Mesenteric Fibrosis: Comparison
Please note this is a comparison between Version 4 by Nicole Yin and Version 3 by Kosmas Daskalakis.

Authors: Anna Koumarianou, Krystallenia I. Alexandraki, Göran Wallin, Gregory Kaltsas and Kosmas Daskalakis.

Objective: Mesenteric fibrosis (MF) constitutes an underrecognized sequela in patients with small intestinal neuroendocrine neoplasms (SI-NENs), often complicating the disease clinical course. The aim of the present systematic review was to provide an update in evolving aspects of MF pathogenesis and its clinical management in SI-NENs.

Search strategy: We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology.

Results: Complex and dynamic interactions are present in the microenvironment of tumor deposits in the mesentery. Serotonin, as well as the signaling pathways of certain growth factors play a pivotal, yet not fully elucidated role in the pathogenesis of MF. Clinically, MF often results in significant morbidity by causing either acute complications, such as intestinal obstruction and/or acute ischemia or more chronic conditions involving abdominal pain, venous stasis, malabsorption and malnutrition.

Conclusions: Surgical resection in patients with locoregional disease only or symptomatic distant stage disease, as well as palliative minimally invasive interventions in advanced inoperable cases seem clinically meaningful, whereas currently available systemic and/or targeted treatments do not unequivocally affect the development of MF in SI-NENs. Increased awareness and improved understanding of the molecular pathogenesis of MF in SI-NENs may provide better diagnostic and predictive tools for its timely recognition and intervention and also facilitates the development of agents targeting MF.

  • neuroendocrine tumors
  • small intestine
  • mesenteric fibrosis
  • serotonin
  • TGF
  • FGF
  • PDGF
  • VEGF
  • CTGF
Please wait, diff process is still running!

References

  1. Arvind Dasari; Chan Shen; Daniel M Halperin; Bo Zhao; Shouhao Zhou; Ying Xu; Tina Shih; James C. Yao; Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States.. JAMA Oncology 2017, 3, 1335-1342, 10.1001/jamaoncol.2017.0589.
  2. Eriksson, J.; Norlen, O.; Ogren, M.; Garmo, H.; Ihre-Lundgren, C.; Hellman, P. Primary small intestinal neuroendocrine tumors are highly prevalent and often multiple before metastatic disease develops. Scand. J. Surg. 2019.
  3. Zhang, Z.; Makinen, N.; Kasai, Y.; Kim, G.E.; Diosdado, B.; Nakakura, E.; Meyerson, M. Patterns of chromosome 18 loss of heterozygosity in multifocal ileal neuroendocrine tumors. Genes Chromosomes Cancer 2020.
  4. Modlin, I.M.; Oberg, K.; Chung, D.C.; Jensen, R.T.; de Herder, W.W.; Thakker, R.V.; Caplin, M.; Delle Fave, G.; Kaltsas, G.A.; Krenning, E.P.; et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008, 9, 61–72.
  5. Daskalakis, K.; Karakatsanis, A.; Stalberg, P.; Norlen, O.; Hellman, P. Clinical signs of fibrosis in small intestinal neuroendocrine tumours. Br. J. Surg. 2017, 104, 69–75.
  6. Mauro Cives; Eleonora Pelle'; Davide Quaresmini; Francesca Maria Rizzo; Marco Tucci; Franco Silvestris; The Tumor Microenvironment in Neuroendocrine Tumors: Biology and Therapeutic Implications. Neuroendocrinology 2019, 109, 83-99, 10.1159/000497355.
  7. Druce, M.R.; Bharwani, N.; Akker, S.A.; Drake, W.M.; Rockall, A.; Grossman, A.B. Intra-abdominal fibrosis in a recent cohort of patients with neuroendocrine (‘carcinoid’) tumours of the small bowel. QJM Mon. J. Assoc. Physicians 2010, 103, 177–185.
  8. Ohrvall, U.; Eriksson, B.; Juhlin, C.; Karacagil, S.; Rastad, J.; Hellman, P.; Akerstrom, G. Method for dissection of mesenteric metastases in mid-gut carcinoid tumors. World J. Surg. 2000, 24, 1402–1408.
  9. David Moher; Alessandro Liberati; Jennifer Tetzlaff; Douglas G. Altman; Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Annals of Internal Medicine 2009, 151, 264-269, 10.7326/0003-4819-151-4-200908180-00135.
  10. Shapiro, M.; Kidd, M.; Lye, K.D.; Usinger, W.; Murren, J.; Modlin, I.M. Ileal carcinoids over-express the fibrosis-related peptide, CTGF. Gastroenterology 2004, 126, 505.
  11. Modlin, I.M.; Shapiro, M.D.; Kidd, M. Carcinoid tumors and fibrosis: An association with no explanation. Am. J. Gastroenterol. 2004, 99, 2466–2478.
  12. Svejda, B.; Kidd, M.; Giovinazzo, F.; Eltawil, K.; Gustafsson, B.I.; Pfragner, R.; Modlin, I.M. The 5-HT(2B) receptor plays a key regulatory role in both neuroendocrine tumor cell proliferation and the modulation of the fibroblast component of the neoplastic microenvironment. Cancer 2010, 116, 2902–2912.
  13. Funa, K.; Papanicolaou, V.; Juhlin, C.; Rastad, J.; Akerstrom, G.; Heldin, C.H.; Oberg, K. Expression of platelet-derived growth factor beta-receptors on stromal tissue cells in human carcinoid tumors. Cancer Res. 1990, 50, 748–753.
  14. Blazevic, A.; Iyer, A.; Van Velthuysen, M.L.F.; Feelders, R.A.; Franssen, G.J.H.; Zajec, M.; Hofland, J.; Luider, T.M.; De Herder, W.W.; Hofland, L.J. Proteomic analysis of small intestinal neuroendocrine tumours and associated mesenteric fibrosis reveals primarily differences in mesenteric stroma. In Proceedings of the ENETS 2019, Barcelona, Spain, 6–8 March 2019.
  15. Sofia Vikman; R. Sommaggio; Manuel De La Torre; Kjell Öberg; M Essand; Valeria Giandomenico; Angelica Loskog; Thomas H. Totterman; Midgut carcinoid patients display increased numbers of regulatory T cells in peripheral blood with infiltration into tumor tissue.. Acta Oncologica 2009, 48, 391-400, 10.1080/02841860802438495.
  16. Lamarca, A.; Nonaka, D.; Breitwieser, W.; Ashton, G.; Barriuso, J.; McNamara, M.G.; Moghadam, S.; Rogan, J.; Mansoor, W.; Hubner, R.A.; et al. PD-L1 expression and presence of TILs in small intestinal neuroendocrine tumours. Oncotarget 2018, 9, 14922–14938.
  17. Kim, S.T.; Ha, S.Y.; Lee, S.; Ahn, S.; Lee, J.; Park, S.H.; Park, J.O.; Lim, H.Y.; Kang, W.K.; Kim, K.M.; et al. The impact of PD-L1 expression in patients with metastatic GEP-NETs. J. Cancer 2016, 7, 484–489.
  18. Sampedro-Nunez, M.; Serrano-Somavilla, A.; Adrados, M.; Cameselle-Teijeiro, J.M.; Blanco-Carrera, C.; Cabezas-Agricola, J.M.; Martinez-Hernandez, R.; Martin-Perez, E.; Munoz de Nova, J.L.; Diaz, J.A.; et al. Analysis of expression of the PD-1/PD-L1 immune checkpoint system and its prognostic impact in gastroenteropancreatic neuroendocrine tumors. Sci. Rep. 2018, 8, 17812.
  19. Po Hien Ear; Guiying Li; Meng Wu; Ellen Abusada; Andrew M. Bellizzi; James R. Howe; Establishment and Characterization of Small Bowel Neuroendocrine Tumor Spheroids.. Journal of Visualized Experiments 2019, null, e60303, 10.3791/60303.
  20. Giulia Bresciani; Leo J. Hofland; Fadime Dogan; Georgios Giamas; Teresa Gagliano; Maria Chiara Zatelli; Evaluation of Spheroid 3D Culture Methods to Study a Pancreatic Neuroendocrine Neoplasm Cell Line. Frontiers in Endocrinology 2019, 10, 682, 10.3389/fendo.2019.00682.
  21. Léon C.L. Van Kempen; The tumor microenvironment: a critical determinant of neoplastic evolution. European Journal of Cell Biology 2003, 82, 539-548, 10.1078/0171-9335-00346.
  22. P. P. Anthony; R. A. B. Drury; Elastic vascular sclerosis of mesenteric blood vessels in argentaffin carcinoma. Journal of Clinical Pathology 1970, 23, 110-118.
  23. Denney, W.D.; Kemp, W.E., Jr.; Anthony, L.B.; Oates, J.A.; Byrd, B.F., 3rd. Echocardiographic and biochemical evaluation of the development and progression of carcinoid heart disease. J. Am. Coll. Cardiol. 1998, 32, 1017–1022.
  24. Robiolio, P.A.; Rigolin, V.H.; Wilson, J.S.; Harrison, J.K.; Sanders, L.L.; Bashore, T.M.; Feldman, J.M. Carcinoid heart disease. Correlation of high serotonin levels with valvular abnormalities detected by cardiac catheterization and echocardiography. Circulation 1995, 92, 790–795.
  25. Zuetenhorst, J.M.; Bonfrer, J.M.; Korse, C.M.; Bakker, R.; van Tinteren, H.; Taal, B.G. Carcinoid heart disease: The role of urinary 5-hydroxyindoleacetic acid excretion and plasma levels of atrial natriuretic peptide, transforming growth factor-beta and fibroblast growth factor. Cancer 2003, 97, 1609–1615.
  26. Björn I. Gustafsson; Karin Tømmerås; Ivar Nordrum; Jan P. Loennechen; Anders Brunsvik; Erik Solligård; Reidar Fossmark; Ingunn Bakke; Unni Syversen; Helge Waldum; et al. Long-Term Serotonin Administration Induces Heart Valve Disease in Rats. Circulation 2005, 111, 1517-1522, 10.1161/01.cir.0000159356.42064.48.
  27. M Spatz; PATHOGENETIC STUDIES OF EXPERIMENTALLY INDUCED HEART LESIONS AND THEIR RELATION TO THE CARCINOID SYNDROME.. Laboratory Investigation 1964, 13, 288-300.
  28. Blazevic, A.; Lyer, A.; Van Velthuysen, M.L.F.; Hofland, J.; Franssen, G.J.H.; Feelders, R.A.; Zajec, M.; Luider, T.M.; De Herder, W.W.; Hofland, L.J. Aberrant tryptophan metabolism in stromal cells is associated with mesenteric fibrosis in small intestinal neuroendocrine tumours. In Proceedings of the 17th Annual ENETS Conference for the Diagnosis and Treatment of Neuroendocrine Tumor Disease, Barcelona, Spain, 11–13 March 2020; p. 56.
  29. Richard W. D. Welford; Magali Vercauteren; Annette Trébaul; Christophe Cattaneo; Doriane Eckert; Marco Garzotti; Patrick Sieber; Jérôme Segrestaa; Rolf Studer; Peter M. A. Groenen; et al.Oliver Nayler Serotonin biosynthesis as a predictive marker of serotonin pharmacodynamics and disease-induced dysregulation. Scientific Reports 2016, 6, 30059, 10.1038/srep30059.
  30. Ola Nilsson; Bo Wängberg; Amanda McRae; Annica Dahlström; Håkan Ahlman; Growth Factors and Carcinoid Tumours. Acta Oncologica 1993, 32, 115-124, 10.3109/02841869309083899.
  31. R A Ignotz; J Massagué; Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix.. Journal of Biological Chemistry 1986, 261, 4337–4345. .
  32. R D Beauchamp; R J Coffey; R M Lyons; E A Perkett; C M Townsend; H L Moses; Human carcinoid cell production of paracrine growth factors that can stimulate fibroblast and endothelial cell growth.. Cancer Research 1991, 51, 5253–5260.
  33. A Wimmel; B Wiedenmann; Stefan Rosewicz; Autocrine growth inhibition by transforming growth factor β-1 (TGFβ-1) in human neuroendocrine tumour cells. Gut 2003, 52, 1308-1316.
  34. Joseph M. Schober; Ningyu Chen; Tatiana M. Grzeszkiewicz; Igor Jovanovic; Eugene E. Emeson; Tatiana P. Ugarova; Richard D. Ye; Lester F. Lau; Stephen C.-T. Lam; Identification of integrin αMβ2 as an adhesion receptor on peripheral blood monocytes for Cyr61 (CCN1) and connective tissue growth factor (CCN2): immediate-early gene products expressed in atherosclerotic lesions. Blood 2002, 99, 4457-4465, 10.1182/blood.v99.12.4457.
  35. Ingrid E Blom; R Goldschmeding; Andrew Leask; Gene regulation of connective tissue growth factor: new targets for antifibrotic therapy?. Matrix Biology 2002, 21, 473-482, 10.1016/s0945-053x(02)00055-0.
  36. G R Grotendorst; H Okochi; N Hayashi; A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene.. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research 1996, 7, 469–480.
  37. Essam El-Din A. Moussad; David R. Brigstock; Connective Tissue Growth Factor: What's in a Name?. Molecular Genetics and Metabolism 2000, 71, 276-292, 10.1006/mgme.2000.3059.
  38. D. R. Brigstock; The Connective Tissue Growth Factor/Cysteine- Rich 61/Nephroblastoma Overexpressed (CCN) Family. Endocrine Reviews 1999, 20, 189-206, 10.1210/er.20.2.189.
  39. Gregory A Kaltsas; Janet Cunningham; Sture E Falkmer; Lars Grimelius; Apostolos V Tsolakis; Expression of connective tissue growth factor and IGF1 in normal and neoplastic gastrointestinal neuroendocrine cells and their clinico-pathological significance. Endocrine-Related Cancer 2010, 18, 61-71, 10.1677/erc-10-0026.
  40. Janet L. Cunningham; Apostolos V Tsolakis; Annica Jacobson; E. T. Janson; Connective tissue growth factor expression in endocrine tumors is associated with high stromal expression of α-smooth muscle actin. European Journal of Endocrinology 2010, 163, 691-697, 10.1530/eje-10-0420.
  41. Michael D. Shapiro; Sam Hanon; Carconoid heart disease arising from an ovarian teratoma. International Journal of Cardiology 2005, 104, 115-118, 10.1016/j.ijcard.2005.01.048.
  42. Shinichi Sato; T Nagaoka; M Hasegawa; T Tamatani; T Nakanishi; M Takigawa; K Takehara; Serum levels of connective tissue growth factor are elevated in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis.. The Journal of Rheumatology 2000, 27, 149–154.
  43. M Kidd; Irvin Modlin; Shapiro; Rl Camp; Sm Mane; W Usinger; Jr Murren; CTGF, intestinal stellate cells and carcinoid fibrogenesis. World Journal of Gastroenterology 2007, 13, 5208-5216, 10.3748/wjg.v13.i39.5208.
  44. A Chaudhry; V Papanicolaou; K Oberg; C H Heldin; K Funa; Expression of platelet-derived growth factor and its receptors in neuroendocrine tumors of the digestive system.. Cancer Research 1992, 52, 1006-1012.
  45. Arvind Chaudhry; Keiko Funa; Kjell Öberg; Expression of Growth Factor Peptides and Their Receptors in Neuroendocrine Tumors of the Digestive System. Acta Oncologica 1993, 32, 107-114, 10.3109/02841869309083898.
  46. Kanika A. Bowen; Scott R. Silva; Taylor S. Riall; Hung Q. Doan; B.M. Evers; 811 Population-Based Analysis and Growth Factor Receptor Expression of GI Carcinoid Tumors. Gastroenterology 2009, 136, A880, 10.1016/s0016-5085(09)64065-8.
  47. James C Yao; Jun X. Zhang; Asif Rashid; S.-C. J. Yeung; Janio Szklaruk; K R Hess; Keping Xie; Lee Ellis; James L. Abbruzzese; Jaffer A. Ajani; et al. Clinical and In vitro Studies of Imatinib in Advanced Carcinoid Tumors. Clinical Cancer Research 2007, 13, 234-240, 10.1158/1078-0432.ccr-06-1618.
  48. Paul J Zhang; Emma E Furth; X Cai; John R Goldblum; Therisa L Pasha; K.W Min; The role of β-catenin, TGFβ3, NGF2, FGF2, IGFR2, and BMP4 in the pathogenesis of mesenteric sclerosis and angiopathy in midgut carcinoids. Human Pathology 2004, 35, 670-674, 10.1016/j.humpath.2003.12.010.
  49. Krystallenia Alexandraki; Anastassios Philippou; Georgios Boutzios; Irini Theohari; Michael Koutsilieris; Ioanna Kassiani Delladetsima; Gregory A. Kaltsas; IGF-IEc expression is increased in secondary compared to primary foci in neuroendocrine neoplasms. Oncotarget 2017, 8, 79003-79011, 10.18632/oncotarget.20743.
  50. Bernhard Svejda; Mark Kidd; Andrew Timberlake; Kathy Harry; Alexander Kazberouk; Simon Schimmack; Ben Lawrence; Roswitha Pfragner; Irvin M. Modlin; Serotonin and the 5-HT7 receptor: The link between hepatocytes, IGF-1 and small intestinal neuroendocrine tumors. Cancer Science 2013, 104, 844-855, 10.1111/cas.12174.
  51. C M Stoscheck; L E King; Role of epidermal growth factor in carcinogenesis.. Cancer Research 1986, 46, 1030-1037.
  52. Chaudhry, A.; Oberg, K.; Transforming Growth Factor-Alpha and Epithelial Growth Factor Receptor Expression in Neuroendocrine Tumors of the Digestive System. Diagn. Oncol. 1993, 3, 81–85.
  53. Martin Haugen; Rikard Dammen; Bernhard Svejda; Bjorn I. Gustafsson; Roswitha Pfragner; Irvin Modlin; Mark Kidd; Differential signal pathway activation and 5-HT function: the role of gut enterochromaffin cells as oxygen sensors.. American Journal of Physiology-Gastrointestinal and Liver Physiology 2012, 303, G1164-G1173, 10.1152/ajpgi.00027.2012.
  54. Sagar, V.M.; Neil, D.A.; Papakyriacou, P.; Shah, T.; Liu, B.; Hirschfield, G.; Steeds, R.P.; Shetty, S.; Weston, C.J. The proinflammatory molecule, VAP-1, is enriched in the stroma of midgut NETs and plaques of carcinoid heart disease valves. In Proceedings of the 17th Annual ENETS Conference for the Diagnosis and Treatment of Neuroendocrine Tumor Disease, Barcelona, Spain, 11–13 March 2020.
  55. Druce, M.; Rockall, A.; Grossman, A.B. Fibrosis and carcinoid syndrome: From causation to future therapy. Nat. Rev. Endocrinol. 2009, 5, 276–283.
  56. Sundin, A.; Arnold, R.; Baudin, E.; Cwikla, J.B.; Eriksson, B.; Fanti, S.; Fazio, N.; Giammarile, F.; Hicks, R.J.; Kjaer, A.; et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: Radiological, nuclear medicine & hybrid imaging. Neuroendocrinology 2017, 105, 212–244.
  57. Michael Landau; Stephen Wisniewski; Jon Davison; Jejunoileal Neuroendocrine Tumors Complicated by Intestinal Ischemic Necrosis Are Associated With Worse Overall Survival. Archives of Pathology & Laboratory Medicine 2016, 140, 461-466, 10.5858/arpa.2015-0105-oa.
  58. J K Taylor; Retroperitoneal fibrosis, regional enteritis, and carcinoid tumors.. JAMA: The Journal of the American Medical Association 1971, 217, 1864.
  59. Dominique S V M Clement; Margot E T Tesselaar; Monique E Van Leerdam; Rajaventhan Srirajaskanthan; John Ramage; Nutritional and vitamin status in patients with neuroendocrine neoplasms. World Journal of Gastroenterology 2019, 25, 1171-1184, 10.3748/wjg.v25.i10.1171.
  60. Bouma, G.; van Faassen, M.; Kats-Ugurlu, G.; de Vries, E.G.; Kema, I.P.; Walenkamp, A.M. Niacin (Vitamin B3) supplementation in patients with serotonin-producing neuroendocrine tumor. Neuroendocrinology 2016, 103, 489–494.
  61. Shah, G.M.; Shah, R.G.; Veillette, H.; Kirkland, J.B.; Pasieka, J.L.; Warner, R.R. Biochemical assessment of niacin deficiency among carcinoid cancer patients. Am. J. Gastroenterol. 2005, 100, 2307–2314.
  62. L Pantongrag-Brown; P C Buetow; N J Carr; J E Lichtenstein; J L Buck; Calcification and fibrosis in mesenteric carcinoid tumor: CT findings and pathologic correlation.. American Journal of Roentgenology 1995, 164, 387-391, 10.2214/ajr.164.2.7839976.
  63. Göran Åkerström; Per Hellman; Surgery on neuroendocrine tumours. Best Practice & Research Clinical Endocrinology & Metabolism 2007, 21, 87-109, 10.1016/j.beem.2006.12.004.
  64. Laskaratos, F.M.; Hall, A.; Alexander, S.; Stempel, C.V.; Bretherton, J.; Luong, T.V.; Watkins, J.; Ogunbiyi, O.; Toumpanakis, C.; Mandair, D.; et al. Is computed tomography an accurate diagnostic modality for the detection of mesenteric fibrosis in midgut neuroendocrine tumours? Gastroenterology 2019, 156, S-369.
  65. Laskaratos, F.-M.; Mandair, D.; Hall, A.; Alexander, S.; von Stempel, C.; Bretherton, J.; Luong, T.; Watkins, J.; Ogunbiyi, O.; Rombouts, K.; et al. Clinicopathological correlations of mesenteric fibrosis and evaluation of a novel biomarker for fibrosis detection in small bowel neuroendocrine neoplasms. Endocrine 2020.
  66. Olov Norlén; Harald Montan; Per Hellman; Peter Stålberg; Anders Sundin; Preoperative 68Ga-DOTA-Somatostatin Analog-PET/CT Hybrid Imaging Increases Detection Rate of Intra-abdominal Small Intestinal Neuroendocrine Tumor Lesions.. World Journal of Surgery 2018, 42, 498-505, 10.1007/s00268-017-4364-1.
  67. Christos Toumpanakis; Michelle K. Kim; Anja Rinke; Deidi S. Bergestuen; Christina Thirlwell; Mohid S. Khan; R. Salazar; Kjell Öberg; Combination of Cross-Sectional and Molecular Imaging Studies in the Localization of Gastroenteropancreatic Neuroendocrine Tumors. Neuroendocrinology 2014, 99, 63-74, 10.1159/000358727.
  68. Tuo Shao; Zhen Chen; Vasily Belov; Xiaohong Wang; Steve H. Rwema; Viksit Kumar; Hualong Fu; Xiaoyun Deng; Jian Rong; Qingzhen Yu; et al.Lixin LangWenyu LinLee JosephsonAnthony E. SamirXiaoyuan ChenRaymond T. ChungSteven H. Liang [18F]-Alfatide PET imaging of integrin αvβ3 for the non-invasive quantification of liver fibrosis. Journal of Hepatology 2020, 73, 161-169, 10.1016/j.jhep.2020.02.018.
  69. Laskaratos, F.-M.; Walker, M.; Wilkins, D.; Tuck, A.; Ramakrishnan, S.; Phillips, E.; Gertner, J.; Megapanou, M.; Papantoniou, D.; Shah, R.; et al. Evaluation of clinical prognostic factors and further delineation of the effect of mesenteric fibrosis on survival in advanced midgut neuroendocrine tumours. Neuroendocrinology 2018, 107, 292–304.
  70. Rodriguez Laval, V.; Pavel, M.; Steffen, I.G.; Baur, A.D.; Dilz, L.M.; Fischer, C.; Detjen, K.; Prasad, V.; Pascher, A.; Geisel, D.; et al. Mesenteric fibrosis in midgut neuroendocrine tumors: Functionality and radiological features. Neuroendocrinology 2018, 106, 139–147.
  71. Harry De Vries; Rob T. M. Wijffels; Pax H. B. Willemse; René C. J. Verschueren; Ido P. Kema; Arend Karrenbeld; Ted R. Prins; Elisabeth G.E. De Vries; Abdominal Angina in Patients with a Midgut Carcinoid, a Sign of Severe Pathology. World Journal of Surgery 2005, 29, 1139-1142, 10.1007/s00268-005-7825-x.
  72. Kosmas Daskalakis; Andreas Karakatsanis; Ola Hessman; Heather C. Stuart; Staffan Welin; Eva Tiensuu Janson; Kjell Öberg; Per Hellman; Olov Norlén; Peter Stålberg; et al. Association of a Prophylactic Surgical Approach to Stage IV Small Intestinal Neuroendocrine Tumors With Survival.. JAMA Oncology 2018, 4, 183-189, 10.1001/jamaoncol.2017.3326.
  73. Peter E. Goretzki; Martina T. Mogl; Aycan Akca; Johann Pratschke; Curative and palliative surgery in patients with neuroendocrine tumors of the gastro-entero-pancreatic (GEP) tract. Reviews in Endocrine and Metabolic Disorders 2018, 19, 169-178, 10.1007/s11154-018-9469-9.
  74. Florian Bösch; Katharina Bruewer; Melvin D'anastasi; Harun Ilhan; Thomas Knoesel; Sebastian Pratschke; Michael Thomas; Markus Rentsch; M. Guba; J. Werner; et al.Martin K. Angele Neuroendocrine tumors of the small intestine causing a desmoplastic reaction of the mesentery are a more aggressive cohort. Surgery 2018, 164, 1093-1099, 10.1016/j.surg.2018.06.026.
  75. Piccioli, A.N.; Funicelli, L.; Fazio, N.; Borin, S.; Petz, W.; Spinoglio, G.; Bertani, E. Predicting resectability of primary tumor and mesenteric lumps in patients with small intestine neuroendocrine tumors. Neuroendocrinology 2018, 106, 283.
  76. Gonzalez, R.S.; Cates, J.M.M.; Shi, C. Number, not size, of mesenteric tumor deposits affects prognosis of small intestinal well-differentiated neuroendocrine tumors. Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. 2018, 31, 1560–1566.
  77. Lunpo Wu; Jianfei Fu; Li Wan; Jie Pan; Sanchuan Lai; Jing Zhong; Daniel C. Chung; Liangjing Wang; Survival outcomes and surgical intervention of small intestinal neuroendocrine tumors: a population based retrospective study. Oncotarget 2016, 8, 4935-4947, 10.18632/oncotarget.13632.
  78. Bruno Niederle; U.-F. Pape; F. Costa; D. Gross; F. Kelestimur; U. Knigge; K. Öberg; M. Pavel; Aurel Perren; C. Toumpanakis; et al.Juan Manuel OconnorD. O''tooleE. KrenningN. ReedR. KianmaneshAll Other Vienna Consensus Conference Participants ENETS Consensus Guidelines Update for Neuroendocrine Neoplasms of the Jejunum and Ileum. Neuroendocrinology 2016, 103, 125-138, 10.1159/000443170.
  79. Ashley Kieran Clift; Andrea Frilling; Liver transplantation and multivisceral transplantation in the management of patients with advanced neuroendocrine tumours. World Journal of Gastroenterology 2018, 24, 2152-2162, 10.3748/wjg.v24.i20.2152.
  80. M. Pavel; K. Öberg; M. Falconi; E.P. Krenning; A. Sundin; A. Perren; A. Berruti; ESMO Guidelines Committee; Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 2020, 31, 844-860, 10.1016/j.annonc.2020.03.304.
  81. Karin H.J. Albers-Wolthers; Jeffrey De Gier; Hans S. Kooistra; Victor P.M.G. Rutten; Peter J.S. Van Kooten; Janneke J. De Graaf; Peter A.J. Leegwater; Robert P. Millar; Auke C. Schaefers-Okkens; Mark R. Palmert; et al.Paulina A. RzeczkowskaHuayan HouMichael D. WilsonMarcelo E. EzquerSusana R. ValdezAlicia M. SeltzerGraciela A. JahnCordian BeyerPardes HabibJon DangAlexander SlowikMarion VictorJung Y. KangJai Y. ParkSae I. ChunHo S. SuhKeesook LeeRyun S. AhnKevin L. GroveSaurabh VermaMelissa A. KirigitiM. Susan SmithSatz MengensatzproduktionDruckerei Stückle Abstracts of the 11th Annual ENETS Conference for the Diagnosis and Treatment of Neuroendocrine Tumor Disease, March 5-7, 2014, Barcelona, Spain: Abstracts. Neuroendocrinology 2014, 99, 219-310, 10.1159/000367792.
  82. Caplin, M.E.; Pavel, M.; Ruszniewski, P. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 2014, 371, 1556–1557.
  83. Rinke, A.; Muller, H.H.; Schade-Brittinger, C.; Klose, K.J.; Barth, P.; Wied, M.; Mayer, C.; Aminossadati, B.; Pape, U.F.; Blaker, M.; et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: A report from the PROMID Study Group. J. Clin. Oncol. 2009, 27, 4656–4663.
  84. Joseph Davar; Heidi M. Connolly; Martyn E. Caplin; Marianne Pavel; Jerome Zacks; Sanjeev Bhattacharyya; Daniel J. Cuthbertson; Rebecca Dobson; Simona Grozinsky-Glasberg; Richard P. Steeds; et al.Giles DreyfusPatricia A PellikkaChristos Toumpanakis Diagnosing and Managing Carcinoid Heart Disease in Patients With Neuroendocrine Tumors. Journal of the American College of Cardiology 2017, 69, 1288-1304, 10.1016/j.jacc.2016.12.030.
  85. Foltyn, W.; Zemczak, A.; Rosiek, V.; Kilian-Kita, A.; Kos-Kudła, B.; Effect of Treatment with Prolonged-Release Somatostatin Analogues on the Concentration of Serum Fibrosis Markers in Patients with Carcinoid Syndrome. Neuroendocrinology 2017, 105, 197.
  86. Ertilav, M.; Hur, E.; Bozkurt, D.; Sipahi, S.; Timur, O.; Sarsik, B.; Akcicek, F.; Duman, S. Octreotide lessens peritoneal injury in experimental encapsulated peritoneal sclerosis model. Nephrology (Carlton) 2011, 16, 552–557.
  87. Lang, A.; Sakhnini, E.; Fidder, H.H.; Maor, Y.; Bar-Meir, S.; Chowers, Y. Somatostatin inhibits pro-inflammatory cytokine secretion from rat hepatic stellate cells. Liver Int. 2005, 25, 808–816.
  88. José Mauricio Mota; Luana Guimarães Sousa; Rachel P Riechelmann; Complications from carcinoid syndrome: review of the current evidence. ecancermedicalscience 2016, 10, 662, 10.3332/ecancer.2016.662.
  89. Kulke, M.H.; Horsch, D.; Caplin, M.E.; Anthony, L.B.; Bergsland, E.; Oberg, K.; Welin, S.; Warner, R.R.; Lombard-Bohas, C.; Kunz, P.L.; et al. Telotristat ethyl, a tryptophan hydroxylase inhibitor for the treatment of carcinoid syndrome. J. Clin. Oncol. 2017, 35, 14–23.
  90. Pavel, M.; Gross, D.J.; Benavent, M.; Perros, P.; Srirajaskanthan, R.; Warner, R.R.P.; Kulke, M.H.; Anthony, L.B.; Kunz, P.L.; Horsch, D.; et al. Telotristat ethyl in carcinoid syndrome: Safety and efficacy in the TELECAST phase 3 trial. Endocr. Relat. Cancer 2018, 25, 309–322.
  91. Cristina Saavedra; Jorge Barriuso; Mairéad Geraldine McNamara; Juan W. Valle; Angela Lamarca; Spotlight on telotristat ethyl for the treatment of carcinoid syndrome diarrhea: patient selection and reported outcomes.. Cancer Management and Research 2019, 11, 7537-7556, 10.2147/CMAR.S181439.
  92. Zacks, J.; Lavine, R.; Ratner, L.; Warner, R.; Telotristat etiprate appears to halt carcinoid heart disease. Neuroendocrinology 2016, 103, 90.
  93. Robertson, J.I. Carcinoid syndrome and serotonin: Therapeutic effects of ketanserin. Cardiovasc. Drugs Ther. 1990, 4 (Suppl 1), 53–58.
  94. Moertel, C.G.; Kvols, L.K.; Rubin, J. A study of cyproheptadine in the treatment of metastatic carcinoid tumor and the malignant carcinoid syndrome. Cancer 1991, 67, 33–36.
  95. Saurabh Chaturvedi; Durga Prasanna Misra; Narayan Prasad; Kailash Rastogi; Harshit Singh; Mohit Kumar Rai; Vikas Agarwal; 5-HT2 and 5-HT2B antagonists attenuate pro-fibrotic phenotype in human adult dermal fibroblasts by blocking TGF-β1 induced non-canonical signaling pathways including STAT3 : implications for fibrotic diseases like scleroderma. International Journal of Rheumatic Diseases 2018, 21, 2128-2138, 10.1111/1756-185x.13386.
  96. James C Yao; Nicola Fazio; Simron Singh; Roberto Buzzoni; Carlo Carnaghi; Edward Wolin; Jiri Tomasek; Markus Raderer; Harald Lahner; Maurizio Voi; et al.Lida Bubuteishvili PacaudNicolas RouyrreCarolin SachsJuan W ValleGianfranco Delle FaveEric Van CutsemMargot TesselaarYasuhiro ShimadaDo-Youn OhJonathan StrosbergMatthew H KulkeMarianne E PavelRAD001 in Advanced Neuroendocrine Tumours, Fourth Trial (RADIANT-4) Study Group Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. The Lancet 2016, 387, 968-977, 10.1016/s0140-6736(15)00817-x.
  97. Melissa A. Orr-Asman; Zhengtao Chu; Min Jiang; Mariah Worley; Kathleen LaSance; Sheryl E. Koch; Vinicius S. Carreira; Hanan M. Dahche; David R. Plas; Kakajan Komurov; et al.Xiaoyang QiCarol A. MercerLowell B. AnthonyJack RubinsteinHala E. Thomas mTOR Kinase Inhibition Effectively Decreases Progression of a Subset of Neuroendocrine Tumors that Progress on Rapalog Therapy and Delays Cardiac Impairment. Molecular Cancer Therapeutics 2017, 16, 2432-2441, 10.1158/1535-7163.mct-17-0058.
  98. L. Lundin; I. Norheim; J. Landelius; K. Öberg; E Theodorsson; Carcinoid heart disease: relationship of circulating vasoactive substances to ultrasound-detectable cardiac abnormalities.. Circulation 1988, 77, 264-269, 10.1161/01.cir.77.2.264.
  99. Canan G. Nebigil; Jean-Marie Launay; Pierre Hickel; Claire Tournois; Luc Maroteaux; 5-Hydroxytryptamine 2B receptor regulates cell-cycle progression: Cross-talk with tyrosine kinase pathways. Proceedings of the National Academy of Sciences 2000, 97, 2591-2596, 10.1073/pnas.050282397.
  100. Kidd, M.; Schimmack, S.; Lawrence, B.; Alaimo, D.; Modlin, I.M. EGFR/TGFalpha and TGFbeta/CTGF signaling in neuroendocrine neoplasia: Theoretical therapeutic targets. Neuroendocrinology 2013, 97, 35–44.
  101. Rybinski, B.; Franco-Barraza, J.; Cukierman, E. The wound healing, chronic fibrosis, and cancer progression triad. Physiol. Genomics 2014, 46, 223–244.
  102. Chan, J.A.; Mayer, R.J.; Jackson, N.; Malinowski, P.; Regan, E.; Kulke, M.H. Phase I study of sorafenib in combination with everolimus (RAD001) in patients with advanced neuroendocrine tumors. Cancer Chemother. Pharmacol. 2013, 71, 1241–1246.
  103. Kulke, M.H.; Lenz, H.J.; Meropol, N.J.; Posey, J.; Ryan, D.P.; Picus, J.; Bergsland, E.; Stuart, K.; Tye, L.; Huang, X.; et al. Activity of sunitinib in patients with advanced neuroendocrine tumors. J. Clin. Oncol. 2008, 26, 3403–3410.
  104. Pietras, K.; Hanahan, D. A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J. Clin. Oncol. 2005, 23, 939–952.
  105. Distler, O.; Gay, S. Scleroderma. Internist (Berl.) 2010, 51, 30–38.
  106. Jonathan R. Strosberg; Ghassan El-Haddad; Edward Wolin; Andrew Hendifar; James Yao; Beth Chasen; Erik Mittra; Pamela L. Kunz; Matthew H. Kulke; Heather Jacene; et al.David L. BushnellThomas M. O’DorisioRichard P. BaumHarshad R. KulkarniMartyn CaplinRachida LebtahiTimothy HobdayEbrahim DelpassandEric Van CutsemAl BensonRajaventhan SrirajaskanthanMarianne PavelJaime MoraJordan BerlinEnrique GrandeNicholas ReedEttore SeregniKjell ÖbergMaribel Lopera SierraPaola SantoroThomas ThevenetJack L. ErionPhilippe RuszniewskiDik KwekkeboomEric KrenningNETTER-1 Trial Investigators Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors.. New England Journal of Medicine 2017, 376, 125-135, 10.1056/NEJMoa1607427.
  107. Laskaratos, F.; Cox, N.; Woo, W.L.; Khalifa, M.; Ewang, M.; Navalkissoor, S.; Quigley, A.M.; Mandair, D.; Caplin, M.; Toumpanakis, C.; et al. Assessment of changes in mesenteric fibrosis (MF) after peptide receptor radionuclide therapy (PRRT) in midgut neuroendocrine tumours (NETs). Neuroendocrinology 2019, 108, 271.
  108. Eleanor Ager; Jaclyn Neo; C. Christophi; The renin-angiotensin system and malignancy. Carcinogenesis 2008, 29, 1675-1684, 10.1093/carcin/bgn171.
  109. Arganini, M.; Spinelli, C.; Cecchini, G.M.; Miccoli, P. Long term treatment with tamoxifen for metastatic carcinoid tumor. Acta Chir. Belg. 1989, 89, 209–211.
  110. Myers, C.F.; Ershler, W.B.; Tannenbaum, M.A.; Barth, R. Tamoxifen and carcinoid tumor. Ann. Intern. Med. 1982, 96, 383.
  111. Stathopoulos, G.P.; Karvountzis, G.G.; Yiotis, J. Tamoxifen in carcinoid syndrome. N. Engl. J. Med. 1981, 305, 52.
  112. Charles G. Moertel; Paul F. Engstrom; Allan J. Schutt; Tamoxifen Therapy for Metastatic Carcinoid Tumor: A Negative Study. Annals of Internal Medicine 1984, 100, 531, 10.7326/0003-4819-100-4-531.
  113. Mikulec, A.A.; Hanasono, M.M.; Lum, J.; Kadleck, J.M.; Kita, M.; Koch, R.J. Effect of tamoxifen on transforming growth factor beta1 production by keloid and fetal fibroblasts. Arch. Facial Plast. Surg. 2001, 3, 111–114.
  114. Dreger, N.M.; Degener, S.; Roth, S.; Ahmad-Nejad, P.; Kamper, L.; Muller, E.; von Rundstedt, F.C.; Brandt, A.S. Impact of CYP2D6 polymorphisms on tamoxifen treatment in patients with retroperitoneal fibrosis: A first step towards tailored therapy? Urology 2020, 137, 84–90.
More
ScholarVision Creations