Crop Wild Relatives: Comparison
Please note this is a comparison between Version 1 by Johannes Martinus Marie Engels and Version 3 by Catherine Yang.

All our crops are the result from a domestication process that has been conducted by people from around the world. This domestication process of selected wild species in parts of the world that harbour a high level of species and genetic diversity was preceded by gathering plants or parts thereof (e.g. seeds; root and tubers) for their consumption 'at home', usually combined with hunting of wild animals. The selected and gradually domesticated plants, i.e. our today's crops, have 'nephews and cousins' that are closely related to a given crop species and that are wild plants, i.e. the crop wild relatives. These species sometimes naturally interbreed with their related crops or can be crossed with the crop by using specific techniques such as molecular genetic tools. These crop wild relatives possess important genes and traits that are critically important for the improvement of our crops, through research, pre-breeding and breeding of new varieties that are better adapted to our ever-changing production environment. Climate change is causing serious threats to a number of crops and crop varieties and their adaptation to the changed conditions is critical to maintain their production level.

Unfortunately, the drastic changes we have seen in our agricultural production systems during the past 70 - 80 years, the huge changes in our landscapes, the impacts of climate change and many other aspects cause a direct and severe threat to the survival of the crop wild relatives and concerted efforts are urgently required to ensure their survival.

This entry provides a general introduction to this often forgotten and little known subset of plant genetic resources for food and agriculture, it defines CWRs and provides information on classification of the species and presents an overview over the conservation status under in situ conditions (i.e. in nature), in ex situ conditions (i.e. in genebanks or botanic gardens) as well on how conservation approaches can be optimized by combining in situ and ex situ (the so-called complementary conservation) as well as on their use in breeding programmes. The final concluding session provides an overview of the problems encountered with the conservation (and use) and what should be done to improve the current situation to ensure a more effective and efficient conservation. The presented recommendations are based on an analysis of the threat status of the CWRs as well as on biological factors that hamper conservation as well as on other constraints encountered so far. the importance of CWRs. Details on these parameters are not included in the text below but are included in the related paper that has been recently published.

  • Crop wild relatives
  • genetic resources
  • conservation and use
  • in situ, ex situ and complementary conservation
  • consercation and use
Please wait, diff process is still running!

References

  1. Willcox, G. The beginnings of cereal cultivation and domestication in Southwest Asia. In A Companion to the Archaeology of the Ancient Near East, 1st ed.; Potts, D.T., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2012; pp. 163–180.
  2. Evolutionary Insights into the Nature of Plant DomesticationPurugganan, M.D. Evolutionary Insights into the Nature of Plant Domestication. Curr. Boil. 2019, 29, R705–R714, doi:10.1016/j.cub.2019.05.053.
  3. Purugganan, M.D.; Fuller, D.Q. The nature of selection during plant domestication. Nature 2009, 457, 843–848.Purugganan, M.D.; Fuller, D.Q. The nature of selection during plant domestication. Nature 2009, 457, 843–848, doi:10.1038/nature07895.
  4. White, C.E. The Emergence and Intensification of Cultivation Practices at the Pre-Pottery Neolithic Site of El-Hemmeh, Jordan: An Archaeobotanical Study. Ph.D. Dissertation, Boston University, Boston, MA, USA, 2013; 240p. Available online: https://hdl.handle.net/2144/12888 (accessed on 18 June 2020).White, C.E. The Emergence and Intensification of Cultivation Practices at the Pre-Pottery Neolithic Site of El-Hemmeh, Jordan: An Archaeobotanical Study. Ph.D. Dissertation, Boston University, Boston, MA, USA, 2013; Volume 1, 240p. Available online: https://hdl.handle.net/2144/12888 (accessed on 18 June 2020).
  5. Weide, A.; Riehl, S.; Zeidi, M.; Conard, N.J. A systematic review of wild grass exploitation in relation to emerging cereal cultivation throughout the Epipalaeolithic and aceramic Neolithic of the Fertile Crescent. PLoS ONE 2018, 13, e0189811.Weide, A.; Riehl, S.; Zeidi, M.; Conard, N.J. A systematic review of wild grass exploitation in relation to emerging cereal cultivation throughout the Epipalaeolithic and aceramic Neolithic of the Fertile Crescent. PLoS ONE 2018, 13, e0189811, doi:10.1371/journal.pone.0189811.
  6. Gepts, P. Domestication of Plants. In Encyclopedia of Agriculture and Food Systems; van Alfen, N.K., Ed.; Elsevier: San Diego, CA, USA, 2014; Volume 2, pp. 474–486.Gepts, P. Domestication of Plants. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Elsevier: San Diego, CA, USA, 2014; Volume 2, pp. 474–486.
  7. Tanksley, S.D.; McCouch, S.R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 277, 1063–1066.
  8. Dempewolf, H.; Baute, G.; Anderson, J.; Kilian, B.; Smith, C.; Guarino, L. Past and Future Use of Wild Relatives in Crop Breeding. Crop Sci. 2017, 57, 1070–1082.
  9. Thormann, I.; Engels, J.M.M. Genetic diversity and erosion—A global perspective. In Genetic Diversity and Erosion in Plants—Indicators and Prevention; Ahuja, M.R., Jain, S.M., Eds.; Springer: Berlin, Germany, 2015; Chapter 10; Volume 1, pp. 263–294.Thormann, I.; Engels, J.M.M. Genetic diversity and erosion—A global perspective. In Genetic Diversity and Erosion in Plants—Indicators and Prevention; Ahuja, M.R., Jain, S.M., Eds.; Chapter 10; Springer: Berlin, Germany, 2015; Volume 1, pp. 263–294.
  10. Thormann, I.; Fiorino, E.; Halewood, M.; Engels, J.M.M. Plant genetic resources collections and associated information as baseline resource for genetic diversity studies—An assessment of the IBPGR supported collections. Genet. Resour. Crop Evol. 2015, 62, 1279–1293.
  11. Rick, C.M.; Chetelat, R. Utilization of related wild species for tomato improvement, First International Symposium on Solanaceae for Fresh Market. Acta Hortic. 1995, 412, 21–38.
  12. Hoyt, E. Conserving the Wild Relatives of Crops; IBPGR: Rome, Italy, 1988; 45p.
  13. Mammadov, J.; Buyyarapu, R.; Guttikonda, S.K.; Parliament, K.; Abdurakhmonov, I.Y.; Kumpatla, S.P. Wild Relatives of Maize, Rice, Cotton, and Soybean: Treasure Troves for Tolerance to Biotic and Abiotic Stresses. Front. Plant Sci. 2018, 9, 886. Mammadov, J.; Buyyarapu, R.; Guttikonda, S.K.; Parliament, K.; Abdurakhmonov, I.Y.; Kumpatla, S.P. Wild Relatives of Maize, Rice, Cotton, and Soybean: Treasure Troves for Tolerance to Biotic and Abiotic Stresses. Front. Plant Sci. 2018, 9, 886–886.
  14. CBD. Global Strategy for Plant Conservation; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2002; 48p.
  15. CBD. Notification: Strengthening the In Situ Conservation of Plant Genetic Resources for Food and Agriculture through Incorporation of Crop Wild Relatives under Areas Important for Biodiversity in Protected Area Networks and Other Effective Area-Based Conservation Measures (Aichi Biodiversity Targets 7, 11, 12 and 13 and Global Strategy for Plant Conservation Targets 5, 6, 7 and 9); CBD Secretariat: Montreal, QC, Canada, 2015; 11p.
  16. FAO. Second Global Plan of Action for Plant Genetic Resources for Food and Agriculture. Commission on Genetic Resources for Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; 96p, Available online: http://www.fao.org/3/i2624e/i2624e00.pdf (accessed on 18 June 2020).FAO. Second Global Plan of Action for Plant Genetic Resources for Food and Agriculture. Commission on Genetic Resources for Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; 96p. Available online: http://www.fao.org/3/i2624e/i2624e00.pdf (accessed on 18 June 2020).
  17. United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; General Assembly, Seventieth Session; Agenda Items 15 and 116, A/RES/70/1; United Nations: New York, NY, USA, 2015; 35p.United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; General Assembly, Seventieth Session. Agenda Items 15 and 116, A/RES/70/1; United Nations: New York, NY, USA, 2015; 35p.
  18. IPBES. Global Assessment Report on Biodiversity and Ecosystem Services; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2019.
  19. FAO. Voluntary Guidelines for the Conservation and Sustainable Use of Crop Wild Relatives and Wild Food Plants; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; 106p.
  20. Brehm, J.M.; Kell, S.; Thormann, I.; Gaisberger, H.; Dulloo, M.E.; Maxted, N. New tools for crop wild relative conservation planning. Plant Genet. Resour. 2019, 17, 208–212.
  21. FAO. The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; 399p.
  22. FAO. Assessment of the Implementation of the Second Global Plan of Action for Plant Genetic Resources for Food and Agriculture 2012–2014; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; 76p.
  23. Maxted, N.; Ford-Lloyd, B.V.; Jury, S.L.; Kell, S.P.; Scholten, M.A. Towards a definition of a crop wild relative. Biodivers. Conserv. 2006, 15, 2673–2685. Maxted, N.; Ford-Lloyd, B.V.; Jury, S.L.; Kell, S.P.; Scholten, M.A. Towards a definition of a crop wild relative. Biodivers. Conserv. 2006, 15, 2673–2685.
  24. Harlan, J.R.; de Wet, J.M.J. Towards a rational classification of cultivated plants. Taxon 1971, 20, 509–517.Harlan, J.R.; de Wet, J.M.J. Towards a rational classification of cultivated plants. TAXON 1971, 20, 509–517.
  25. Maxted, N.; Kell, S.P. Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs Background Study Paper No. 39; FAO Commission on Genetic Resources for Food and Agriculture: Rome, Italy, 2009; 224p.Maxted, N.; Kell, S.P. Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs; Background Study Paper No. 39; FAO Commission on Genetic Resources for Food and Agriculture: Rome, Italy, 2009; 224p.
  26. Kell, S.P.; Knüpffer, H.; Jury, S.L.; Ford-Lloyd, B.V.; Maxted, N. Crops and wild relatives of the Euro-Mediterranean region: Making and using a conservation catalogue. In Crop Wild Relative Conservation and Use; Maxted, N., Ford-Lloyd, B.V., Kell, S.P., Iriondo, J.M., Dulloo, M.E., Turok, J., Eds.; CAB International: Wallingford, UK, 2008; pp. 69–109.
  27. Groombridge, B.; Jenkins, M.D. World Atlas of Biodiversity; Prepared by the UNEP World Conservation Monitoring Centre; University of California Press: Berkeley, CA, USA, 2002.
  28. Maxted, N.; Kell, S.P.; Toledo, A.; Dulloo, E.M.; Heywood, V.; Hodgkin, T.; Hunter, D.; Guarino, L.; Jarvis, A.; Ford-Lloyd, B.V. A Global Approach to Crop Wild Relative Conservation: Securing the Gene Pool for Food and Agriculture. Kew Bull. 2010, 65, 561–576.
  29. Vincent, H.; Wiersema, J.; Dobbie, S.; Kell, S.P.; Fielder, H.; Castañeda-Álvarez, N.P.; Eastwood, R.P.; Guarino, L.; Maxted, N. A prioritized crop wild relative inventory to help underpin global food security. Biol. Conserv. 2013, 167, 265–275.
  30. The Harlan and de Wet Crop Wild Relatives Inventory. Available online: https://www.cwrdiversity.org/checklist/ (accessed on 30 June 2020).The Harlan and de Wet Crop Wild Relatives Inventory. Available online: https://www.cwrdiversity.org/checklist/ (assessed on 30 June 2020).
  31. Lala, S.; Amri, A.; Maxted, N. Towards the conservation of crop wild relative diversity in North Africa: Checklist, prioritization and inventory. Genet. Resour. Crop Evol. 2018, 65, 113–124.Lala, S.; Amri, A.; Maxted, N. Towards the conservation of crop wild relative diversity in North Africa: Checklist, prioritization and inventory. Genet. Resour. Crop Evol. 2018, 65, 113–124, doi:10.1007/s10722–017-0513–5.
  32. Allen, E.; Gaisberger, H.; Brehm, J.M.; Maxted, N.; Thormann, I.; Lupupa, T.; Dulloo, M.E.; Kell, S.P. A crop wild relative inventory for Southern Africa: A first step in linking conservation and use of valuable wild populations for enhancing food security. Plant Genet. Resour. 2019, 17, 128–139.Allen, E.; Gaisberger ,H.; Brehm, J.M.; Maxted, N.; Thormann, I.; Lupupa, T.; Dulloo, M.E.; Kell, S.P. A crop wild relative inventory for Southern Africa: A first step in linking conservation and use of valuable wild populations for enhancing food security. Plant Genet. Resour. 2019, 17, 128–139.
  33. Ford-Lloyd, B.V.; Schmidt, M.; Armstrong, S.J.; Barazani, O.; Engels, J.; Hadas, R.; Hammer, K.; Kell, S.P.; Kang, D.; Khoshbakht, K.; et al. Crop Wild Relatives—Undervalued, Underutilized and under Threat? BioScience 2011, 61, 559–565. CWR Checklists, Strategies, Action Plans. Available online: http://www.cropwildrelatives.org/cwr-strategies/ (accessed on 1 July 2020).
  34. Vincent, H.; Amri, A.; Castañeda-Álvarez, N.P.; Dempewolf, H.; Dulloo, E.M.; Guarino, L.; Hole, D.; Mba, C.; Toledo, A.; Maxted, N. Modeling of crop wild relative species identifies areas globally for in situ conservation. Commun. Biol. 2019, 2, 1–8.Ford-Lloyd, B.V.; Schmidt, M.; Armstrong, S.J.; Barazani, O.; Engels, J.; Hadas, R.; Hammer, K.; Kell, S.P.; Kang, D.; Khoshbakht, K.; et al. Crop Wild Relatives—Undervalued, Underutilized and under Threat? BioScience 2011, 61, 559–565.
  35. UNEP-WCMC, IUCN and NGS. Protected Planet Live Report 2020; UNEP-WCMC: Cambridge, UK; IUCN: Gland, Switzerland; NGS: Washington, DC, USA, 2020. Jarvis, A.; Lane, A.; Hijmans, R.J. The Effect of Climate Change on Crop Wild Relatives. Agric. Ecosyst. Environ. 2008, 126, 13–23.
  36. Hunter, D.; Heywood, V. (Eds.) Crop Wild Relatives. A Manual of in situ Conservation; Routledge: London, UK, 2011; 414p.Lira, R.; Téllez, O.; Dávila, P. The effects of climate change on the geographic distribution of Mexican wild relatives of domesticated Cucurbitaceae. Genet. Resour. Crop Evol. 2009, 56, 691–703.
  37. Frese, L.; Bönisch, M.; Herden, T.; Zander, M.; Friesen, N. In-situ-Erhaltung von Wildselleriearten. Nat. Landsch. 2018, 50, 155–163.IUCN. IUCN Red List Categories and Criteria: Version 3.1, 2nd ed.; IUCN Species Survival Commission, IUCN: Gland, Switzerland; Cambridge, UK, 2012; 32p.
  38. Bönisch, M.; Frese, L. Designation of Genetic Reserves for Wild Celery Species in Germany. Crop Wild Relative Issue 12; ISSN 1742-3694 (Online). In Press. Available online: http://farmerspride.eu/.Brehm, J.M.; Mitchell, M.; Maxted, N.; Ford-Lloyd, B.V. Martins-Loução, M.A. IUCN Red Listing of Crop Wild Relatives: Is a National Approach as Difficult as Some Think? In: Crop Wild Relative Conservation and Use; Maxted, N., Ford-Lloyd, B.V., Kell, S.P., Iriondo, J.M., Dulloo, M.E., Turok, J., Eds.; CAB International: Wallingford, UK, 2008.
  39. Thormann, I. The German Network of Genetic Reserves. Crop Wild Relative Issue 12; ISSN 1742-3694 (Online). In Press. Available online: http://farmerspride.eu/.Ludwig, G.; Haupt, H.; Gruttke, H.; Binot-Hafke, M. Methodik der Gefährdungsanalyse für Rote Listen. In Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Band 1: Wirbeltiere; Haupt, H., Ludwig, G., Gruttke, H., Binot-Hafke, M., Otto, C., Pauly, A., Eds.; Landwirtschaftsverlag: Münster, 2009; Volume 70, pp. 19–71.
  40. Parra-Quijano, M.; Iriondo, J.M.; Torres, E. Ecogeographical land characterization maps as a tool for assessing plant adaptation and their implications in agrobiodiversity studies. Genet. Resour. Crop Evol. 2011, 59, 205–217.FAO. Study on the Linkages between Protected Areas and the Conservation of Biodiversity for Food and Agriculture. Thematic Study for the State of the World’s Biodiversity for Food and Agriculture; Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; 22p.
  41. Genesys Is an Online Platform Where You Can Find Information about Plant Genetic Resources for Food and Agriculture (PGRFA) Conserved in Genebanks Worldwide. Available online: https://www.genesys-pgr.org/ (accessed on 1 July 2020).Bilz, M.; Kell, S.P.; Maxted, N.; Lansdown, R.V. European Red List of Vascular Plants; Publications Office of the European Union: Luxembourg, 2011; 130p.
  42. Eurisco. Finding Seeds for the Future. Available online: http://eurisco.ecpgr.org (accessed on 1 July 2020).Mora, A.; Zapata Ferrufino, B.; Hunter, D.; Navarro, G.; Galeano, G.; Apaza, K.S.; Baudoin, M.J.; Dulloo, M.E.; Cuellar, S.; Beck, S.G.; et al. Libro Rojo de Parientes Silvestres de Bolivia. Ministerio De Medio Ambiente y Agua, Viceministerio De Medio Ambiente Biodiversidad Y Cambios Climáticos (VMABCC)/Biodiversity International. 2009. Available online: http://www.cropwildrelatives.org/fileadmin/documents/Red%20List_Bolivia_optim.pdf (accessed on 18 June 2020).
  43. Ford-Lloyd, B.V.; Schmidt, M.; Armstrong, S.J.; Barazani, O.; Engels, J.; Hadas, R.; Hammer, K.; Kell, S.P.; Kang, D.; Khoshbakht, K.; et al. Crop Wild Relatives—Undervalued, Underutilized and under Threat? BioScience 2011, 61, 559–565.Engels, J.M.M. (Bioversity International, Rome, Italy). Personal communication, 2020.
  44. Castañeda-Álvarez, N.P.; Khoury, C.K.; Achicanoy, H.A.; Bernau, V.; Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Harker, R.H.; Jarvis, A.; Maxted, N.; et al. Global conservation priorities for crop wild relatives. Nat. Plants 2016, 2, 16–22.Rao, K.N.; Dulloo, M.E.; Engels, J.M.M. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genet. Resour. Crop Evol. 2017, 64, 1061–1074.
  45. Heywood, V.H. The role of botanic gardens in ex situ conservation of agrobiodiversity. In Implementation of the Global Plan of Action in Europe—Conservation and Sustainable Utilization of Plant Genetic Resources for Food and Agriculture, Proceedings of the European Symposium, Braunschweig, Germany, 30 June–3 July 1988; Gass, T., Frese, L., Begemann, F., Lipman, E., Eds.; International Plant Genetic Resources Institute: Rome, Italy, 1999; pp. 102–107.Engels, J.M.M. An introduction to plant germplasm exploration and collecting: Planning, methods and procedures, follow-up. In Collecting Plant Genetic Diversity: Technical Guidelines. 2011 Update; Guarino, L., Rao, R.V., Goldberg, E., Eds.; Bioversity International: Rome, Italy, 2011.
  46. Dempewolf, H.; (Global Crop Diversity Trust, Bonn, Germany). Personal communication, 2020.Hoban, S.; Schlarbaum, S. Optimal sampling of seeds from plant populations for ex-situ conservation of genetic biodiversity, considering realistic population structure. Biol. Conserv. 2014, 177, 90–99.
  47. Engels, J.; Thormann, I. Final Report of a Consultancy “Increasing Climate Resilience for Poor Farmers: The role of National Plant Genetic Resource Collections”; Kreditanstalt für Wiederaufbau (KfW) and Global Crop Diversity Trust: Frankfurt/Bonn, Germany, 2017; 129p, Unpublished, manuscript in preparation.Hoban, S.; Strand, A. Ex situ seed collections will benefit from considering spatial sampling design and species’ reproductive biology. Biol. Conserv. 2015, 187, 182–191.
  48. Khoury, C.K.; Carver, D.; Kates, H.R.; Achicanoy, H.A.; van Zonneveld, M.; Thomas, E.; Heinitz, C.; Jarret, R.; Labate, J.A.; Reitsma, K.; et al. Distributions, conservation status, and abiotic stress tolerance potential of wild cucurbits (Cucurbita L.). Plants People Planet 2019, 2, 269–283.Bellon, M.R.; Dulloo, E.; Sardos, J.; Thormann, I.; Burdon, J.J. In situ conservation—Harnessing natural and human-derived evolutionary forces to ensure future crop adaptation. Evol. Appl. 2017, 10, 965–977.
  49. Welcome to PlantSearch! Botanic Gardens Conservation. International. Available online: https://tools.bgci.org/plant_search.php (accessed on 30 June 2020).Aguirre-Gutiérrez, J.; van Treuren, R.; Hoekstra, R.; van Hintum, T.J.L. Crop wild relatives range shifts and conservation in Europe under climate change. Divers. Distrib. 2017, 23, 739–750, doi:10.1111/ddi.12573.
  50. Meyer, A.; Barton, N. Botanic Gardens Are Important Contributors to Crop Wild Relative Preservation. Crop Sci. 2019, 59, 2404–2412.FAO. Genebank Standards for Plant Genetic Resources for Food and Agriculture, Rev. ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; 166p.
  51. Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Khoury, C.K.; Muller, J.V.; Toll, J. Adapting agriculture to climate change: A global initiative to collect, conserve, and use crop wild relatives. Agroecol. Sustain. Food Syst. 2014, 38, 369–377.Hanson, J.; Ellis, R.H. Progress and Challenges in Ex Situ Conservation of Forage Germplasm: Grasses, Herbaceous Legumes and Fodder Trees. Plants 2020, 9, 446, doi:10.3390/plants9040446.
  52. Engels, J.M.M. Complementary strategies for improved conservation and use of plant genetic resources. In Towards Sustainable National Plant Genetic Resources Programmes—Policy, Planning and Conservation Issues; Engels, J.M.M., Vodouhe, R., Thompson, J., Zannou, A., Hehne, E., Grum, M., Eds.; IPGRI: Rome, Italy, 2000; pp. 69–77.Engels, J.M.M.; Maggioni, L. Managing germplasm in a virtual European genebank (AEGIS) through networking. In Theorien der Lebendsammlung. Pflanzen, Mikroben und Tiere als Biofakte in Genbanken. (Lebenswissenschaften im Dialog 25); Karafyllis, N.C., Ed.; Euro. Verlag: Freiburg/München, Germany, 2018; pp. 169–197.
  53. Hunter, D.; Changtragoon, S. Good practices for conservation and sustainable use of crop wild relatives of tropical fruit tree diversity. In Tropical Fruit Tree Diversity. Good Practices for In Situ and On-Farm Conservation; Sthapit, B., Lamers, H., Rao, R.V., Bailey, A., Eds.; Earthscan from Routledge: London, UK, 2016; pp. 83–96.Ford-Lloyd, B.; Kell, S.P.; Maxted, N. Establishing Conservation Priorities for Crop Wild Relatives. In Crop Wild Relative Conservation and Use; Maxted, N., Ford-Lloyd, B., Kell, S.P., Iriondo, J.M., Dulloo, M.E., Turok, J., Eds.; CAB International: Wallingford, UK, 2008; pp. 110–119.
  54. Jha, U.C.; Bohra, A.; Singh, N.P. Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed. 2014, 133, 679–701.Akparov, Z.I.; Aronsson, M.; Asdal, A.; Avagyan, A.; Bartha, B.; Benediková, D.; Berishvili, T.; Bocci, R.; Bullinska-Radomska, Z.; Cop, J.; et al. Current and future threats and opportunities facing European crop wild relative and landrace diversity. In Agrobiodiversity Conservation: Securing the Diversity of Crop Wild Relatives and Landraces; Maxted, N., Dulloo, E.M., Ford-Lloyd, B.V., Frese, L., Iriondo, J., Pinheiro de Carvalho, M.A.A., CABI: Wallingford, UK, 2011; pp. 333–354.
  55. Dulloo, M.E.; Fiorino, E.; Thormann, I. Research on Conservation and Use of Crop Wild Relatives. In Crop Wild Relatives and Climate Change; Chapter 7; Redden, R., Yadav, S.S., Maxted, N., Dulloo, M.E., Guarino, L., Smith, P., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2015; pp. 108–129.Hunter, D.; Heywood, V. (Ed.) Crop Wild Relatives. A Manual of in situ Conservation; Routledge: London, UK, 2011; 414p.
  56. Vavilov, N.I. The origin, variation, immunity and breeding of cultivated plants. Chron. Bot. 1951, 13, 1–54.Brehm, J.M.; Kell, S.; Thormann, I.; Gaisberger, H.; Dulloo, E.; Maxted, N. Interactive Toolkit for Crop Wild Relative Conservation Planning Version 1.0; University of Birmingham: Birmingham, UK; Bioversity International: Rome, Italy, 2017. Available online: http://www.cropwildrelatives.org/conservation-toolkit/ (accessed on 18 June 2020).
  57. Prescott-Allen, C.; Prescott-Allen, R. The First Resource: Wild Species in the North American Economy; Yale University Press: New Haven, CT, USA, 1986.Thormann, I.; Jarvis, D.I.; Dearing, J.A.; Hodgkin, T. Internationally available information sources for the development of in situ conservation strategies for wild species useful for food and agriculture. Plant Genet. Resour. Newsl. 1999, 118, 38–50.
  58. Engels, J.M.M. Genetische bronnen, hun conservering en aanwending in de aardappelveredeling. In Genetic Resources, Conservation and Use in the Potato Breeding; Agricultural University Wageningen: Wageningen, The Netherlands, 1974; 83p. Thormann, I.; Lane, A.; Durah, K.; Dulloo, M.E.; Gaiji, S. Crop wild relative information: Developing a tool for its management and use. In Crop Wild Relative Conservation and Use; Maxted, N., Ford-Lloyd, B.V., Kell, S.P., Iriondo, J., Dulloo, M.E., Turok, T., Eds.; CAB International: Wallingford, UK, 2008; pp. 504–512.
  59. Kilian, B.; Martin, W.; Salamini, F. Genetic diversity, evolution and domestication of wheat and barley in the Fertile Crescent. In Evolution in Action; Glaubrecht, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 137–166.Thormann, I. Published Sources of Information on Wild Plant Species. In Collecting Plant Genetic Diversity: Technical Guidelines; Guarino, L., Rao, V.R., Goldberg, E., Eds.; Bioversity International: Rome, Italy, 2011; 10p. ISBN 978-92-9043-922-6. 2011 Update. Available online: http://cropgenebank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=657 (accessed on 18 June 2020).
  60. Thormann, I.; Parra-Quijano, M.; Endresen, D.T.F.; Rubio-Teso, M.L.; Iriondo, M.J.; Maxted, N. Predictive Characterization of Crop Wild Relatives and Landraces. Technical Guidelines, Version 1; Bioversity International: Rome, Italy, 2014; 40p.Thormann, I.; Alercia, A.; Dulloo, M.E. Core Descriptors for In Situ Conservation of Crop Wild Relatives v.1; Bioversity International: Rome, Italy, 2013; 28p.
  61. Willis, K.J. State of the World’s Plants Report—2017; Royal Botanic Gardens: Kew, UK, 2017; 96p.Thormann, I.; Kell, S.; Brehm, J.M.; Dulloo, M.E.; Maxted, N. CWR Checklist and Inventory Data Template v.1; Harvard Dataverse, 2017, doi:10.7910/DVN/B8YOQL. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/B8YOQL. (accessed on 18 June 2020).
  62. Bertioli, D.J.; Cannon, S.B.; Froenicke, L.; Huang, G.; Farmer, A.D.; Cannon, E.K.; Liu, X.; Gao, N.; Clevenger, J.; Dash, S.; et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 2016, 48, 438–446.Brehm, J.M.; Kell, S.; Thormann, I.; Gaisberger, H.; Dulloo, E.; Maxted, N. Occurrence Data Collation Template v.1; Harvard Dataverse, 2017, doi:10.7910/DVN/5B9IV5. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/5B9IV5. (accessed on 18 June 2020).
  63. PricewaterhouseCoopers PwC, 2013. Crop Wild Relatives: A Valuable Resource for Crop Development. www.pwc.co.uk/valuations. Available online: https://pwc.blogs.com/files/pwc-seed-bank-analysis-for-msb-0713.pdf (accessed on 15 January 2020).Thormann, Wiersema, J.H.; León, B. The GRIN Taxonomy Crop Wild Relative Inventory. In Enhancing Crop Genepool Use: Capturing Wild Relative and Landrace Diversity for Crop Improvement; Maxted, N., Dulloo, M.E., Ford-Lloyd, B.V., Eds.; CAB International: Wallingford, UK, 2016; pp. 453–458.
  64. Pimentel, D.; Wilson, C.; McCullum, C.; Huang, R.; Dwen, P.; Flack, J.; Tran, Q.; Saltman, T.; Cliff, B. Economic and environmental benefits of biodiversity. Bioscience 1997, 47, 747–757.Bioversity International, University of Birmingham. Crop Wild Relative Checklist and Inventory Descriptors, v.1; Bioversity International: Rome, Italy, 2017; 26p.
  65. Tyack, N.; Dempewolf, H. The Economics of Crop Wild Relatives under Climate Change. In Crop Wild Relatives and Climate Change, 1st ed.; Redden, R., Yadav, S.S., Maxted, N., Dulloo, M.E., Guarino, L., Smith, P., Eds.; Wiley Online Library John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015.Vincent, H.; Amri, A.; Castañeda-Álvarez, N.P.; Dempewolf, H.; Dulloo, E.M.; Guarino, L.; Hole, D.; Mba, C.; Toledo, A.; Maxted, N. Modeling of crop wild relative species identifies areas globally for in situ conservation. Commun. Biol. 2019, 2, 1–8.
  66. UNEP-WCMC, IUCN and NGS. Protected Planet Live Report 2020; UNEP-WCMC, IUCN and NGS: Cambridge, UK; Gland, Switzerland; Washington, DC, USA, 2020.
  67. Frese, L.; Bönisch, M.; Herden, T.; Zander, M.; Friesen, N. In-situ-Erhaltung von Wildselleriearten. Nat. Landsch. 2018, 50, 155–163.
  68. Bönisch, M.; Frese, L. Designation of Genetic Reserves for Wild Celery Species in Germany. Crop Wild Relat. 2020, In Press.
  69. Thormann, I. The German Network of Genetic Reserves. Crop Wild Relat. 2020, In Press.
  70. Parra-Quijano, M., Iriondo, J.M., Torres, E. Ecogeographical land characterization maps as a tool for assessing plant adaptation and their implications in agrobiodiversity studies. Genet. Resour. Crop Evol. 2011, 59, 205–217.
  71. Genesys Is an Online Platform Where You Can Find Information about Plant Genetic Resources for Food and Agriculture (PGRFA) Conserved in Genebanks Worldwide. Available online: https://www.genesys-pgr.org/ (accessed on 1 July 2020).
  72. Eurisco. Finding Seeds for the Future. Available online: http://eurisco.ecpgr.org (accessed on 1 July 2020).
  73. Castañeda-Álvarez, N.P.; Khoury, C.K.; Achicanoy, H.A.; Bernau, V.; Dempewolf, H.; Eastwood, R.J.; Guarino L.; Harker, R.H.; Jarvis, A.; Maxted, N.; et al. Global conservation priorities for crop wild relatives. Nat. Plants 2016, 2, 16–22.
  74. Heywood, V.H. The role of botanic gardens in ex situ conservation of agrobiodiversity. In Implementation of the Global Plan of Action in Europe—Conservation and Sustainable Utilization of Plant Genetic Resources for Food and Agriculture, Proceedings of the European Symposium, Braunschweig, Germany, 30 June–3 July 1988; Gass, T., Frese, L., Begemann, F., Lipman, E., Eds.; International Plant Genetic Resources Institute: Rome, Italy, 1999; pp. 102–107.
  75. Dempewolf, H. (Global Crop Diversity Trust, Bonn, Germany). Personal communication, 2020.
  76. Engels, J.; Thormann, I. Final Report of a Consultancy “Increasing Climate Resilience for Poor Farmers: The role of National Plant Genetic Resource Collections”; Kreditanstalt für Wiederaufbau (KfW) and Global Crop Diversity Trust: Frankfurt and Bonn, Germany, 2017; 129p. Unpublished; manuscript in preparation.
  77. Khoury, C.K.; Carver, D.; Kates, H.R.; Achicanoy, H.A.; van Zonneveld, M.; Thomas, E.; Heinitz, C.; Jarret, R.; Labate, J.A.; Reitsma, K.; et al. Distributions, conservation status, and abiotic stress tolerance potential of wild cucurbits (Cucurbita L.). Plants People Planet 2019, 2, 269–283.
  78. Welcome to PlantSearch! Botanic Gardens Conservation. International. Available online: https://tools.bgci.org/plant_search.php (accessed on 30 June 2020).
  79. Meyer, A.; Barton, N. Botanic Gardens Are Important Contributors to Crop Wild Relative Preservation. Crop Sci. 2019, 59, 2404–2412.
  80. Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Khoury, C.K.; Muller, J.V.; Toll, J. Adapting agriculture to climate change: A global initiative to collect, conserve, and use crop wild relatives. Agroecol. Sustain. Food Syst. 2014, 38, 369–377.
  81. Engels, J.M.M. Complementary strategies for improved conservation and use of plant genetic resources. In Towards Sustainable National Plant Genetic Resources Programmes—Policy, Planning and Conservation Issues; Engels, J.M.M., Vodouhe, R., Thompson, J., Zannou, A., Hehne, E., Grum, M., Eds.; IPGRI: Rome, Italy, 2000; pp. 69–77.
  82. Hunter, D.; Changtragoon, S. Good practices for conservation and sustainable use of crop wild relatives of tropical fruit tree diversity. In Tropical Fruit Tree Diversity. Good Practices for In Situ and On-Farm Conservation. Sthapit, B., Lamers, H., Rao, R.V., Bailey, A., Eds.; Earthscan from Routledge: London, UK, 2016; pp. 83–96.
  83. Jha, U.C.; Bohra, A.; Singh, N.P. Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed. 2014, 133, 679–701.
  84. Dulloo, M.E.; Fiorino, E.; Thormann, I. Research on Conservation and Use of Crop Wild Relatives. In Crop Wild Relatives and Climate Change; Chapter 7; Redden, R., Yadav, S.S., Maxted, N., Dulloo, M.E., Guarino, L., Smith, P., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2015; pp. 108–129.
  85. Vavilov, N.I. The origin, variation, immunity and breeding of cultivated plants. Chron. Bot. 1951, 13, 1–54.
  86. Prescott-Allen, C.; Prescott-Allen, R. The First Resource: Wild Species in the North American Economy; Yale University Press: New Haven, CT, USA, 1986.
  87. Engels. J.M.M. Genetische bronnen, hun conservering en aanwending in de aardappelveredeling. In Genetic Resources, Conservation and Use in the Potato Breeding; Agricultural University Wageningen: Wageningen, The Netherlands, 1974; 83p.
  88. Kilian, B.; Martin, W.; Salamini, F. Genetic diversity, evolution and domestication of wheat and barley in the Fertile Crescent. In Evolution in Action; Glaubrecht, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 137–166.
  89. Thormann, I.; Parra-Quijano, M.; Endresen, D.T.F.; Rubio-Teso, M.L.; Iriondo, M.J.; Maxted, N. Predictive Characterization of Crop Wild Relatives and Landraces. Technical Guidelines, Version 1; Bioversity International: Rome, Italy, 2014; 40p.
  90. Willis, K.J. State of the World’s Plants Report—2017; Royal Botanic Gardens: Kew, UK, 2017; 96p.
  91. Bertioli, D.J.; Cannon, S.B.; Froenicke, L.; Huang, G.; Farmer, A.D.; Cannon, E.K.; Liu, X.; Gao, N.; Clevenger, J.; Dash, S.; et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 2016, 48, 438–446.
  92. PricewaterhouseCoopers PwC, 2013. Crop Wild Relatives: A Valuable Resource for Crop Development. www.pwc.co.uk/valuations. Available online: https://pwc.blogs.com/files/pwc-seed-bank-analysis-for-msb-0713.pdf (accessed on 15 January 2020).
  93. Pimentel, D.; Wilson, C.; McCullum, C.; Huang, R.; Dwen, P.; Flack, J.; Tran, Q.; Saltman, T.; Cliff, B. Economic and environmental benefits of biodiversity. Bioscience 1997, 47, 747–757.
  94. Tyack, N.; Dempewolf, H. The Economics of Crop Wild Relatives under Climate Change. In Crop Wild Relatives and Climate Change, 1st ed.; Redden, R., Yadav, S.S., Maxted, N., Dulloo, M.E., Guarino, L., Smith, P., Eds.; Wiley Online Library John Wiley & Sons, Inc.: Hoboken, New Jersey, USA, 2015.
  95. Mira, S.; Hill, L.M.; González-Benito, M.E.; Ibáñez, M.A.; Walters, C. Volatile emission in dry seeds as a way to probe chemical reactions during initial asymptomatic deterioration. J. Exp. Bot. 2016, 67, 1783–1793, doi:10.1093/jxb/erv568.
  96. Colville, L.; Bradley, E.L.; Lloyd, A.S.; Pritchard, H.W.; Castle, L.; Kranner, I. Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress. J. Exp. Bot. 2012, 63, 6519–6530, doi:10.1093/jxb/ers307.
  97. Michalak, M.; Plitta-Michalak, B.P.; Naskręt-Barciszewska, M.; Barciszewski, J.; Bujarska-Borkowska, B.; Chmielarz, P. Global 5-methylcytosine alterations in DNA during ageing of Quercus robur seeds. Ann. Bot. 2015, 116, 369–376, doi:10.1093/aob/mcv104.
  98. Mira, S.; Pirredda, M.; Martín-Sánchez, M.; Marchessi, J.; Martín, C. DNA methylation and integrity in aged seeds and regenerated plants. Seed Sci. Res. 2020, 1–9, doi:10.1017/S0960258520000021.
  99. Kranner, I.; Chen, H.; Pritchard, H.W.; Pearce, S.R.; Birtic, S. Inter-nucleosomal DNA fragmentation and loss of RNA integrity during seed ageing. Plant Growth Regul. 2011, 63, 63–72, doi:10.1007/s10725-010-9512-7.
  100. Fleming, M.B.; Patterson, E.L.; Reeves, P.A.; Richards, C.M.; Gaines, T.A.; Walters, C. Exploring the fate of mRNA in aging seeds: Protection, destruction, or slow decay? J. Exp. Bot. 2018, 69, 4309–4321, doi:10.1093/jxb/ery215.
  101. Dulloo, M.E.; Ramanatha, V.R.; Engelmann, F.; Engels, J.M.M. Complementary conservation strategy for coconuts. In Coconuts Genetic Resources; Batugal, P., Ramanatha, V.R., Oliver, J., Eds.; International Plant Genetic Resources Institute-Regional Office for Asia, the Pacific, and Oceania (IPGRI-APO): Serdang, Selangor, Malaysia, 2005; 18p.
  102. Teso, M.L.R.; Torres, M.E.; Parra-Quijano, M.; Iriondo, J.M. Prioritization of crop wild relatives in Spain. Crop Wild Relat. 2012, 18, 18–22.
  103. van Treuren, R. PGR Management in the 21st Century. Crop Wild Relatives: Climate Change and Niche Modeling; Wageningen University and Research, Centre for Genetic Resources: The Netherlands (CGN), 2017. Available on: https://edepot.wur.nl/441411 (accessed on 2 May 2020).
  104. Crop Wild Relatives Global Portal. Available online: http://www.cropwildrelatives.org/ (accessed on 1 July 2020).
  105. Indigenous and Community Conserved Areas: A Bold New Frontier for Conservation. Available online: https://www.iucn.org/content/indigenous-and-community-conserved-areas-a-bold-new-frontier-conservation (accessed on 1 July 2020).
  106. Brooks, T.M.; Mittermeier, R.A.; da Fonseca, G.A.B.; Gerlach, J.; Hoffmann, M.; Lamoreux, J.F.; Mittermeier, C.G.; Pilgrim, J.D.; Rodrigues, A.S.L. Global biodiversity conservation priorities. Science 2006, 313, 58–61.
  107. Khoury, C.K.; Amariles, D.; Soto, J.S.; Diaz, M.V.; Sotelo, S.; Sosa, C.; Ramírez-Villegas, J.; Achicanoy, H.A.; Velásquez-Tibatá, J.; Guarino, L.; et al. Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecol. Indic. 2019, 98, 420–429. https://doi. org/10.1016/j.ecoli nd.2018.11.016.
  108. Dulloo, M.E.; Magos Brehm, J.; Kell, S.; Thormann, I.; Maxted, N. Template for the Preparation of a National Strategic Action Plan for the Conservation and Sustainable Use of Crop Wild Relatives; Harvard Dataverse: 2017; Volume 1, 23p. Available online: https://doi.org/10.7910/DVN/QH9XWB (accessed on 18 June 2020).
  109. Brehm, J.M.; Kell, S.; Thormann, I.; Maxted, N.; Dulloo, E. Template for the Preparation of a Technical Background Document for a National Strategic Action Plan for the Conservation and Sustainable Use of Crop Wild Relatives; Harvard Dataverse: 2017; 23p, doi:10.7910/DVN/VQVDFA, Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/B8YOQL. (accessed on 18 June 2020).
More