Isoquinolone: Comparison
Please note this is a comparison between Version 6 by Camila Xu and Version 5 by Camila Xu.

Isoquinolones (isoquinolin-1(2H)-ones): the atom- and step-economic syntheses.

  • alkyne
  • annulation
  • isoquinolone
Please wait, diff process is still running!

References

  1. Nakamura, I.; Yamamoto, Y. Transition-metal-catalyzed reactions in heterocyclic synthesis. Chem. Rev. 2004, 104, 2127–2198.
  2. Zeni, G.; Larock, R.C. Synthesis of heterocycles via palladium π-olefin and π-alkyne Chemistry. Chem. Rev. 2004, 104, 2285–2309.
  3. Hua, R.; Abrenica, M.V.A.; Wang, P. Cycloaddition of alkynes: Atom-economic protocols for constructing six-membered cycles. Curr. Org. Chem. 2011, 15, 712–729.
  4. Gulevich, A.V.; Dudnik, A.S.; Chernyak, N.; Gevorgyan, V. Transition metal-mediated synthesis of monocyclic aromatic heterocycles. Chem. Rev. 2013, 113, 3084–3213.
  5. Nizami, T.A.; Hua, R. Cycloaddition of 1,3-butadiynes: Efficient synthesis of carbo- and heterocycles. Molecules 2014, 19, 13788–13802.
  6. Fang, G.; Bi, X. Silver-catalyzed reactions of alkynes: Recent advances. Chem. Soc. Rev. 2015, 44, 8124–8173.
  7. Huang, M.-H.; Hao, W.-J.; Li, G.; Tu, S.-J.; Jiang, B. Recent advances in radical transformations of internal alkynes. Chem. Commun. 2018, 54, 10791–10811.
  8. Zheng, L.; Hua, R. C–H activation and alkyne annulation via automatic or intrinsic directing groups: Towards high step economy. Chem. Rec. 2018, 18, 556–569.
  9. Hua, R.; Nizami, T.A. Synthesis of heterocycles by using propargyl compounds as versatile synthons. Mini Rev. Org. Chem. 2018, 15, 198–207.
  10. Zheng, L.; Hua, R. Recent advances in construction of polycyclic natural product scaffolds via one-pot reactions involving alkyne annulation. Front. Chem. 2020, 8, 580355.
  11. Strumberg, D.; Pommier, Y.; Paull, K.; Jayaraman, M.; Nagafuji, P.; Cushman, M. Synthesis of cytotoxic indenoisoquinoline topoisomerase I poisons. J. Med. Chem. 1999, 42, 446–457.
  12. Glushkov, V.A.; Shklyaev, Y.V. Synthesis of 1(2H)-isoquinolones. Chem. Heterocycl. Compd. 2001, 37, 663–687.
  13. Cappelli, A.; Mohr, G.P.; Giuliani, G.; Galeazzi, S.; Anzini, M.; Mennuni, L.; Ferrari, F.; Makovec, F.; Kleinrath, E.M.; Langer, T.; et al. Further studies on imidazo[4,5-b]pyridine AT1 angiotensin II receptor antagonists. Effects of the transformation of the 4-phenylquinoline backbone into 4-phenylisoquinolinone or 1-phenylindene scaffolds. J. Med. Chem. 2006, 49, 6451–6464.
  14. Li, B.; Feng, H.; Wang, N.; Ma, J.; Song, H.; Xu, S.; Wang, B. Ruthenium-catalyzed oxidative coupling/cyclization of isoquinolones with alkynes through C–H/N–H activation: Mechanism study and synthesis of dibenzo[a,g]quinolizin-8-one derivatives. Chem. Eur. J. 2012, 18, 12873–12879.
  15. Cobas, A.; Guitián, E.; Castedo, L. Synthesis of 3-phenylisoquinolones by reaction of simple pyrroline-2,3-diones with benzyne. New mechanistic considerations. J. Org. Chem. 1993, 58, 3113–3117.
  16. Fisher, L.E.; Muchowski, J.M.; Clark, R.D. Heteroatom-directed metalation. Lithiation of N-propenylbenzamides and N-propenyl-o-toluamides. Novel routes to ortho-substituted primary benzamide derivatives and N-unsubstituted isoquinolin- 1(2H)-ones. J. Org. Chem. 1992, 57, 2700–2705.
  17. Davis, S.E.; Church, A.C.; Griffith, C.L.M.; Beam, C.F. The preparation of substituted 1(2H)-isoquinolinones from dilithiated 2-methyl-N-arylbenzamides, 2-methyl-N-(arylmethyl)benzamides, or 2-methylbenzoic acid, 2,2-dimethylhydrazide. Synth. Commun. 1997, 27, 2961–2969.
  18. Snow, R.J.; Butz, T.; Hammach, A.; Kapadia, S.; Morwick, T.M.; Prokopowicz, A.S., III; Takahashi, H.; Tan, J.D.; Tschantz, M.A.; Wang, X.-J. Isoquinolinone synthesis by SNAr reaction: A versatile route to imidazo[4,5-h]isoquinolin-9-ones. Tetrahedron Lett. 2002, 43, 7553–7556.
  19. Omer, H.M.; Liu, P. Computational study of the Ni-catalyzed C–H oxidative cycloaddition of aromatic amides with alkynes. ACS Omega 2019, 4, 5209–5220.
  20. Liu, C.-C.; Parthasarathy, K.; Cheng, C.-H. Synthesis of highly substituted isoquinolone derivatives by nickel-catalyzed annulation of 2-halobenzamides with alkynes. Org. Lett. 2010, 12, 3518–3521.
  21. Weng, W.-Z.; Xie, J.; Zhang, B. Mild and efficient synthesis of indoles and isoquinolones via a nickel-catalyzed Larock-type heteroannulation reaction. Org. Biomol. Chem. 2018, 16, 3983–3988.
  22. Nohira, I.; Liu, S.; Bai, R.; Lan, Y.; Chatani, N. Nickel-catalyzed C–F/N–H annulation of aromatic amides with alkynes: Activation of C–F bonds under mild reaction conditions. J. Am. Chem. Soc. 2020, 142, 17306–17311.
  23. Xie, H.; Xing, Q.; Shan, Z.; Xiao, F.; Deng, G.-J. Nickel-catalyzed annulation of o-haloarylamidines with aryl acetylenes: Synthesis of isoquinolone and 1-aminoisoquinoline Derivatives. Adv. Synth. Catal. 2019, 361, 1896–1901.
  24. Wang, F.; Liu, H.; Fu, H.; Jiang, Y.; Zhao, Y. An efficient one-pot copper-catalyzed approach to isoquinolin-1(2H)-one derivatives. Org. Lett. 2009, 11, 2469–2472.
  25. Thansandote, P.; Hulcoop, D.G.; Langer, M.; Lautens, M. Palladium-catalyzed annulation of haloanilines and halobenzamides using norbornadiene as an acetylene synthon: A route to functionalized indolines, isoquinolinones, and indoles. J. Org. Chem. 2009, 74, 1673–1678.
  26. Liu, Y.; Zeng, R.; Pan, J.; Zou, J. Copper(II)-catalyzed synthesis of N-substituted-3-amino-4-cyano-isoquinoline-1(2H)-ones by the reaction of N-substituted-2-iodobenzamides with malononitrile. Chin. J. Chem. 2014, 32, 883–888.
  27. Shi, Y.; Zhu, X.; Mao, H.; Hu, H.; Zhu, C.; Cheng, Y. Synthesis of functionalized isoquinolin-1(2H)-ones by copper-catalyzed α-arylation of ketones with 2-halobenzamides. Chem. Eur. J. 2013, 19, 11553–11557.
  28. Mayo, M.S.; Yu, X.; Feng, X.; Yamamoto, Y.; Bao, M. Isoquinolone synthesis through SNAr reaction of 2-halobenzonitriles with ketones followed by cyclization. J. Org. Chem. 2015, 80, 3998–4002.
  29. Guimond, N.; Gouliaras, C.; Fagnou, K. Rhodium(III)-catalyzed isoquinolone synthesis: The N–O bond as a handle for C-N bond formation and catalyst turnover. J. Am. Chem. Soc. 2010, 132, 6908–6909.
  30. Guimond, N.; Gorelsky, S.I.; Fagnou, K. Rhodium(III)-catalyzed heterocycle synthesis using an internal oxidant: Improved reactivity and mechanistic studies. J. Am. Chem. Soc. 2011, 133, 6449–6457.
  31. Xu, X.; Liu, Y.; Park, C.-M. Rhodium(III)-catalyzed intramolecular annulation through C–H activation: Total synthesis of (±)-Antofine, (±)-Septicine, (±)-Tylophorine, and Rosettacin. Angew. Chem. Int. Ed. 2012, 51, 9372–9376.
  32. Webb, N.J.; Marsden, S.P.; Raw, S.A. Rhodium(III)-catalyzed C–H activation/annulation with vinyl esters as an acetylene equivalent. Org. Lett. 2014, 16, 4718–4721.
  33. Hyster, T.K.; Rovis, T. Rhodium(III)-catalyzed C–H activation mediated synthesis of isoquinolones from amides and cyclopropenes. Synlett 2013, 24, 1842–1844.
  34. Wang, H.; Glorius, F. Mild rhodium(III)-catalyzed C–H activation and intermolecular annulation with allenes. Angew. Chem. Int. Ed. 2012, 51, 7318–7322.
  35. Sun, R.; Yang, X.; Li, Q.; Xu, K.; Tang, J.; Zheng, X.; Yuan, M.; Fu, H.; Li, R.; Chen, H. Divergent synthesis of isoquinolone and isocoumarin derivatives by the annulation of benzoic acid with N-vinyl amide. Org. Lett. 2019, 21, 9425–9429.
  36. Coles-Taylor, B.L.; McCallum, M.S.; Lee, J.S.; Michel, B.W. Accessing 4-oxy-substituted isoquinolinones via C–H activation and regioselective migratory insertion with electronically biased ynol ethers. Org. Biomol. Chem. 2018, 16, 8639–8646.
  37. Li, B.; Feng, H.; Xu, S.; Wang, B. Ruthenium-catalyzed isoquinolone synthesis through C–H activation using an oxidizing directing group. Chem. Eur. J. 2011, 17, 12573–12577.
  38. Guntreddi, T.; Shankar, M.; Kommu, N.; Sahoo, A.K. Construction of pyranoisoquinolines via Ru(II)-catalyzed unsymmetrical double annulation of N-methoxybenzamides with unactivated alkynes. J. Org. Chem. 2019, 84, 13033–13044.
  39. Ackermann, L.; Fenner, S. Ruthenium-catalyzed C–H/N–O bond functionalization: Green isoquinolone syntheses in water. Org. Lett. 2011, 13, 6548–6551.
  40. Krieger, J.-P.; Ricci, G.; Lesuisse, D.; Meyer, C.; Cossy, J. Harnessing C–H activation of benzhydroxamates as a macrocyclization strategy: Synthesis of structurally diverse macrocyclic isoquinolones. Chem. Eur. J. 2016, 22, 13469–13473.
  41. Yang, J.; Wu, L.; Xu, H.; Gao, H.; Zhou, Z.; Yi, W. Redox-neutral [4 + 2] annulation of N-methoxybenzamides with alkynes enabled by an osmium(II)/HOAc catalytic system. Org. Lett. 2019, 21, 9904–9908.
  42. Liu, M.; Niu, J.-L.; Yang, D.; Song, M.-P. Development of a traceless directing group: Cp*-free cobalt-catalyzed C–H activation/annulations to access isoquinolinones. J. Org. Chem. 2020, 85, 4067–4078.
  43. Huang, H.; Nakanowatari, S.; Ackermann, L. Selectivity control in ruthenium(II)-catalyzed C–H/N–O activation with alkynyl bromides. Org. Lett. 2017, 19, 4620–4623.
  44. Song, L.; Zhang, X.; Tang, X.; Van Meervelt, L.; Van der Eycken, J.; Harvey, J.N.; Van der Eycken, E.V. Ruthenium-catalyzed cascade C–H activation/annulation of N-alkoxybenzamides: Reaction development and mechanistic insight. Chem. Sci. 2020, 11, 11562–11569.
  45. Yu, B.; Chen, Y.; Hong, M.; Duan, P.; Gan, S.; Chao, H.; Zhao, Z.; Zhao, J. Rhodium-catalyzed C–H activation of hydrazines leads to isoquinolones with tunable aggregation-induced emission properties. Chem. Commun. 2015, 51, 14365–14368.
  46. Zhu, H.; Zhuang, R.; Zheng, W.; Fu, L.; Zhao, Y.; Tu, L.; Chai, Y.; Zeng, L.; Zhang, C.; Zhang, J. Synthesis of isoquinolone via rhodium(III)-catalyzed C–H activation with 1,4,2-dioxazol-5-ones as oxidizing directing group. Tetrahedron 2019, 75, 3108–3112.
  47. Li, X.; Zhang, R.; Qi, Y.; Zhao, Q.; Yao, T. Rhodium(III)-catalyzed C–H activation/annulation of N-iminopyridinium ylides with alkynes and diazo compounds. Org. Chem. Front. 2021, 8, 1190–1196.
  48. Yang, Z.; Jie, L.; Yao, Z.; Yang, Z.; Cui, X. Rhodium (III)-catalyzed synthesis of N-(2-acetoxyalkyl)isoquinolones from oxazolines and alkynes through C-N bond formation and ring-opening. Adv. Synth. Catal. 2019, 361, 214–218.
  49. Yu, X.; Chen, K.; Guo, S.; Shi, P.; Song, C.; Zhu, J. Direct access to cobaltacycles via C–H activation: N-Chloroamide-enabled room-temperature synthesis of heterocycles. Org. Lett. 2017, 19, 5348–5351.
  50. Mochida, S.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. Rhodium-catalyzed oxidative coupling/cyclization of benzamides with alkynes via C–H bond cleavage. Chem. Lett. 2010, 39, 744–746.
  51. Hyster, T.K.; Rovis, T. Rhodium-catalyzed oxidative cycloaddition of benzamides and alkynes via C–H/N–H activation. J. Am. Chem. Soc. 2010, 132, 10565–10569.
  52. Song, G.; Chen, D.; Pan, C.-L.; Crabtree, R.H.; Li, X. Rh-catalyzed oxidative coupling between primary and secondary benzamides and alkynes: Synthesis of polycyclic amides. J. Org. Chem. 2010, 75, 7487–7490.
  53. Upadhyay, N.S.; Thorat, V.H.; Sato, R.; Annamalai, P.; Chuang, S.-C.; Cheng, C.-H. Synthesis of isoquinolones via Rh-catalyzed C–H activation of substituted benzamides using air as the sole oxidant in water. Green Chem. 2017, 19, 3219–3224.
  54. Ackermann, L.; Lygin, A.V.; Hofmann, N. Ruthenium-catalyzed oxidative annulation by cleavage of C–H/N–H bonds. Angew. Chem. Int. Ed. 2011, 50, 6379–6382.
  55. Allu, S.; Swamy, K.C.K. Ruthenium-catalyzed synthesis of isoquinolones with 8-aminoquinoline as a bidentate directing group in C–H functionalization. J. Org. Chem. 2014, 79, 3963–3972.
  56. Zhong, H.; Yang, D.; Wang, S.; Huang, J. Pd-catalyzed synthesis of isoquinolinones and analogues via C–H and N–H bonds double activation. Chem. Commun. 2012, 48, 3236–3238.
  57. Lu, S.; Lin, Y.; Zhong, H.; Zhao, K.; Huang, J. A practical one-pot procedure for the synthesis of N–H isoquinolones. Tetrahedron Lett. 2013, 54, 2001–2005.
  58. Zhang, N.; Li, B.; Zhong, H.; Huang, J. Synthesis of N-alkyl and N-aryl isoquinolones and derivatives via Pd-catalyzed C–H activation and cyclization reactions. Org. Biomol. Chem. 2012, 10, 9429–9439.
  59. Peng, X.; Wang, W.; Jiang, C.; Sun, D.; Xu, Z.; Tung, C.-H. Strain-promoted oxidative annulation of arynes and cyclooctynes with benzamides: Palladium-catalyzed C–H/N–H activation for the synthesis of N-heterocycles. Org. Lett. 2014, 16, 5354–5357.
  60. Zhao, J.; Li, H.; Li, P.; Wang, L. Annulation of benzamides with arynes using palladium with photoredox dual catalysis. J. Org. Chem. 2019, 84, 9007–9016.
  61. Shiota, H.; Ano, Y.; Aihara, Y.; Fukumoto, Y.; Chatani, N. Nickel-catalyzed chelation-assisted transformations involving ortho- C–H bond activation: Regioselective oxidative cycloaddition of aromatic amides to alkynes. J. Am. Chem. Soc. 2011, 133, 14952–14955.
  62. Obata, A.; Ano, Y.; Chatani, N. Nickel-catalyzed C–H/N–H annulation of aromatic amides with alkynes in the absence of a specific chelation system. Chem. Sci. 2017, 8, 6650–6655.
  63. Matsubara, T.; Ilies, L.; Nakamura, E. Oxidative C–H activation approach to pyridone and isoquinolone through an iron-catalyzed coupling of amides with alkynes. Chem. Asian J. 2016, 11, 380–384.
  64. Sharma, N.; Saha, R.; Parveen, N.; Sekar, G. Palladium-nanoparticles-catalyzed oxidative annulation of benzamides with alkynes for the synthesis of isoquinolones. Adv. Synth. Catal. 2017, 359, 1947–1958.
  65. Shu, Z.; Li, W.; Wang, B. Pd/C-catalyzed synthesis of isoquinolones through C–H activation. ChemCatChem 2015, 7, 605–608.
  66. Shu, Z.; Guo, Y.; Li, W.; Wang, B. Pd/C-catalyzed synthesis of N-aryl and N-alkyl isoquinolones via C–H/N–H activation. Catal. Today 2017, 297, 292–297.
  67. Hao, X.-Q.; Du, C.; Zhu, X.; Li, P.-X.; Zhang, J.-H.; Niu, J.-L.; Song, M.-P. Cobalt(II)-catalyzed decarboxylative C–H activation/annulations cascades: Regioselective access to isoquinolones and isoindolinones. Org. Lett. 2016, 18, 3610–3613.
  68. Lin, C.; Shen, L. Co-catalyzed ortho-C–H functionalization/annulation of arenes and alkenes with alkynylsilanes: Access to isoquinolone and pyridine motifs. RSC Adv. 2019, 9, 30650–30654.
  69. Manna, S.; Antonchick, A.P. Organocatalytic oxidative annulation of benzamide derivatives with alkynes. Angew. Chem. Int. Ed. 2014, 53, 7324–7327.
  70. Chen, Z.-W.; Zhu, Y.-Z.; Ou, J.-W.; Wang, Y.-P.; Zheng, J.-Y. Metal-free iodine(III)-promoted synthesis of isoquinolones. J. Org. Chem. 2014, 79, 10988–10998.
  71. Sagara, P.S.; Siril, P.F.; Ravikumar, P.C. N-Amino-7-azaindole as the N,N’-bidentate directing group: Ruthenium-catalyzed oxidative annulation of N-(7-azaindole)benzamides with alkynes via C–H bond activation. J. Org. Chem. 2019, 84, 12314–12323.
  72. Yu, D.-G.; de Azambuja, F.; Glorius, F. α-MsO/TsO/Cl Ketones as oxidized alkyne equivalents: Redox-neutral rhodium(III)-catalyzed C–H activation for the synthesis of N-heterocycles. Angew. Chem. Int. Ed. 2014, 53, 2754–2758.
  73. Xie, C.; Dai, Z.; Niu, Y.; Ma, C. Cascade one-pot method to synthesize isoquinolin-1(2H)-ones with α-bromo ketones and benzamides via Pd-catalyzed C–H activation. J. Org. Chem. 2018, 83, 2317–2323.
  74. Huang, J.-R.; Bolm, C. Microwave-assisted synthesis of heterocycles by rhodium(III)-catalyzed annulation of N-methoxyamides with α-chloroaldehydes. Angew. Chem. Int. Ed. 2017, 56, 15921–15925.
  75. Barday, M.; Janot, C.; Halcovitch, N.R.; Muir, J.; Aïssa, C. Cross-coupling of α-carbonyl sulfoxonium ylides with C–H bonds. Angew. Chem. Int. Ed. 2017, 56, 1311–13121.
  76. Xu, Y.; Zheng, G.; Yang, X.; Li, X. Rhodium(III)-catalyzed chemodivergent annulations between N-methoxybenzamides and sulfoxonium ylides via C–H activation. Chem. Commun. 2018, 54, 670–673.
  77. Wang, H.; Cao, F.; Gao, W.; Wang, X.; Yang, Y.; Shi, T.; Wang, Z. Pd(II)-catalyzed annulation reactions of epoxides with benzamides to synthesize isoquinolones. Org. Lett. 2021, 23, 863–868.
  78. Xu, G.-D.; Huang, Z.-Z. A cascade dehydrogenative cross-coupling/annulation reaction of benzamides with β-keto esters for the synthesis of isoquinolinone derivatives. Org. Lett. 2017, 19, 6265–6267.
  79. Shi, L.; Yu, K.; Wang, B. Regioselective synthesis of multisubstituted isoquinolones and pyridones via Rh(III)-catalyzed annulation reactions. Chem. Commun. 2015, 51, 17277–17280.
  80. Wu, Y.; Sun, P.; Zhang, K.; Yang, T.; Yao, H.; Lin, A. Rh(III)-catalyzed redox-neutral annulation of primary benzamides with diazo compounds: Approach to isoquinolinones. J. Org. Chem. 2016, 81, 2166–2173.
  81. Li, Z.; Wu, L.; Chang, B.; Lu, P.; Wang, Y. Rh(III)-catalyzed synthesis of 3-amino-4-arylisoquinolinones from 4-diazoisochroman-3-imines and N-methoxybenzamides. Org. Lett. 2019, 21, 1497–1501.
  82. Thrimurtulu, N.; Dey, A.; Maiti, D.; Volla, C.M.R. Cobalt-catalyzed sp2-C–H activation: Intermolecular heterocyclization with allenes at room temperature. Angew. Chem. Int. Ed. 2016, 55, 12361–12365.
  83. Boobalan, R.; Kuppusamy, R.; Santhoshkumar, R.; Gandeepan, P.; Cheng, C.-H. Access to isoquinolin-1(2H)-ones and pyridones by cobalt-catalyzed oxidative annulation of amides with allenes. ChemCatChem 2017, 9, 273–277.
  84. Potter, T.J.; Li, Y.; Ward, M.D.; Ellman, J.A. Rh(III)-catalyzed synthesis of isoquinolones and 2-pyridones by annulation of N-methoxyamides and nitroalkenes. Eur. J. Org. Chem. 2018, 4381–4388.
  85. Yao, X.; Li, C.-J. Water-triggered and gold(I)-catalyzed cascade addition/cyclization of terminal alkynes with ortho-alkynylaryl aldehyde. Org. Lett. 2006, 8, 1953–1955.
  86. Ju, J.; Hua, R. Copper-catalyzed synthesis of isoquinolines by the cyclocondensation of ortho-alkynyl aromatic aldehydes or ketones with urea. Curr. Org. Synth. 2013, 10, 328–332.
  87. Dell’Acqua, M.; Castano, B.; Cecchini, C.; Pedrazzini, T.; Pirovano, V.; Rossi, E.; Caselli, A.; Abbiati, G. Mild regiospecific synthesis of 1-alkoxy-isochromenes catalyzed by well-defined [silver(I)(pyridine-containing ligand)] complexes. J. Org. Chem. 2014, 79, 3494–3505.
  88. Jiang, B.; Zhou, Y.; Kong, Q.; Jiang, H.; Liu, H.; Li, J. “One-pot” synthesis of dihydrobenzo[4,5][1,3]oxazino[2,3-a]isoquinolines via a silver(I)-catalyzed cascade approach. Molecules 2013, 18, 814–831.
  89. Mariaule, G.; Newsome, G.; Toullec, P.Y.; Belmont, P.; Michelet, V. Silver-catalyzed domino hydroarylation/cycloisomerization reactions of ortho-alkynylbenzaldehydes: An entry to functionalized isochromene derivatives. Org. Lett. 2014, 16, 4570–4573.
  90. Xiao, T.; Peng, P.; Xie, Y.; Wang, Z.-y.; Zhou, L. Ag(I)-catalyzed three-component reaction of 2-alkynylbenzaldehydes, amines, and diazo compounds. Org. Lett. 2015, 17, 4332–4335.
  91. Liu, H.; Lu, L.; Hua, R. [Cu(maloNHC)]-catalyzed synthesis of 2-aryl pyrazolo[5,1-a]isoquinolines by annulation of N’-(2-((trimethylsilyl)ethynyl)benzylidene)hydrazides with terminal aromatic alkynes. Tetrahedron 2017, 73, 6428–6435.
  92. Zhao, X.; Zhang, G.-X.; Tang, R.-Y.; Deng, C.-L.; Li, J.-H. ZnI2-catalyzed benzannulation of o-alkynylbenzaldehydes with alkenes leading to 1-acyl-2-substituted naphthalenes. Eur. J. Org. Chem. 2010, 4211–4217.
  93. Malhotra, D.; Liu, L.-P.; Mashuta, M.S.; Hammond, G.B. Gold-catalyzed annulations of 2-alkynyl benzaldehydes with vinyl ethers: Synthesis of dihydronaphthalene, isochromene, and bicyclo [2.2.2]octane derivatives. Chem. Eur. J. 2013, 19, 4043–4050.
  94. Sakthivel, K.; Srinivasan, K. Indium(III) triflate-catalysed [4 + 2] benzannulation reactions of o-alkynylbenzaldehydes with enolisable carbonyl compounds: Selective synthesis of naphthyl ketones. Org. Biomol. Chem. 2014, 12, 269–277.
  95. Manojveer, S.; Balamurugan, R. A facile access to substituted benzo[a]fluorenes from o-alkynylbenzaldehydes via in situ formed acetals. Chem. Commun. 2014, 50, 9925–9928.
  96. Manojveer, S.; Balamurugan, R. A cascade approach to naphthalene derivatives from o-alkynylbenzaldehydes and enolizable ketones via in-situ-formed acetals. Eur. J. Org. Chem. 2015, 4254–4260.
  97. Guo, B.; Zhou, Y.; Zhang, L.; Hua, R. Brønsted acid-promoted one-pot synthesis of chrysene derivatives via isochromenylium intermediate formed in situ. J. Org. Chem. 2015, 80, 7635–7641.
  98. Too, P.C.; Chiba, S. A CuBr-mediated aerobic reaction of 2-alkynylbenzaldehydes and primary amines: Synthesis of 4-bromoisoquinolones. Chem. Commun. 2012, 48, 7634–7636.
  99. Zhang, M.; Zhang, H.-J.; Ruan, W.; Wen, T.-B. Construction of isoquinolin-(2H)-ones by copper-catalyzed tandem reactions of 2-(1-alkynyl)benzaldimines with water. Eur. J. Org. Chem. 2015, 2015, 5914–5918.
  100. Khan, D.M.; Hua, R. Isoquinolone synthesis via Zn(OTf)2-catalyzed aerobic cyclocondensation of 2-(1-alkynyl)benzaldehydes with arylamines. Catalysts 2020, 10, 683.
  101. Miura, T.; Yamauchi, M.; Murakami, M. Synthesis of 1(2H)-isoquinolones by the nickel-catalyzed denitrogenative alkyne insertion of 1,2,3-benzotriazin-4(3H)-ones. Org. Lett. 2008, 10, 3085–3088.
  102. Wang, H.; Yu, S. Synthesis of isoquinolones using visible-light-promoted denitrogenative alkyne insertion of 1,2,3-benzotriazinones. Org. Lett. 2015, 17, 4272–4275.
  103. Kajita, Y.; Matsubara, S.; Kurahashi, T. Nickel-catalyzed decarbonylative addition of phthalimides to alkynes. J. Am. Chem. Soc. 2008, 130, 6058–6059.
  104. Min, X.-T.; Ji, D.-W.; Zheng, H.; Chen, B.-Z.; Hu, Y.-C.; Wan, B.; Chen, Q.-A. Cobalt-catalyzed regioselective carboamidation of alkynes with imides enabled by cleavage of C–N and C–C bonds. Org. Lett. 2020, 22, 3386–3391.
  105. Xu, F.; Zhu, W.-J.; Wang, J.; Ma, Q.; Shen, L.-J. Rhodium-catalyzed synthesis of substituted isoquinolones via a selective decarbonylation/alkyne insertion cascade of phthalimides. Org. Biomol. Chem. 2020, 18, 8219–8223.
  106. Zheng, Z.; Alper, H. Palladium-catalyzed carbonylation-decarboxylation of diethyl(2-iodoaryl)malonates with imidoyl Chlorides: An efficient route to substituted isoquinolin-1(2H)-ones. Org. Lett. 2008, 10, 4903–4906.
  107. He, Y.; Yuan, C.; Jiang, Z.; Shuai, L.; Xiao, Q. Expeditious synthesis of isoquinolone derivatives by rhodium(I)-catalyzed annulation reaction through C–C bond cleavage. Org. Lett. 2019, 21, 185–189.
More
Video Production Service