Knowledge Integration in Smart Factories: Comparison
Please note this is a comparison between Version 2 by Vicky Zhou and Version 1 by Johannes Zenkert.

Knowledge integration is well explained by the human–organization–technology (HOT) approach known from knowledge management. This approach contains the horizontal and vertical interaction and communication between employees, human-to-machine, but also machine-to-machine. Different organizational structures and processes are supported with the help of appropriate technologies and suitable data processing and integration techniques. In a Smart Factory, manufacturing systems act largely autonomously on the basis of continuously collected data. The technical design concerns the networking of machines, their connectivity and the interaction between human and machine as well as machine-to-machine. Within a Smart Factory, machines can be considered as intelligent manufacturing systems. Such manufacturing systems can autonomously adapt to events through the ability to intelligently analyze data and act as adaptive manufacturing systems that consider changes in production, the supply chain and customer requirements. Inter-connected physical devices, sensors, actuators, and controllers form the building block of the Smart Factory, which is called the Internet of Things (IoT). IoT uses different data processing solutions, such as cloud computing, fog computing, or edge computing, to fuse and process data. This is accomplished in an integrated and cross-device manner.

  • smart factory
  • cloud computing
  • fog computing
  • edge computing
  • knowledge integration
  • knowledge management
  • data analytics
  • text analytics
  • knowledge graph
Please wait, diff process is still running!


  1. Tao, F.; Qi, Q.; Liu, A.; Kusiak, A. Data-driven smart manufacturing. J. Manuf. Syst. 2018, 48, 157–169.
  2. Alcácer, V.; Machado, V. Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. Eng. Sci. Technol. Int. J. 2019, 22, 899–919.
  3. Oztemel, E.; Gursev, S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2020, 31, 127–182.
  4. Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering 2017, 3, 616–630.
  5. Neumann, W.P.; Winkelhaus, S.; Grosse, E.H.; Glock, C.H. Industry 4.0 and the human factor—A systems framework and analysis methodology for successful development. Int. J. Prod. Econ. 2021, 233, 107992.
  6. Roth, A. (Ed.) Einführung und Umsetzung von Industrie 4.0: Grundlagen, Vorgehensmodell und Use Cases aus der Praxis; Springer Gabler: Berlin, Germany, 2016; ISBN 978-3-662-48504-0.
  7. Shi, Z.; Xie, Y.; Xue, W.; Chen, Y.; Fu, L.; Xu, X. Smart factory in Industry 4.0. Syst. Res. Behav. Sci. 2020, 37, 607–617.
  8. Strozzi, F.; Colicchia, C.; Creazza, A.; Noè, C. Literature review on the ‘Smart Factory’ concept using bibliometric tools. Int. J. Prod. Res. 2017, 55, 6572–6591.
  9. Tao, F.; Qi, Q.; Wang, L.; Nee, A. Digital Twins and Cyber–Physical Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison. Engineering 2019, 5, 653–661.
  10. Frey-Luxemburger, M. (Ed.) Wissensmanagement-Grundlagen und Praktische Anwendung: Eine Einführung in das IT-Gestützte Management der Ressource Wissen, 2nd ed.; IT im Unternehmen; Springer Vieweg: Wiesbaden, Germany, 2014; ISBN 978-3-658-04752-8.
  11. Capestro, M.; Kinkel, S. Industry 4.0 and Knowledge Management: A Review of Empirical Studies. In Knowledge Management and Industry 4.0: New Paradigms for Value Creation; Bettiol, M., Di Maria, E., Micelli, S., Eds.; Knowledge Management and Organizational Learning; Springer International Publishing: Cham, Switzerland, 2020; pp. 19–52. ISBN 978-3-030-43589-9.
  12. Brauckmann, O. Smart Production: Wertschöpfung durch Geschäftsmodelle; Springer Vieweg: Berlin, Germany, 2015; ISBN 978-3-662-45301-8.
  13. Bettiol, M.; Maria, E.D.; Micelli, S. (Eds.) Knowledge Management and Industry 4.0: New Paradigms for Value Creation; Knowledge Management and Organizational Learning; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-43588-2.
  14. Ansari, F.; Erol, S.; Sihn, W. Rethinking Human-Machine Learning in Industry 4.0: How Does the Paradigm Shift Treat the Role of Human Learning? Procedia Manuf. 2018, 23, 117–122.
  15. Seeber, I.; Bittner, E.; Briggs, R.O.; de Vreede, T.; de Vreede, G.-J.; Elkins, A.; Maier, R.; Merz, A.B.; Oeste-Reiß, S.; Randrup, N.; et al. Machines as teammates: A research agenda on AI in team collaboration. Inf. Manag. 2020, 57, 103174.
  16. Industrial Internet Consortium (IIC). The Industrial Internet of Things Volume T3: Analytics Framework. Available online: (accessed on 6 August 2021).
  17. Plattform-i4.0 Referenzarchitekturmodell (RAMI) 4.0 (Reference Architecture Model). Available online: (accessed on 6 August 2021).
  18. Bagheri, B.; Yang, S.; Kao, H.-A.; Lee, J. Cyber-physical Systems Architecture for Self-Aware Machines in Industry 4.0 Environment. IFAC-PapersOnLine 2015, 48, 1622–1627.
  19. Karnouskos, S.; Ribeiro, L.; Leitão, P.; Luder, A.; Vogel-Heuser, B. Key Directions for Industrial Agent Based Cyber-Physical Production Systems. In Proceedings of the 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), Taipei, Taiwan, 6–9 May 2019; pp. 17–22.
  20. Dornhöfer, M.; Sack, S.; Zenkert, J.; Fathi, M. Simulation of Smart Factory Processes Applying Multi-Agent-Systems—A Knowledge Management Perspective. J. Manuf. Mater. Process. 2020, 4, 89.
  21. Soic, R.; Vukovic, M.; Skocir, P.; Jezic, G. Context-Aware Service Orchestration in Smart Environments. In Agents and Multi-agent Systems: Technologies and Applications 2019; Jezic, G., Chen-Burger, Y.-H.J., Kusek, M., Šperka, R., Howlett, R.J., Jain, L.C., Eds.; Springer: Singapore, 2020; pp. 35–45.
  22. Fei, X.; Shah, N.; Verba, N.; Chao, K.-M.; Sanchez-Anguix, V.; Lewandowski, J.; James, A.; Usman, Z. CPS data streams analytics based on machine learning for Cloud and Fog Computing: A survey. Futur. Gener. Comput. Syst. 2019, 90, 435–450.
  23. Gorodetsky, V.I.; Kozhevnikov, S.S.; Novichkov, D.; Skobelev, P.O. The Framework for Designing Autonomous Cyber-Physical Multi-Agent Systems for Adaptive Resource Management. In Industrial Applications of Holonic and Multi-Agent Systems; Mařík, V., Kadera, P., Rzevski, G., Zoitl, A., Anderst-Kotsis, G., Tjoa, A.M., Khalil, I., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 52–64.
  24. Industrial Internet Consortium (IIC). The Industrial Internet of Things Volume G1: Reference Architecture. Available online: (accessed on 6 August 2021).
  25. Bullinger, H.-J.; Wörner, K.; Prieto, J. Wissensmanagement—Modelle und Strategien für die Praxis. In Wissensmanagement: Schritte zum Intelligenten Unternehmen; Bürgel, H.D., Ed.; Edition Alcatel SEL Stiftung; Springer: Berlin/Heidelberg, Germany, 1998; pp. 21–39. ISBN 978-3-642-71995-0.
  26. Zenkert, J.; Weber, C.; Klahold, A.; Fathi, M.; Hahn, K. Knowledge-Based Production Documentation Analysis: An Integrat-ed Text Mining Architecture. In Proceedings of the 2018 IEEE 61st International Midwest Symposium on Circuits and Sys-tems (MWSCAS), Windsor, ON, Canada, 5–8 August 2018; pp. 717–720.
  27. Plattform-i4.0 Infographic about Hierarchy in Industry 3.0. Available online: (accessed on 6 August 2021).
  28. Plattform-i4.0 Infographic about Hierarchy in Industry 4.0. Available online: (accessed on 6 August 2021).
  29. Vogel-Heuser, B.; Bauernhansl, T.; Hompel, M. (Eds.) Handbuch Industrie 4.0 Bd.4: Allgemeine Grundlagen, 2nd ed.; VDI Springer Reference; Springer Vieweg: Berlin, Germany, 2017; ISBN 978-3-662-53253-9.
  30. North, K.; Maier, R.; Haas, O. Value Creation in the Digitally Enabled Knowledge Economy. In Progress in IS; Springer International Publishing: Berlin, Germany, 2018; pp. 1–29.
  31. Gillespie, R.B.; Colgate, J.E.; Peshkin, M.A. A General Framework for Cobot Control. IEEE Trans. Robot. Autom. 2001, 17, 391–401.
  32. Hu, P.; Dhelim, S.; Ning, H.; Qiu, T. Survey on fog computing: Architecture, key technologies, applications and open issues. J. Netw. Comput. Appl. 2017, 98, 27–42.
  33. OpenFog Consortium OpenFog Reference Architecture for Fog Computing. Available online: (accessed on 6 August 2021).
  34. Sittón-Candanedo, I.; Alonso, R.S.; Rodríguez-González, S.; García Coria, J.A.; De La Prieta, F. Edge Computing Architec-tures in Industry 4.0: A General Survey and Comparison. In International Workshop on Soft Computing Models in Industrial and Environmental Applications; Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J.A., Quintián, H., Corchado, E., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 121–131.
  35. Industrial Internet Consortium Edge Computing Task Group Introduction to Edge Computing. Available online: (accessed on 6 August 2021).
  36. Lim, K.Y.H.; Zheng, P.; Chen, C.-H. A state-of-the-art survey of Digital Twin: Techniques, engineering product lifecycle management and business innovation perspectives. J. Intell. Manuf. 2020, 31, 1313–1337.
  37. Papadimitriou, S.; Sun, J.; Faloutsos, C.; Yu, P.S. Dimensionality Reduction and Filtering on Time Series Sensor Streams. In Managing and Mining Sensor Data; Springer: Boston, MA, USA, 2012; pp. 103–141.
  38. Enders, C.K. Applied Missing Data Analysis, 1st ed.; Guilford Publications: New York, NY, USA, 2010; ISBN 978-1-60623-639-0.
  39. Aggarwal, C.C. Mining Sensor Data Streams. In Managing and Mining Sensor Data; Springer: Boston, MA, USA, 2012; pp. 143–171.
  40. Turaga, D.S.; Van Der Schaar, M. Distributed Online Learning and Stream Processing for a Smarter Planet. In Fog for 5G and IoT; Chiang, M., Balasubramanian, B., Bonomi, F., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 234–260. ISBN 978-1-119-18720-2.
  41. Zhang, Q.; Yang, L.-T.; Chen, Z.; Li, P. A survey on deep learning for big data. Inf. Fusion 2018, 42, 146–157.
  42. Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine 2018, 51, 1016–1022.
  43. Harrison, R.; Vera, D.A.; Ahmad, B. A Connective Framework to Support the Lifecycle of Cyber-Physical Production Systems. Proc. IEEE 2021, 109, 568–581.
  44. Jacoby, M.; Usländer, T. Digital Twin and Internet of Things—Current Standards Landscape. Appl. Sci. 2020, 10, 6519.
  45. Industrial Internet Consortium and Plattform Industrie 4.0 Digital Twin and Asset Administration Shell Concepts and Ap-plication in the Industrial Internet and Industrie 4.0: An Industrial Internet Consortium and Plattform Industrie 4.0 Joint Whitepaper. Available online: (accessed on 6 August 2021).
  46. Schluse, M.; Priggemeyer, M.; Atorf, L.; Rossmann, J. Experimentable Digital Twins—Streamlining Simulation-Based Systems Engineering for Industry 4.0. IEEE Trans. Ind. Inform. 2018, 14, 1722–1731.
  47. Martinez, E.; Ponce, P.; Macias, I.; Molina, A. Automation Pyramid as Constructor for a Complete Digital Twin, Case Study: A Didactic Manufacturing System. Sensors 2021, 21, 4656.
  48. Hänel, A.; Seidel, A.; Frieß, U.; Teicher, U.; Wiemer, H.; Wang, D.; Wenkler, E.; Penter, L.; Hellmich, A.; Ihlenfeldt, S. Digital Twins for High-Tech Machining Applications—A Model-Based Analytics-Ready Approach. J. Manuf. Mater. Process. 2021, 5, 80.
  49. Autiosalo, J.; Ala-Laurinaho, R.; Mattila, J.; Valtonen, M.; Peltoranta, V.; Tammi, K. Towards Integrated Digital Twins for Industrial Products: Case Study on an Overhead Crane. Appl. Sci. 2021, 11, 683.
  50. Rathore, M.M.; Shah, S.A.; Shukla, D.; Bentafat, E.; Bakiras, S. The Role of AI, Machine Learning, and Big Data in Digital Twinning: A Systematic Literature Review, Challenges, and Opportunities. IEEE Access 2021, 9, 32030–32052.
  51. Allahyari, M.; Pouriyeh, S.; Assefi, M.; Safaei, S.; Trippe, E.D.; Gutierrez, J.B.; Kochut, K. A Brief Survey of Text Mining: Clas-sification, Clustering and Extraction Techniques. arXiv 2017, arXiv:1707.02919.
  52. Shi, F.; Chen, L.; Han, J.; Childs, P. A Data-Driven Text Mining and Semantic Network Analysis for Design Information Retrieval. J. Mech. Des. 2017, 139, 111402.
  53. Nadeau, D.; Sekine, S. A survey of named entity recognition and classification. Lingvisticae Investig. 2007, 30, 3–26.
  54. Pawar, S.; Palshikar, G.K.; Bhattacharyya, P. Relation Extraction: A Survey. arXiv 2017, arXiv:1712.05191.
  55. Abu Rasheed, H.; Weber, C.; Zenkert, J.; Czerner, P.; Krumm, R.; Fathi, M. A Text Extraction-Based Smart Knowledge Graph Composition for Integrating Lessons Learned during the Microchip Design. In Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2020; pp. 594–610.
  56. Jiang, H.; Kwong, C.K.; Yung, K.L. Predicting Future Importance of Product Features Based on Online Customer Reviews. J. Mech. Des. 2017, 139, 111413.
  57. Grieco, A.; Pacella, M.; Blaco, M. On the Application of Text Clustering in Engineering Change Process. Procedia CIRP 2017, 62, 187–192.
  58. Klahold, A.; Fathi, M. Computer Aided Writing; Springer International Publishing: Berlin, Germany, 2020.
  59. Zenkert, J.; Klahold, A.; Fathi, M. Knowledge Discovery in Multidimensional Knowledge Representation Framework: An Integrative Approach for the Visualization of Text Analytics Results. Iran J. Comput. Sci. 2018, 1, 199–216.
  60. Yahya, M.; Breslin, J.; Ali, M. Semantic Web and Knowledge Graphs for Industry 4.0. Appl. Sci. 2021, 11, 5110.
  61. Beden, S.; Cao, Q.; Beckmann, A. Semantic Asset Administration Shells in Industry 4.0: A Survey. In Proceedings of the 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), Victoria, BC, Canada, 10–12 May 2021; pp. 31–38.
  62. Heling, L.; Acosta, M.; Maleshkova, M.; Sure-Vetter, Y. Querying Large Knowledge Graphs over Triple Pattern Fragments: An Empirical Study. In The Semantic Web-ISWC 2018; Vrandečić, D., Bontcheva, K., Suárez-Figueroa, M.C., Presutti, V., Ce-lino, I., Sabou, M., Kaffee, L.-A., Simperl, E., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 11137, pp. 86–102. ISBN 978-3-030-00667-9.
  63. Jayaram, N.; Khan, A.; Li, C.; Yan, X.; Elmasri, R. Querying Knowledge Graphs by Example Entity Tuples. IEEE Trans. Knowl. Data Eng. 2015, 27, 2797–2811.
  64. Dietz, L.; Kotov, A.; Meij, E. Utilizing Knowledge Graphs for Text-Centric Information Retrieval. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; pp. 1387–1390.
  65. Li, H.; Xiong, C.; Callan, J. Natural Language Supported Relation Matching for Question Answering with Knowledge Graphs. In The First Workshop on Knowledge Graphs and Semantics for Text Retrieval and Analysis (KG4IR 2017); CEUR: Tokyo, Japan, 2017.
  66. Shekarpour, S.; Marx, E.; Auer, S.; Sheth, A. RQUERY: Rewriting Natural Language Queries on Knowledge Graphs to Alle-viate the Vocabulary Mismatch Problem. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.
  67. Hu, S.; Zou, L.; Yu, J.X.; Wang, H.; Zhao, D. Answering Natural Language Questions by Subgraph Matching over Knowledge Graphs. IEEE Trans. Knowl. Data Eng. 2018, 30, 824–837.
  68. Tiwari, A.; Rajesh, K.; Srujana, P. Semantically Enriched Knowledge Extraction With Data Mining. Int. J. Comput. Appl. Technol. Res. 2015, 4, 7–10.
  69. Abu-Rasheed, H.; Weber, C.; Zenkert, J.; Krumm, R.; Fathi, M. Explainable Graph-Based Search for Lessons-Learned Docu-ments in the Semiconductor Industry. In Intelligent Computing; Arai, K., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1097–1106.
  70. Nickel, M.; Murphy, K.; Tresp, V.; Gabrilovich, E. A Review of Relational Machine Learning for Knowledge Graphs. Proc. IEEE 2015, 104, 11–33.
  71. Liu, Z.; Han, X. Deep Learning in Knowledge Graph. In Deep Learning in Natural Language Processing; Deng, L., Liu, Y., Eds.; Springer: Singapore, 2018; pp. 117–145. ISBN 978-981-10-5208-8.
  72. Qin, Z.; Cen, C.; Jie, W.; Gee, T.S.; Chandrasekhar, V.R.; Peng, Z.; Zeng, Z. Knowledge-Graph Based Multi-Target Deep-Learning Models for Train Anomaly Detection. In Proceedings of the 2018 International Conference on Intelligent Rail Transportation (ICIRT), Singapore, 12–14 December 2018; pp. 1–5.
Video Production Service