. Bone Miner. Metab. 2019, 37, 385–398. [48] A. Panahifar, L.D. Chapman, L. Weber, N. Samadi, D.M.L. Cooper, Biodistribution of strontium and barium in the developing and mature skeleton of rats, J. Bone Miner. Metab. 37 (2019) 385–398. https://doi.org/10.1007/s00774-018-0936-x.
  49. Bligh, P.H.; Taylor, D.M. Comparative studies of the metabolism of strontium and barium in the rat. Biochem. J. 1963, 87, 612–618. [49] P.H. Bligh, D.M. Taylor, Comparative Studies of the Metabolism of Strontium and Barium in the Rat, Biochem. J. 87 (1963) 612–617.
  50. Moffet, D.; Smith, C.; Stevens, Y.; Ingerman, L.; Swarts, S.; Chappell, L. Toxicological Profile for Barium and Barium Compounds; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2007; pp. 1–231. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp24-p.pdf (accessed on 14 September 2021).[50] D. Moffet, C. Smith, Y. Stevens, L. Ingerman, S. Swarts, L. Chappell, Toxicological profile for barium and barium compounds, Agency Toxic Subst. Dis. Regist. (2007) 1–231. https://www.atsdr.cdc.gov/toxprofiles/tp24.pdf%0Ahttp://stacks.cdc.gov/view/cdc/6955/.
  51. Peana, M.; Medici, S.; Dadar, M.; Zoroddu, M.A.; Pelucelli, A.; Chasapis, C.T.; Bjørklund, G. Environmental barium: Potential exposure and health-hazards. Arch. Toxicol. 2021, 1–8. [51] M. Peana, S. Medici, M. Dadar, M.A. Zoroddu, A. Pelucelli, C.T. Chasapis, G. Bjørklund, Environmental barium: potential exposure and health-hazards, Arch. Toxicol. (2021). https://doi.org/10.1007/s00204-021-03049-5.
  52. Panahifar, A.; Swanston, T.M.; Pushie, M.J.; Belev, G.; Chapman, D.; Weber, L.; Cooper, D.M. Three-dimensional labeling of newly formed bone using synchrotron radiation barium K-edge subtraction imaging. Phys. Med. Biol. 2016, 61, 5077–5088. [52] A. Panahifar, T.M. Swanston, M. Jake Pushie, G. Belev, D. Chapman, L. Weber, D.M.L. Cooper, Three-dimensional labeling of newly formed bone using synchrotron radiation barium K-edge subtraction imaging, Phys. Med. Biol. 61 (2016) 5077–5088. https://doi.org/10.1088/0031-9155/61/13/5077.
  53. Foster, A.D. The impact of bipedal mechanical loading history on longitudinal long bone growth. PLoS ONE 2019, 14, e0211692. [53] A.D. Foster, The impact of bipedal mechanical loading history on longitudinal long bone growth, PLoS One. 14 (2019) 1–20. https://doi.org/10.1371/journal.pone.0211692.
  54. Hennink, W.; van Nostrum, C. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 223–236. [54] W.E. Hennink, C.F. van Nostrum, Novel crosslinking methods to design hydrogels, Adv. Drug Deliv. Rev. 64 (2012) 223–236. https://doi.org/10.1016/j.addr.2012.09.009.
  55. Maitra, J.; Shukla, V.K. Cross-linking in Hydrogels—A Review. Am. J. Polym. Sci. 2014, 4, 25–31. [55] J. Maitra, V.K. Shukla, Cross-linking in Hydrogels - A Review, Am. J. Polym. Sci. 4 (2014) 25–31. https://doi.org/10.5923/j.ajps.20140402.01.
  56. Andrade, J. Hydrogels in medicine and pharmacy: N.A. Peppas (Editor), CRC Press, Boca Raton, FL, 1987: Vol. III, Properties and Applications, 208 pages, $110.00. J. Control. Release 1989, 10, 225–226. [56] N.A. Peppas, Hydrogels in medicine and pharmacy, 2019. https://doi.org/10.1016/0168-3659(89)90068-0.
  57. Li, H.; Yang, P.; Pageni, P.; Tang, C. Recent Advances in Metal-Containing Polymer Hydrogels. Macromol. Rapid Commun. 2017, 38, 1–9. [57] H. Li, P. Yang, P. Pageni, C. Tang, Recent Advances in Metal-Containing Polymer Hydrogels, Macromol. Rapid Commun. 38 (2017) 1–9. https://doi.org/10.1002/marc.201700109.
  58. Gasa, J.V.; Weiss, R.; Shaw, M.T. Ionic crosslinking of ionomer polymer electrolyte membranes using barium cations. J. Membr. Sci. 2007, 304, 173–180. [58] J. V Gasa, R.A. Weiss, M.T. Shaw, Ionic crosslinking of ionomer polymer electrolyte membranes using barium cations, J. Memb. Sci. 304 (2007) 173–180. https://doi.org/10.1016/j.memsci.2007.07.031.
  59. Zellermann, A.-M.; Bergmann, D.; Mayer, C. Cation induced conformation changes in hyaluronate solution. Eur. Polym. J. 2013, 49, 70–79. [59] A. Zellermann, D. Bergmann, C. Mayer, Cation induced conformation changes in hyaluronate solution, Eur. Polym. J. 49 (2013) 70–79. https://doi.org/10.1016/j.eurpolymj.2012.09.025.
  60. Dodero, A.; Pianella, L.; Vicini, S.; Alloisio, M.; Ottonelli, M.; Castellano, M. Alginate-based hydrogels prepared via ionic gelation: An experimental design approach to predict the crosslinking degree. Eur. Polym. J. 2019, 118, 586–594. [60] A. Dodero, L. Pianella, S. Vicini, M. Alloisio, M. Ottonelli, M. Castellano, Alginate-based hydrogels prepared via ionic gelation : An experimental design approach to predict the crosslinking degree, Eur. Polym. J. 118 (2019) 586–594. https://doi.org/10.1016/j.eurpolymj.2019.06.028.
  61. Thimma, R.T.; Tammishetti, S. Barium chloride crosslinked carboxymethyl guar gum beads for gastrointestinal drug delivery. J. Appl. Polym. Sci. 2001, 82, 3084–3090. [61] R.T. Thimma, S. Tammishetti, Barium Chloride Crosslinked Carboxymethyl Guar Gum Beads for Gastrointestinal Drug Delivery, J. Appl. Polym. Sci. 82 (2001) 3084–3090. https://doi.org/10.1002/app.2164.
  62. Bierhalz, A.C.; da Silva, M.A.; Braga, M.E.; Sousa, H.J.; Kieckbusch, T.G. Effect of calcium and/or barium crosslinking on the physical and antimicrobial properties of natamycin-loaded alginate films. LWT Food Sci. Technol. 2014, 57, 494–501. [62] A.C.K. Bierhalz, M.A. da Silva, M.E.M. Braga, H.J.C. Sousa, T.G. Kieckbusch, Effect of calcium and/or barium crosslinking on the physical and antimicrobial properties of natamycin-loaded alginate films, LWT - Food Sci. Technol. 57 (2014) 494–501. https://doi.org/10.1016/j.lwt.2014.02.021.
  63. Li, G.; Zhang, G.; Sun, R.; Wong, C.-P. Mechanical strengthened alginate/polyacrylamide hydrogel crosslinked by barium and ferric dual ions. J. Mater. Sci. 2017, 52, 8538–8545. [63] G. Li, G. Zhang, R. Sun, C. Wong, Mechanical strengthened alginate / polyacrylamide hydrogel crosslinked by barium and ferric dual ions, J. Mater. Sci. (2017). https://doi.org/10.1007/s10853-017-1066-x.
  64. de Vos, P.; Faas, M.M.; Strand, B.; Calafiore, R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomater. 2006, 27, 5603–5617. [64] P. De Vos, M.M. Faas, B. Strand, R. Calafiore, Alginate-based microcapsules for immunoisolation of pancreatic islets, Biomaterials. 27 (2006) 5603–5617. https://doi.org/10.1016/j.biomaterials.2006.07.010.
  65. Luca, G.; Calvitti, M.; Nastruzzi, C.; Bilancetti, L.; Becchetti, E.; Angeletti, G.; Mancuso, F.; Calafiore, R. Encapsulation, In Vitro Characterization, and In Vivo Biocompatibility of Sertoli Cells in Alginate-Based Microcapsules. Tissue Eng. 2007, 13, 641–648. [65] G. Luca, M. Calvitti, D. Ph, C. Nastruzzi, D. Ph, L. Bilancetti, D. Ph, E. Becchetti, D. Ph, G. Angeletti, F. Mancuso, D. Ph, R. Calafiore, L.E.T. Al, Encapsulation, In Vitro Characterization, and In Vivo Biocompatibility of Sertoli Cells in Alginate-Based Microcapsules, Tissue Eng. 13 (2007). https://doi.org/10.1089/ten.2006.0137.
  66. Bajpai, S.; Sharma, S. Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React. Funct. Polym. 2004, 59, 129–140. [66] S.K. Bajpai, S. Sharma, Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions, React. Funct. Polym. 59 (2004) 129–140. https://doi.org/10.1016/j.reactfunctpolym.2004.01.002.
  67. Sardroud, H.A.; Nemati, S.; Khoshfetrat, A.B.; Nabavinia, M.; Khosrowshahi, Y.B. Barium-cross-linked alginate-gelatine microcapsule as a potential platform for stem cell production and modular tissue formation. J. Microencapsul. 2017, 34, 488–497. [67] H. Alizadeh Sardroud, S. Nemati, A. Baradar Khoshfetrat, M. Nabavinia, Y. Beygi Khosrowshahi, Barium-cross-linked alginate-gelatine microcapsule as a potential platform for stem cell production and modular tissue formation, J. Microencapsul. 34 (2017) 488–497. https://doi.org/10.1080/02652048.2017.1354940.
  68. Machida-Sano, I.; Hirakawa, M.; Namiki, H. Cell Compatibility of Three-Dimensional Porous Barium-Cross-Linked Alginate Hydrogels. J. Sci. Res. Rep. 2014, 3, 2611–2621. [68] I. Machida-sano, M. Hirakawa, H. Namiki, Cell Compatibility of Three-Dimensional Porous Barium-Cross-Linked Alginate Hydrogels, JSRR. 3 (2014) 2611–2621.
  69. Smidsrød, O. Molecular basis for some physical properties of alginates in the gel state. Faraday Discuss. Chem. Soc. 1974, 57, 263–274. [69] O. Smidsrød, Molecular basis for some physical properties of alginates in the gel state, Faraday Discuss. Chem. Soc. 57 (1974) 263.
  70. Mørch, Ý.A.; Donati, I.; Strand, B.L.; Skjåk-BraeK, G. Effect of Ca2+, Ba2+, and Sr2+ on Alginate Microbeads. Biomacromolecules 2006, 7, 1471–1480. [70] Ý.A. Mørch, I. Donati, B.L. Strand, G. Skjåk-Bræk, Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads, Biomacromolecules. 7 (2006) 1471–1480. https://doi.org/10.1021/bm060010d.
  71. Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [71] K.Y. Lee, D.J. Mooney, Alginate: Properties and biomedical applications, Prog. Polym. Sci. 37 (2012) 106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003.
  72. Bajpai, S.; Saxena, S.K.; Sharma, S. Swelling behavior of barium ions-crosslinked bipolymeric sodium alginate–carboxymethyl guar gum blend beads. React. Funct. Polym. 2006, 66, 659–666. [72] S.K. Bajpai, S.K. Saxena, S. Sharma, Swelling behavior of barium ions-crosslinked bipolymeric sodium alginate – carboxymethyl guar gum blend beads, React. Funct. Polym. 66 (2006) 659–666. https://doi.org/10.1016/j.reactfunctpolym.2005.10.019.
  73. Duvivier-Kali, V.F.; Omer, A.; Parent, R.J.; O’Neil, J.J.; Weir, G.C. Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. Diabetes 2001, 50, 1698–1705. [73] A.C.K. Bierhalz, A. Mariana, M.E.M. Braga, H.J.C. Sousa, T.G. Kieckbusch, LWT - Food Science and Technology Effect of calcium and / or barium crosslinking on the physical and antimicrobial properties of natamycin-loaded alginate fi lms, LWT - Food Sci. Technol. 57 (2014) 494–501. https://doi.org/10.1016/j.lwt.2014.02.021.
  74. Gröhn, P.; Klöck, G.; Schmitt, J.; Zimmermann, U.; Horcher, A.; Bretzel, R.G.; Hering, B.J.; Brandhorst, D.; Zekorn, T.; Federlin, K. Large-scale production of Ba2+-alginate-coated islets of Langerhans for immunoisolation. Exp. Clin. Endocrinol. Diabetes 1994, 102, 380–387. [74] V.F. Duvivier-Kali, A. Omer, R.J. Parent, J.J. O’Neil, G.C. Weir, Complete Protection of Islets Against Allorejection and Autoimmunity by a Simple Barium-Alginate Membrane, Diabetes. 50 (2001) 1698–1705. https://doi.org/10.2337/diabetes.50.8.1698.
  75. Gröhn, P.; Klöck, G.; Zimmermann, U. Collagen-Coated Ba2+-Alginate Microcarriers for the Culture of Anchorage-Dependent Mammalian Cells. Biotechniques 1997, 22, 970–975. [75] P. Gröhn, G. Klöck, J. Schmitt, U. Zimmermann, A. Horcher, R.G. Bretzel, B.J. Hering, D. Brandhorst, H. Brandhorst, T. Zekorn, K. Federlin, Large-scale production of Ba2+-alginate-coated islets of Langerhans for immunoisolation, Exp. Clin. Endocrinol. Diabetes. 102 (1994) 380–387. https://doi.org/10.1055/s-0029-1211308.
  76. Duan, C.-J.; Wu, X.-Y.; Liu, W.; Chen, H.-H.; Yang, X.-X.; Zhao, J.-T. X-ray excited luminescent properties of apatitic compounds Ba5(PO4)3X (X: OH−, Cl−, Br−); structure and hydroxyl ion conductivity of barium hydroxylapatite. J. Alloys Compd. 2005, 396, 86–91. [76] P. Gröhn, G. Klöck, U. Zimmermann, Collagen-coated Ba2+-alginate microcarriers for the culture of anchorage-dependent mammalian cells, Biotechniques. 22 (1997) 970–975. https://doi.org/10.2144/97225rr06.
  77. Yoder, C.H.; Pasteris, J.D.; Krol, K.A.; Weidner, V.L.; Schaeffer, R.W. Synthesis, structure, and solubility of carbonated barium chlor- and hydroxylapatites. Polyhedron 2012, 44, 143–149. [77] C.J. Duan, X.Y. Wu, W. Liu, H.H. Chen, X.X. Yang, J.T. Zhao, X-ray excited luminescent properties of apatitic compounds Ba 5(PO4)3X (X: OH-, Cl-, Br-); Structure and hydroxyl ion conductivity of barium hydroxylapatite, J. Alloys Compd. 396 (2005) 86–91. https://doi.org/10.1016/j.jallcom.2004.11.064.
  78. Yasukawa, A.; Ueda, E.; Kandori, K.; Ishikawa, T. Preparation and characterization of carbonated barium–calcium hydroxyapatite solid solutions. J. Colloid Interface Sci. 2005, 288, 468–474. [78] C.H. Yoder, J.D. Pasteris, K.A. Krol, V.L. Weidner, R.W. Schaeffer, Synthesis, structure, and solubility of carbonated barium chlor- and hydroxylapatites, Polyhedron. 44 (2012) 143–149. https://doi.org/10.1016/j.poly.2012.06.039.
  79. Liu, H.; Zhang, Z.; Gao, C.; Bai, Y.; Liu, B.; Wang, W.; Ma, Y.; Yang, H.; Li, Y.; Chan, A.; et al. Enhancing effects of radiopaque agent BaSO4 on mechanical and biocompatibility properties of injectable calcium phosphate composite cement. Mater. Sci. Eng. C 2020, 116, 110904. [79] A. Yasukawa, E. Ueda, K. Kandori, T. Ishikawa, Preparation and characterization of carbonated barium-calcium hydroxyapatite solid solutions, J. Colloid Interface Sci. 288 (2005) 468–474. https://doi.org/10.1016/j.jcis.2005.03.007.
  80. Flora, N.J.; Hamilton, K.W.; Schaeffer, R.W.; Yoder, C.H. A Comparative Study of the Synthesis of Calcium, Strontium, Barium, Cadmium, and Lead Apatites in Aqueous Solution. Synth. React. Inorg. Met. Chem. 2004, 34, 503–521. [80] H. Liu, Z. Zhang, C. Gao, Y. Bai, B. Liu, W. Wang, Y. Ma, Saijilafu, H. Yang, Y. Li, A. Chan, L. Yang, Enhancing effects of radiopaque agent BaSO4 on mechanical and biocompatibility properties of injectable calcium phosphate composite cement, Mater. Sci. Eng. C. 116 (2020) 110904. https://doi.org/10.1016/j.msec.2020.110904.
  81. Bigi, A.; Foresti, E.; Marchetti, F.; Ripamonti, A.; Roveri, N. Barium calcium hydroxyapatite solid solutions. J. Chem. Soc. Dalton Trans. 1984, 5, 1091–1093. [81] N.J. Flora, K.W. Hamilton, R.W. Schaeffer, C.H. Yoder, A Comparative study of the synthesis of calcium, strontium, barium, cadmium, and lead apatites in aqueous solution, Synth. React. Inorg. Met. Chem. 34 (2004) 503–521. https://doi.org/10.1081/SIM-120030437.
  82. Yashima, M.; Kawaike, Y. Crystal Structure and Site Preference of Ba-Doped r -Tricalcium Phosphate (Ca 1 − x Ba x)3 (PO4)2 through High-Resolution Synchrotron Powder Diffraction (x) 0.05 to 0.15). Chem. Mater. 2007, 3, 3973–3979. [82] A. Bigi, E. Foresti, F. Marchetti, A. Ripamonti, N. Roveri, Barium calcium hydroxyapatite solid solutions, J. Chem. Soc. Dalt. Trans. 5 (1984) 1091–1093. https://doi.org/10.1039/DT9840001091.
  83. Myat-Htun, M.; Noor, A.-F.M.; Kawashita, M.; Ismail, Y.M.B. Enhanced sinterability and in vitro bioactivity of barium-doped akermanite ceramic. Ceram. Int. 2020, 46, 19062–19068. [83] M. Yashima, Y. Kawaike, Crystal Structure and Site Preference of Ba-Doped r -Tricalcium Phosphate ( Ca 1 - x Ba x ) 3 ( PO 4 ) 2 through High-Resolution Synchrotron Powder Diffraction ( x ) 0 . 05 to 0 . 15 ), Chem. Mater. 3 (2007) 3973–3979.
  84. Arepalli, S.K.; Tripathi, H.; Vyas, V.K.; Jain, S.; Suman, S.K.; Pyare, R.; Singh, S. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass. Mater. Sci. Eng. C 2015, 49, 549–559. [84] M. Myat-htun, A.M. Noor, M. Kawashita, Enhanced sinterability and in vitro bioactivity of barium-doped akermanite ceramic, Ceram. Int. 46 (2020) 19062–19068. https://doi.org/10.1016/j.ceramint.2020.04.238.
  85. Acarturk, O.; Lehmicke, M.; Aberman, H.; Toms, D.; Hollinger, J.O.; Fulmer, M. Bone healing response to an injectable calcium phosphate cement with enhanced radiopacity. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 86B, 56–62. [85] S.K. Arepalli, H. Tripathi, V.K. Vyas, S. Jain, S.K. Suman, R. Pyare, S.P. Singh, Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass, Mater. Sci. Eng. C. 49 (2015) 549–559. https://doi.org/10.1016/j.msec.2015.01.049.
  86. Bajpai, S.K.; Sharma, S. Investigation of pH-Sensitive Swelling and Drug Release Behavior of Barium Alginate/Carboxymethyl Guar Gum Hydrogel Beads. J. Macromol. Sci. Part A 2006, 43, 1513–1521. [86] O. Acarturk, M. Lehmicke, H. Aberman, D. Toms, J.O. Hollinger, M. Fulmer, Bone Healing Response to an Injectable Calcium Phosphate Cement With Enhanced Radiopacity, J. Biomed. Mater. Res. Part B Appl. Biomater. (2007) 56–62. https://doi.org/10.1002/jbm.b.30987.
  87. Mørch, Y.A.; Qi, M.; Gundersen, P.O.M.; Formo, K.; Lacik, I.; Skjåk-Braek, G.; Oberholzer, J.; Strand, B.L. Binding and leakage of barium in alginate microbeads. J. Biomed. Mater. Res. Part A 2012, 100A, 2939–2947. [87] S.K. Bajpai, S. Sharma, Investigation of pH ‐ Sensitive Swelling and Drug Release Behavior of Barium Alginate / Carboxymethyl Guar Gum Hydrogel Beads Investigation of pH-Sensitive Swelling and Drug Release B, J. Macromol. Sci. , Part A Pure Appl. Chem. 43 (2006) 1513–1521. https://doi.org/10.1080/10601320600896728.
  88. Gallantt, B.Y.E.M. Barium-treated mammalian skeletal muscle: Similarities to hypokalaemic periodic paralysis. J. Physiol. 1983, 335, 577–590. [88] Y.A. Mørch, M. Qi, P.O.M. Gundersen, K. Formo, I. Lacik, J. Oberholzer, B.L. Strand, Binding and leakage of barium in alginate microbeads, (2012) 2939–2947. https://doi.org/10.1002/jbm.a.34237.
  89. Walz, W.; Shargool, M.; Hertz, L. Barium-induced inhibition of K+ transport mechanisms in cortical astrocytes—Its possible contribution to the large Ba2+-evoked extracellular K+ signal in brain. Neuroscience 1984, 13, 945–949. [89] B.Y.E.M. Gallantt, BARIUM-TREATED MAMMALIAN SKELETAL MUSCLE: SIMILARITIES TO HYPOKALAEMIC PERIODIC PARALYSIS, J. Physiol. (1983) 577–590.
  90. Honorio-França, A.; Mores, L.; Silva, N.; Suchara, E.; França, E. Nanoparticles of barium induce apoptosis in human phagocytes. Int. J. Nanomed. 2015, 10, 6021–6026. [90] W. Walz, M. Shargool, L. Hertz, Barium-induced inhibition of K+ transport mechanisms in cortical astrocytes-its possible contribution to the large Ba2+-evoked extracellular K+ signal in brain, Neuroscience. 13 (1984) 945–949. https://doi.org/10.1016/0306-4522(84)90108-8.
  91. [91] L. Mores, E.L. França, N.A. Silva, E.A. Suchara, A.C.H.F. França, Nanoparticles of barium induce apoptosis in human phagocytes, Int. J. Nanomedicine. (2015) 6021–6026.
More
Video Production Service