Polymeric Nanoparticles for Drug Delivery: Comparison
Please note this is a comparison between Version 1 by Manuel Merinero and Version 3 by Catherine Yang.

The complexity of some diseases—as well as the inherent toxicity of certain drugs—has led to an increasing interest in the development and optimization of drug-delivery systems. Polymeric nanoparticles stand out as a key tool to improve drug bioavailability or specific delivery at the site of action. The versatility of polymers makes them potentially ideal for fulfilling the requirements of each particular drug-delivery system. In this review, a summary of the state-of-the-art panorama of polymeric nanoparticles as drug-delivery systems has been conducted, focusing mainly on those applications in which the corresponding disease involves an important morbidity, a considerable reduction in the life quality of patients—or even a high mortality. A revision of the use of polymeric nanoparticles for ocular drug delivery, for cancer diagnosis and treatment, as well as nutraceutical delivery, was carried out, and a short discussion about future prospects of these systems is included.

  • nanoparticles
  • nanocarriers
  • polymeric materials
  • drug-delivery systems
  • ocular delivery
  • cancer diagnosis
  • cancer drug-delivery systems
  • nutraceuticals
Please wait, diff process is still running!

References

  1. Bruschi, M.L.. Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead: Cambridge, UK, 2015; pp. 87–194.
  2. Jain, K.K.; An Overview of Drug Delivery Systems. Methods Mol. Biol. 2020, 2059, 1–54, https://doi.org/10.1007/978-1-4939-9798-5_1.
  3. Macedo, A.S.; Castro, P.M.; Roque, L.; Thomé, N.G.; Reis, C.P.; Pintado, M.E.; Fonte, P.; Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J. Control. Release 2020, 320, 125–141, https://doi.org/10.1016/j.jconrel.2020.01.006.
  4. Jain, K.K.; Role of Nanobiotechnology in Drug Delivery. Methods Mol. Biol. 2020, 2059, 55–73, https://doi.org/10.1007/978-1-4939-9798-5_2.
  5. Chen, Z.Y.; Wang, Y.X.; Lin, Y.; Zhang, J.S.; Yang, F.; Zhou, Q.L.; Liao, Y.Y.; Advance of molecular imaging technology and targeted imaging agent in imaging and therapy. Biomed Res. Int. 2014, 2014, 1–12, https://doi.org/10.1155/2014/819324.
  6. Essa, D.; Kondiah, P.P.D.; Choonara, Y.E.; Pillay, V.; The Design of Poly (lactide-co-glycolide) Nanocarriers for Medical Applications. Front. Bioeng. Biotechnol. 2020, 8, 48, https://doi.org/10.3389/fbioe.2020.00048.
  7. Liu, R.; Zhao, J.; Han, Q.; Hu, X.; Wang, D.; Zhang, X.; Yang, P.; One-Step Assembly of a Biomimetic Biopolymer Coating for Particle Surface Engineering.. Adv. Mater 2018, 30, e1802851, https://doi.org/10.1002/adma.201802851.
  8. Pla, D.; Gómez, M.; Metal and Metal Oxide Nanoparticles: A Lever for C–H Functionalization. ACS Catal. 2016, 6, 3537–3552, https://doi.org/10.1021/acscatal.6b00684.
  9. Begines, B.; Zamora, F.; Violante de Paz, M.; Ro e, I.; Mancera, M.; Galbis, J.A.; Synthesis and Characterization of New Carbohydrate-based Polyureas. J. Renew. Mater. 2013, 1, 212–221.
  10. He, Y.F.; Zhang, F.; Saleh, E.; Vaithilingam, J.; Aboulkhair, N.; Begines, B.; Tuck, C.J.; Hague, R.J.M.; Ashcroft, I.A.; Wildman, R.D.; et al. A Tripropylene Glycol Diacrylate-based Polymeric Support Ink for Material Jetting. Addit. Manuf. 2017, 16, 153–161, https://doi.org/10.1016/j.addma.2017.06.001.
  11. Begines, B.; Zamora, F.; Violante de Paz, M.; Ro e, I.; Mancera, M.; Galbis, J.A.; Synthesis and Characterization of New Carbohydrate-based Polyureas. J. Renew. Mater 2013, 1, 212–221.
  12. Begines, B.; Alcudia, A.; Aguilera-Velazquez, R.; Martinez, G.; He, Y.; Wildman, R.; Sayagues, M.J.; Jimenez-Ruiz, A.; Prado-Gotor, R.; Design of highly stabilized nanocomposite inks based on biodegradable polymer-matrix and gold nanoparticles for Inkjet Printing. Sci. Rep. 2019, 9, 16097, https://doi.org/10.1038/s41598-019-52314-2.
  13. Nakama, Y.. Cosmetic Science and Technology. Theoretical Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 231–244.
  14. Zhao, T.; Elzatahry, A.; Li, X.; Zhao, D.; Single-micelle-directed synthesis of mesoporous materials. Nat. Rev. Mater. 2019, 4, 775–791, https://doi.org/10.1080/10837450.2017.1287731.
  15. Belletti, D.; Grabrucker, A.M.; Pederzoli, F.; Menrath, I.; Cappello, V.; Vandelli, M.A.; Forni, F.; Tosi, G.; Ruozi, B.; Exploiting The Versatility of Cholesterol in Nanoparticles Formulation. Int. J. Pharm. 2016, 511, 331–340, https://doi.org/10.1016/j.ijpharm.2016.07.022.
  16. Bonaccorso, A.; Musumeci, T.; Carbone, C.; Vicari, L.; Lauro, M.R.; Puglisi, G.; Revisiting the role of sucrose in PLGA-PEG nanocarrier for potential intranasal delivery. Pharm. Dev. Technol. 2018, 23, 265–274, https://doi.org/10.1080/10837450.2017.1287731.
  17. Joseph, E.; Saha, R.N.; Investigations on pharmacokinetics and biodistribution of polymeric and solid lipid nanoparticulate systems of atypical antipsychotic drug: E ect of material used and surface modification. Drug Dev. Ind. Pharm. 2017, 43, 678–686, https://doi.org/10.1080/03639045.2016.1278014.
  18. Gao, W.; Chen, Y.; Thompson, D.H.; Park, K.; Li, T.; Impact of surfactant treatment of paclitaxel nanocrystals on biodistribution and tumor accumulation in tumor-bearing mice. J. Control. Release 2016, 237, 168–176, https://doi.org/10.1016/j.jconrel.2016.07.015.
  19. Chen, Z.; Shi, T.; Zhang, L.; Zhu, P.; Deng, M.; Huang, C.; Hu, T.; Jiang, L.; Li, J.; Mammalian drug eux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016, 370, 153–164, https://doi.org/10.1016/j.canlet.2015.10.010.
  20. Yin, J.; Deng, X.; Zhang, J.; Lin, J.; Current Understanding of Interactions between Nanoparticles and ABC Transporters in Cancer Cells. Curr. Med. Chem. 2018, 25, 5930–5944, 10.2174/0929867325666180314122200.
  21. Fathi Karkan, S.; Mohammadhosseini, M.; Panahi, Y.; Milani, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, E.; Hosseini, A.; Davaran, S.; Magnetic nanoparticles in cancer diagnosis and treatment: A review. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1-5, https://doi.org/10.1016/j.cbpa.2018.04.014.
  22. Zhou, X.Y.; Tay, Z.W.; Chandrasekharan, P.; Yu, E.Y.; Hensley, D.W.; Orendor , R.; Je ris, K.E.; Mai, D.; Zheng, B.; Goodwill, P.W.; et al.et al. Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking.. Curr. Opin. Chem. Biol. 2018, 45, 131–138, https://doi.org/10.1016/j.cbpa.2018.04.014.
  23. Wang, Y.; Xia, Y.; Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceous nanoparticles: A review.. Microchim. Acta 2019, 186, 50, https://doi.org/10.1007/s00604-018-3110-1.
  24. Thakor, A.S.; Gambhir, S.S.; Nanooncology: The future of cancer diagnosis and therapy.. CA Cancer J. Clin. 2013, 63, 395–418, https://doi.org/10.3322/caac.21199.
  25. Maham, M.M.; Doiron, A.L.; Gold Nanoparticles as X-Ray, CT, and Multimodal Imaging Contrast Agents: Formulation, Targeting, and Methodology. J. Nanomater. 2018, 2018, 5837276.
  26. Kim, D.; Park, S.; Lee, J.H.; Jeong, Y.Y.; Jon, S.; Antibiofouling Polymer-Coated Gold Nanoparticles as a Contrast Agent for in Vivo X-ray Computed Tomography Imaging. J. Am. Chem. Soc. 2007, 129, 7661–7665, https://doi.org/10.1021/ja071471p.
  27. Rabin, O.; Manuel Perez, J.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R.; An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 2006, 5, 118–122, https://doi.org/10.1038/nmat1571.
  28. Al Zaki, A.; Joh, D.; Cheng, Z.; De Barros, A.L.B.; Kao, G.; Dorsey, J.; Tsourkas, A.; Gold-Loaded Polymeric Micelles for Computed Tomography-Guided Radiation Therapy Treatment and Radiosensitization. ACS Nano 2014, 8, 104–112, https://doi.org/10.1021/nn405701q.
  29. Lin, W.J.; Zhang, X.F.; Qian, L.; Yao, N.; Pan, Y.; Zhang, L.J.; Doxorubicin-Loaded Unimolecular Micelle-Stabilized Gold Nanoparticles as a Theranostic Nanoplatform for Tumor-Targeted Chemotherapy and Computed Tomography Imaging. Biomacromolecules 2017, 18, 3869–3880, https://doi.org/10.1021/acs.biomac.7b00810.
  30. Park, J.H.; Park, J.; Kim, S.; Kim, S.-H.; Lee, T.G.; Lee, J.Y.; Wi, J.-S.; Characterization and application of porous gold nanoparticles as 2-photon luminescence imaging agents: 20-fold brighter than gold nanorods. J. Biophotonics 2018, 11, e201700174, https://doi.org/10.1002/jbio.201700174.
  31. Fernández, T.D.; Pearson, J.R.; Leal, M.P.; Torres, M.J.; Blanca, M.; Mayorga, C.; Le Guével, X.; Intracellular accumulation and immunological properties of fluorescent gold nanoclusters in human dendritic cells. Biomaterials 2015, 43, 1–12, https://doi.org/10.1016/j.biomaterials.2014.11.045.
  32. Wen, T.; He, Y.; Liu, X.-L.; Lin, M.-L.; Cheng, Y.; Zhao, J.; Gong, Q.; Xia, K.; Tan, P.-H.; Lu, G.; et al. Spectral shape of one-photon luminescence from single gold nanorods. AIP Adv. 2017, 7, 125106, https://doi.org/10.1063/1.5008544.
  33. Wang, Y.; Strohm, E.M.; Sun, Y.; Wang, Z.; Zheng, Y.; Wang, Z.; Kolios, M.C.; Biodegradable polymeric nanoparticles containing gold nanoparticles and Paclitaxel for cancer imaging and drug delivery using photoacoustic methods. Biomed. Opt. Express 2016, 7, 4125–4138, https://doi.org/10.1364/BOE.7.004125.
  34. Wang, L.; Hu, S.; Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. Science 2012, 335, 1458–1462, 10.1126/science.1216210.
  35. Weissleder, R.; Molecular Imaging in Cancer. Science 2006, 312, 1168, 10.1126/science.1125949.
  36. Caravan, P.; Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 2006, 35, 512–523, https://doi.org/10.1039/B510982P.
  37. Chauhan, V.P.; Jain, R.K.; Strategies for advancing cancer nanomedicine. Nat. Mater 2013, 12, 958–962, https://doi.org/10.1038/nmat3792.
  38. Choi, H.S.; Liu, W.; Liu, F.; Nasr, K.; Misra, P.; Bawendi, M.G.; Frangioni, J.V.; Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 2010, 5, 42–47, https://doi.org/10.1038/nnano.2009.314.
  39. Ratzinger, G.; Agrawal, P.; Körner,W.; Lonkai, J.; Sanders, H.M.H.F.; Terreno, E.; Wirth, M.; Strijkers, G.J.; Nicolay, K.; Gabor, F.; et al. Surface modification of PLGA nanospheres with Gd-DTPA and Gd-DOTA for high-relaxivity MRI contrast agents. Biomaterials 2010, 31, 8716–8723, https://doi.org/10.1016/j.biomaterials.2010.07.095.
  40. Caravan, P.; Zhang, Z.; Targeted MRI Contrast Agents. Chem. Contrast Agents Med Magn. Reson. Imaging 2013, 1, 311-342, https://doi.org/10.1002/9781118503652.ch7.
  41. Liu, Y.; Chen, Z.; Liu, C.; Yu, D.; Lu, Z.; Zhang, N.; Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials 2011, 32, 5167–5176, https://doi.org/10.1016/j.biomaterials.2011.03.077.
  42. Esser, L.; Truong, N.P.; Karagoz, B.; Mo at, B.A.; Boyer, C.; Quinn, J.F.; Whittaker, M.R.; Davis, T.P.; Gadolinium-functionalized nanoparticles for application as magnetic resonance imaging contrast agents via polymerization-induced self-assembly. Polym. Chem. 2016, 7, 7325–7337, https://doi.org/10.1039/C6PY01797E.
  43. Kim, C.; Song, K.H.; Gao, F.; Wang, L.V.; Sentinel lymph nodes and lymphatic vessels: Noninvasive dual-modality in vivo mapping by using indocyanine green in rats—Volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging. Radiology 2010, 255, 442–450, https://doi.org/10.1148/radiol.10090281.
  44. Song, K.H.; Stein, E.W.; Margenthaler, J.A.; Wang, L.V.; Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model. J. Biomed. Opt. 2008, 13, 054033, https://doi.org/10.1117/1.2976427.
  45. Li, Y.; Beija, M.; Laurent, S.; Vander Elst, L.; Muller, R.; Duong, H.; Lowe, A.; Davis, T.; Boyer, C.; Macromolecular Ligands for Gadolinium MRI Contrast Agents. Macromolecules 2012, 45, 4196–4204, https://doi.org/10.1021/ma300521c.
  46. Zhang, G.; Zhang, R.; Wen, X.; Li, L.; Li, C.; Micelles based on biodegradable poly (L-glutamic acid)-b-polylactide with paramagnetic Gd ions chelated to the shell layer as a potential nanoscale MRI-visible delivery system. Biomacromolecules 2008, 9, 36–42, https://doi.org/10.1021/bm700713p.
  47. Hu, J.; Liu, T.; Zhang, G.; Jin, F.; Liu, S.; Synergistically Enhance Magnetic Resonance/Fluorescence Imaging Performance of Responsive Polymeric Nanoparticles under Mildly Acidic Biological Milieu. Macromol. Rapid Commun. 2013, 34, 749–758, https://doi.org/10.1002/marc.201200613.
  48. Li, A.; Luehmann, H.P.; Sun, G.; Samarajeewa, S.; Zou, J.; Zhang, S.; Zhang, F.; Welch, M.J.; Liu, Y.; Wooley, K.L.; et al. Synthesis and In Vivo Pharmacokinetic Evaluation of Degradable Shell Cross-Linked Polymer Nanoparticles with Poly(carboxybetaine) versus Poly(ethylene glycol) Surface-Grafted Coatings. ACS Nano 2012, 6, 8970–8982, https://doi.org/10.1021/nn303030t.
  49. Shahbazi-Gahrouei, D.; Williams, M.; Rizvi, S.; Allen, B.J.; In vivo studies of Gd-DTPA-monoclonal antibody and gd-porphyrins: Potential magnetic resonance imaging contrast agents for melanoma. J. Magn. Reson. Imaging 2001, 14, 169–174, https://doi.org/10.1002/jmri.1168.
  50. Hu, X.; Lu, F.; Chen, L.; Tang, Y.; Hu, W.; Lu, X.; Ji, Y.; Yang, Z.; Zhang, W.; Yin, C.; et al.et al. Perylene Diimide-Grafted Polymeric Nanoparticles Chelated with Gd3+ for Photoacoustic/T1-Weighted Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS Appl. Mater. Interfaces 2017, 9, 30458–30469, https://doi.org/10.1021/acsami.7b09633.
  51. Wu, B.; Lu, S.-T.; Yu, H.; Liao, R.-F.; Li, H.; Lucie Zafitatsimo, B.V.; Li,Y.-S.; Zhang,Y.; Zhu, X.-L.; Liu, H.-G.; et al.et al. Gadolinium-chelate functionalized bismuth nanotheranostic agent for in vivo MRI/CT/PAI imaging-guided photothermal cancer therapy. Biomaterials 2018, 159, 37–47, https://doi.org/10.1016/j.biomaterials.2017.12.022.
  52. Ruiz-Cabello, J.; Barnett, B.P.; Bottomley, P.A.; Bulte, J.W.M.; Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed. 2011, 24, 114–129, https://doi.org/10.1002/nbm.1570.
  53. Cyrus, T.; Winter, P.M.; Caruthers, S.D.; Wickline, S.A.; Lanza, G.M.; Magnetic resonance nanoparticles for cardiovascular molecular imaging and therapy. Expert Rev. Cardiovasc. Ther. 2005, 3, 705–715, https://doi.org/10.1586/14779072.3.4.705.
  54. Knight, J.C.; Edwards, P.G.; Paisey, S.J.; Fluorinated contrast agents for magnetic resonance imaging; a review of recent developments. RSC Adv. 2011, 1, 1415–1425, https://doi.org/10.1039/C1RA00627D.
  55. Wek, K.S. Development of Polymeric Therapeutic Nanoparticles: Toward Targeted Delivery and Effcient 19F MRI of Solid Tumors. Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, USA, 2017.
  56. Wallat, J.D.; Czapar, A.E.; Wang, C.; Wen, A.M.; Wek, K.S.; Yu, X.; Steinmetz, N.F.; Pokorski, J.K.; Optical and Magnetic Resonance Imaging Using Fluorous Colloidal Nanoparticles. Biomacromolecules 2017, 18, 103–112, https://doi.org/10.1021/acs.biomac.6b01389.
  57. Pisani, E.; Tsapis, N.; Paris, J.; Nicolas, V.; Cattel, L.; Fattal, E.; Polymeric Nano/Microcapsules of Liquid Perfluorocarbons for Ultrasonic Imaging: Physical Characterization.. Langmuir 2006, 22, 4397–4402, https://doi.org/10.1021/la0601455.
  58. Giraudeau, C.; Flament, J.; Marty, B.; Boumezbeur, F.; Mériaux, S.; Robic, C.; Port, M.; Tsapis, N.; Fattal, E.; Giacomini, E.; et al.et al. A new paradigm for high-sensitivity 19F magnetic resonance imaging of perfluorooctylbromide. Magn. Reson. Med. 2010, 63, 1119–1124, https://doi.org/10.1002/mrm.22269.
  59. Diou, O.; Fattal, E.; Delplace, V.; Mackiewicz, N.; Nicolas, J.; Mériaux, S.; Valette, J.; Robic, C.; Tsapis, N.; RGD decoration of PEGylated polyester nanocapsules of perfluorooctyl bromide for tumor imaging: Influence of pre or post-functionalization on capsule morphology. Eur. J. Pharm. Biopharm. 2014, 87, 170–177, https://doi.org/10.1016/j.ejpb.2013.12.003.
  60. Liopo, A.; Su, R.; Oraevsky, A.A.; Melanin nanoparticles as a novel contrast agent for optoacoustic tomography. Photoacoustics 2015, 3, 35–43, https://doi.org/10.1016/j.pacs.2015.02.001.
  61. Belletti, D.; Riva, G.; Luppi, M.; Tosi, G.; Forni, F.; Vandelli, M.; Pederzoli, F.; Anticancer drug-loaded quantum dots engineered polymeric nanoparticles: Diagnosis/therapy combined approach. Eur. J. Pharm. Sci. 2017, 107, 230-239, https://doi.org/10.1016/j.ejps.2017.07.020.
  62. Zhou, B.; Xiong, Z.; Wang, P.; Peng, C.; Shen, M.; Mignani, S.; Majoral, J.-P.; Shi, X.; Targeted tumor dual mode CT/MR imaging using multifunctional polyethylenimine-entrapped gold nanoparticles loaded with gadolinium. Drug Deliv. 2018, 25, 178–186, https://doi.org/10.1080/10717544.2017.1422299.
  63. McQuade, C.; Al Zaki, A.; Desai, Y.; Vido, M.; Sakhuja, T.; Cheng, Z.; Hickey, R.J.; Joh, D.; Park, S.-J.; Kao, G.; et al.et al. Multifunctional Nanoplatform for Imaging, Radiotherapy, and the Prediction of Therapeutic Response. Small 2015, 11, 834–843, https://doi.org/10.1002/smll.201401927.
  64. Al Zaki, A.; Joh, D.; Cheng, Z.; De Barros, A.L.B.; Kao, G.; Dorsey, J.; Tsourkas, A.; Gold-Loaded Polymeric Micelles for Computed Tomography-Guided Radiation Therapy Treatment and Radiosensitization.. ACS Nano 2014, 8, 104–112, https://doi.org/10.1021/nn405701q.
  65. Topete, A.; Alatorre-Meda, M.; Villar-Alvarez, E.M.; Carregal-Romero, S.; Barbosa, S.; Parak,W.J.; Taboada, P.; Mosquera, V.; Polymeric-Gold Nanohybrids for Combined Imaging and Cancer Therapy. Adv. Healthc. Mater. 2014, 3, 1309–1325, https://doi.org/10.1002/adhm.201400023.
  66. Sun, J.; Zhou, S.; Hou, P.; Yang, Y.; Weng, J.; Li, X.; Li, M.; Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. Part A 2007, 80A, 333–341, https://doi.org/10.1002/jbm.a.30909.
  67. Qiao, R.; Yang, C.; Gao, M.; Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications. J. Mater. Chem. 2009, 19, 6274–6293, https://doi.org/10.1039/B902394A.
  68. Fang, C.; Zhang, M.; Multifunctional magnetic nanoparticles for medical imaging applications. J. Mater. Chem. 2009, 19, 6258–6266, https://doi.org/10.1039/B902182E.
  69. Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N.; Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem. Rev. 2008, 108, 2064–2110, https://doi.org/10.1021/cr068445e.
  70. Zhao, C.; Song, X.; Jin,W.; Wu, F.; Zhang, Q.; Zhang, M.; Zhou, N.; Shen, J.; Image-guided cancer therapy using aptamer-functionalized cross-linked magnetic-responsive Fe3O4@carbon nanoparticles. Anal. Chim. Acta 2019, 1056, 108–116, https://doi.org/10.1016/j.aca.2018.12.045.
  71. Luo, Y.; Yang, J.; Yan, Y.; Li, J.; Shen, M.; Zhang, G.; Mignani, S.; Shi, X.; RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T1-weighted MR imaging of gliomas. Nanoscale 2015, 7, 14538–14546, https://doi.org/10.1039/C5NR04003E.
  72. Pernia Leal, M.; Rivera-Fernández, S.; Franco, J.M.; Pozo, D.; de la Fuente, J.M.; García-Martín, M.L.; Long-circulating PEGylated manganese ferrite nanoparticles for MRI-based molecular imaging. Nanoscale 2015, 7, 2050–2059, https://doi.org/10.1039/C4NR05781C.
  73. Alphandéry, E.; Grand-Dewyse, P.; Lefèvre, R.; Mandawala, C.; Durand-Dubief, M.; Cancer therapy using nanoformulated substances: Scientific, regulatory and financial aspects. Expert Rev. Anticancer Ther. 2015, 15, 1233–1255, https://doi.org/10.1586/14737140.2015.1086647.
  74. Mura, S.; Fattal, E.; Nicolas, J.; From poly(alkyl cyanoacrylate) to squalene as core material for the design of nanomedicines. J. Drug Target. 2019, 27, 470–501, https://doi.org/10.1080/1061186X.2019.1579822.
  75. Ledford, H.; Bankruptcy filing worries developers of nanoparticle cancer drugs. Nature 2016, 533, 304–305, 10.1038/533304a.
  76. Onxeo’s liver cancer drug Livatag fails in phase 3 trial . Pharmaceutical Business Review. Retrieved 2020-7-24
  77. French Nanoparticle Therapy Fails to Improv Liver Cancer Treatment in Phase III . labiotech.eu. Retrieved 2020-7-24
More