The amount of waste activated sludge (WAS) is increasing annually, and since it presents potential environmental and health-related risks, an appropriate treatment and stabilization process is needed. It has been shown in numerous studies in the past few decades that amongst the advanced treatment methods of sludge, microwave and ultrasound-based processes offer promising and effective alternatives. The main advantage of these physical methods is that they are energy-efficient, easy to implement and can be combined with other types of treatment procedures without major difficulties.
In the equation, A0 represents the initial amplitude of the ultrasonic wave, x means the length of path and α is the attenuation coefficient.
The effects of ultrasonic treatments are mostly due to the cavitation process in the treated material. During this process, alternating high-pressure (compression) and low-pressure (rarefaction) cycles occur, and the rate is frequency-dependent. The so-called transient cavitation bubbles usually last for only a few cycles [58][38], their size can significantly increase, and when these bubbles reach a volume at which they can no longer absorb any more energy, they viciously collapse during a high-pressure cycle. During this collapse, extremely high pressure and temperature can be reached locally [59][39]. According to Ashokkumar, the theoretical temperature can be calculated via the following expression [60][40]:
In the expression, T0 is the ambient solution temperature, Pm demonstrates the sum of the hydrostatic and acoustic pressures, γ is the specific heat ratio of the gas/vapour mixture and Pv is the pressure inside the cavitation bubble when it reaches its maximum volume.
These cavitation effects can undoubtedly cause severe structural, physical and chemical changes in the exposed material, such as wastewater or wastewater sludge. The use of sonication in wastewater treatment goes back to the late 1990s and early 2000s, and since then the various effects of the process have been heavily studied. It was shown that the hydromechanical shear force is the dominant effect when treating wastewater and sludge with ultrasonication [61][41], however other factors like locally high temperature and pressure or the formation of free radicals (H and OH; due to the extreme local temperatures) can also play a significant role in various mechanisms (e.g., sludge disintegration or solubilization).
Ultrasound treatment of sludge mainly results in the solubilization of organic particles and less in mineral particles, as shown by Bougrier et al. [62][42]. They reported that at a specific energy input of 15,000 kJ/kg TS, 29% of the organic particles were solubilized, whereas only 3% of mineral particles were solubilized. Solubilization of COD is mostly due to the disintegration of extracellular polymeric substances (EPS) [63][43]. These substances are high molecular weight polymers, which play a key role in floc size, stability and bioflocculation. When WAS is exposed to ultrasonication and the various effects caused by it, these EPS are shattered along with microorganism flocs and the key components of EPS (proteins, carbohydrates) and the intracellular substances of microbial cells (enzymes, DNA, carbohydrates) enter the soluble phase [64][44]. This will lead to an increased SCOD/TCOD ratio, which was shown to be beneficial in terms of biogas production [65][45]. In the study of Tian et al., it was also reported that the ultrasound irradiation of sludge resulted in a significant increase in loosely bound polysaccharide (PS) contents, and also in carbonyl, hydroxyl and amine functional group contents [66][46]. Several studies prove that ultrasonic pre-treatment of sludge can cause a significant increase in biogas production and volatile solid destruction [67,68][47][48]. Daukyns et al. stated that by disintegrating sludge with ultrasonic treatment, the methane content in the produced biogas was almost 72%, whereas in the case of non-disintegrated sludge, only 54% [69][49].