Subcritical-Water Extraction of Natural Products

Subcritical water refers to high-temperature and high-pressure water, but below water's critical point of 374 °C and 218 atm. A unique and useful characteristic of subcritical water is that its polarity can be dramatically decreased with increasing temperature. Therefore, subcritical water can behave similarly to methanol or ethanol. This makes subcritical water a green extraction fluid used for a variety of organic species. 

natural products;subcritical water extraction;alkaloids;glycosides;flavonoids;essential oils;quinones;terpenes;lignans;organic acids;polyphenolics;steroids;carbohydrates

1. Introduction

Among the various new green extraction and separation technologies developed recently, subcritical water extraction (SBWE) is the most promising one. Subcritical water refers to the liquid water at temperature and pressure below its critical point (Tc = The pressure of the subcritical water must be higher than the vapor pressure at a given temperature to keep water in the liquid state. With the increase of temperature, the physical-chemical properties of subcritical water change drastically.

2. Compounds Extracted by Subcritical Water

2.1. Flavonoids

Flavonoids, also known as bioflavonoids, are widely found in plants and berries. They are important natural compounds in human diets. They have been used to prevent and treat cardiovascular diseases. In addition, they have strong antioxidant activities and antibacterial activities. When high-flavonoid apples were fed to healthy mice, decreases in some inflammation markers were reported [73][1].
Generally speaking, flavonoids belong to phenols. Since they are widely investigated, they can be presented separately from phenols. Flavonoids have the general structure of a 15-carbon skeleton by connecting two benzene rings with a heterocyclic ring. The basic nucleus is 2-phenylchromone. Flavonoid compounds are usually poorly soluble in ambient water and most organic solvents. Table 1 summarizes SBWE of flavonoids from plant materials.
Table 1. SBWE of flavonoids.
Samples Medicinal Parts Compounds Extracted Extracts Activity Extraction Conditions Analytical Methods Other Extraction Methods (Solvent, Ratios of Yields) Ref.
In general, organic acids in natural products are widely distributed in the leaves, roots, and fruits of the plants. The synthetic organic acids through chemical synthesis, enzymatic catalysis, and microbial fermentation are not discussed in this review. Organic acids are mostly soluble in water or ethanol and exhibit acidic properties, but they are difficult to dissolve in other organic solvents. It is generally believed that aliphatic organic acids have no special biological activity, but some natural organic acids such as citric acid, malic acid, tartaric acid, ascorbic acid, etc. have antibacterial, anti-inflammatory, hypoglycemic, antioxidant, and immune regulation effects. Depending on the organic acid in free state or in salt form, the extraction solvents could be water, dilute alkaline solution, diethyl ether, petroleum ether and cyclohexane, and other lipophilic organic solvents. A summary of recent studies on SBWE of organic acids are shown in Table 3.
Table 3. Subcritical water extraction of organic acids.
Samples Medicinal Parts Compounds Extracted Extracts Activity Extraction Conditions Analytical Methods Other Extraction Methods (Solvent, Ratios of Yields) Ref.
[95] has performed SBWE of phenolic compounds from pomegranate seed residues at 80–280 °C. The results showed that TP increased with the rise of extraction temperature from 80 °C to 220 °C and decreased from 220 °C to 280 °C. At 80–220 °C, the breakage of the bonds led to the increase of TP, however, a higher temperature caused the phenolics to degrade. In addition, they compared SBWE with leaching and UAE using water (room temperature) and organic solvents namely methanol, ethanol, and acetone. TP and antioxidant capacities of SBWE (120 °C) were not as high as organic solvents; however, with respect to the extraction time (2 h for leaching vs. 30 min for SBWE) and toxicity, subcritical water is more acceptable. Meng and Cheng [149][100] have studied 13 phenolic compounds and 20 inorganic elements of Erigeron breviscapus. They also have found similar results, as the glycosides are not stable at a high temperature and with a long extraction time. For example, scutellarein and apigenine are the aglycones of corresponding acutellarin and apigenin 7-glucuronide, when at high temperature glycosidic bonds become unstable and begin to decompose to its glycone and aglycone. Haznedaroglu et al. [147][98] have optimized the parameters such as temperature, extraction time, and flow rate. Temperature and extraction time were found as the most effective parameters for TP and total flavonoids while extraction time and flow rate for anthocyanin contents. In addition, temperature and time were the leading parameters for the effectiveness of extracts on tyrosinase inhibition.
Table 4. Subcritical water extraction of glycosides.
Samples Medicinal Parts Compounds Extracted Extracts Activity Extraction Conditions Analytical Methods Other Extraction Methods (Solvent, Ratios of Yields) Ref.
][105], and growth inhibitory effects [55][106].
Table 5. Subcritical water extraction of carbohydrates.
Samples Medicinal Parts Compounds Extracted Activity/Mixtures Extraction Conditions Analytical Methods Other Extraction Methods (Solvent, Ratios of Yields) Ref.
Subcritical water has also bee used to extract essential oils, alkaloids, quinones, terpenes, lignans, and steroids from plant and other materials. A summary of SBWE of essential oils, alkaloids, quinones, terpenes, lignans, and steroids can be found in Table 6.

Table 6. SBWE of essential oils, alkaloids, quinones, terpenes, lignans, and steroids.

Samples

Medicinal parts

Compounds Extracted

Extraction Conditions

Methods

Other Extraction Methods (Solvent, Ratios of Yields)

Ref.

 

Essential oils

 

Thymbra spicata L.

leaves

α-thujene, α-pinene, terpinen-4-ol, p-cymene, γ-terpinene, 1-carvone, thymol, carvacrol, etc.

100–175 °C, 1–3 mL/min, 2–9 MPa, 30 min

GC-TOF/MS, GC-FID

 

 

[12]           

Aquilaria malaccensis

leaves

butanal, cyclopentanone, acetoxyacetone, benzaldehyde, acetophenone, creosol,etc.

100–271 °C, 1–34 min, 0.08–0.22 g/mL

GC-MS, SEM, FT-IR

HD (95.4%)

[22]

Mentha piperita L.

peppermint

leaves

TP, menthone, menthol, eriocitrin, etc.

40–160 °C, 10.3 MPa, 1–30 min

GC-MS, FID, HPLC

convention (methanol 53.2%)

[28]

Coriandrum sativum L.

 

coriander seeds

thujene, sabinene, pinene, myrcene, cymene, limonene, ocimene, terpinene, terpinolene, etc.

100–175 °C, 1–4 mL/min, 0.25–1 mm, 2 MPa, 20 min

GC-FID, GC-MS

HD (1.54-fold), Soxhlet (hexane 1.4-fold)

[174]

Coriandrum sativum L.

 

coriander seeds

3,4-dimethoxycinnamic acid, coumaric acid, sinapic acid,cis-and trans-linalooloxides, linalool, etc.

100–200°C, 10–30 min, 3–9 MPa

HPLC-MS/MS, GC-MS

 

[175]

Kaempferia galangal L.

rhizome

ethyl-p-methoxycinnamate, d-limonene, eucalyptol, tridecane, camphor, borneol, tetradecane, etc.

120 °C, 10 MPa, 30 min

GC-MS

HD (82.3%), UWE (100%)

[176]

Piper betle

leaves

4-allyl resorcinol, chavibetol

2 MPa, 10–90 min, 50–250 °C, 0.25–1 mm, 1–4 mL/min

HPLC-UV

convention (water 92.2–111%; methanol 96.6–110 %)

[177]

Aquilaria malaccensis

leaves

nonacosane, triacontane, pentadecanal, 9-octadecenal, (Z)-, tetradecanal, tetrapentacontane, guaiacol

100–271 °C, 1–34 min

GC/MS, SEM, BET

 

[178]

laurel

leaves

α-phellandrene, β-pinene, 1,8-cineole, borneol, nona-3,7-dienol, isobornyl acetate, γ-terpineol, etc.

15 min, 50–200 °C, 1.5–15 MPa, 0.5–5.0 mL/min

GC-MS, GC-FID

 

[179]

Citrus hystrix

leaves

linalool, isopulegol, neoisopulegol, citronellal, 4-terpineol, citronellol, geraniol, menthoglycol, etc.

120–180 °C, 5–20 g/mL, 5–30 min

GC-MS

HD (28.2%)

[180]

Coriandrum sativum L.

 

coriander

seeds

α-pinene, β-pinene, camphor, methylchavicol, γ-terpinene, linalool, geraniol, carvacrol, etc.

100–200 °C, 1:10 g/mL, 2 MPa, 20 min

GC-MS, GC-FID

HD (27.0%), Soxhlet (DCM 6.5-fold), SCCO2 (4-fold)

[181]

Lavandula L.

lavender flowers

a-thujene, a-pinene, camphene, sabinene, pinene, myrcene, hexylacetate, terpinene, limonene, etc.

125 °C, 3 MPa, 30 min

GC-MS, FID

HD (1.2-fold), US-HD (1.3-fold), NaCl-HD (1.3-fold)

[182]

 

Alkaloids

Sophora

Ait.

root

cytisine, matrine, sophoridine, sophocarpine, oxymatrine

70–190 °C, 5–14 min, 4.0–13.8 MPa

CE

ASE (ethanol 78.1%)

[16]

black tea brick

leaves

theophylline, epicatechin gallate, caffeine, etc.

120–180 °C, 7–42 min, 6–18 mL/min

HPLC

 

[46]

Symphytum officinale L.

root

lycopsamine, echimidine, lasiocarpine, symviridine

60–120 °C, 40 min

HPLC, LC-MS, MSn

HRE (methanol 2.8-fold)

[183]

hydrastis canadensis

root

hydrastine, berberine

100–160 °C,1–10 MPa, 5–60 min, 0.5–1.5 mL/min

HPLC-DAD

reflux (methanol 90.8%), UAE (methanol 106%)

[184]

cocoa

shells

TP, theobromine, theophylline, caffeine, epicatechin, etc.

120–220 °C, 15–75 min,

1:10–1:30 g/mL

HPLC, UV

 

[185]

Musaceae, Beta vulgaris

peels

dopamine, total betacyanin, betaxanthin

150°C, 5 min, 3 MPa, 1:20 g/mL

HPLC, UV-Vis

infusion (100%), decoction (1.2-fold), maceration (97.4%), UAE (101%), MAE (50.3%)

[186]

Coffeea

arabica, C. arabica, C. canephora var. robusta,

C. canephora var. robusta

coffee silver skin

total sugar, reducing sugar, protein, TP, caffeine, HMF, etc.

180–270 °C, 10 min, 1.0–5.3 MPa

HPLC, UV

convention (0.1 M HCl 96.6%; 0.1 M NaOH 1.5-fold)

[187]

 

Quinones

Rheum tanguticum

root

damnacanthal

33–67 min, 100–200°C, 1.4–4.6 mL/min,

HPLC, NMR, HSCCC

 

[17]

Garcinia mangostana Linn

mangosteen pericarps

TP, xanthone

120–160 °C, 1–10 MPa, 5–60 min, 10–30% DES

UV-vis, FT-IR, SEM

 

[188]

Phaleria macrocarpa

mahkota dewa fruits

 mangiferin

4.0 MPa, 5 h, 50–150 °C

HPLC

 

[189]

Lithospermum erythrorhizon

 

root

shikonin, acetylshikonin, β-dimethylacrylshikonin, etc.

40–60 mesh, 120 °C, 5 MPa

UV, HPLC-ELSD

SCCO2 (86.3%), Soxhlet (ethyl acetate 95.4%), UWE (1.4-fold)

[190]

Morinda citrifolia

root

alizarin

4 MPa, 150 and 220 °C, 1.6–4 mL/min

RP-HPLC-UV

 

[191]

Morinda citrifolia

root

1,2-dihydroxyanthraquinone, alizarin

110–220 °C, 2–6 mL/min

UV-Vis

ethanol (3 d)

[192]

Morinda citrifolia

root

 

4 MPa, 150–200 °C, 2–6 mL/min

UV-Vis

convention (ethanol 81.16%), Soxhlet (ethanol 97.94%), UAE (ethanol 79.62%) SWBE (96.41%)

[193]

 

Terpenes

Hedyotis diffusa Willd.

whole

plants

ursolic acid

 

120–200 °C, 10–50 min,

20–40 mL/g, 0.6–3.0 MPa

HPLC-ESI-TOF-MS

maceration (ethanol 58.8%), HRE (ethanol 78.4%), UAE (ethanol 90.4%), MAE (ethanol 74.9%)

[13]

Centella asiatica

whole

plants

asiatic acid, asiaticoside

100–250°C, 10–40 MPa, 5h

HPLC, DLS

 

[14]

basil, oregano

leaves

limonene, citronellol, etc.

100 and 150 °C, 10 min

GC-FID

 

[48]

Ganoderma lucidum

fruits

ganodermanon-triol, ganoderic acids, lucidumol

100–200 °C, 5–10 MPa, 5–60 min

HPLC, SEC-UV, SEM, MALDI-TOF

 

[194]

Orostachys japonicus

stems,

leaves

triterpene, camellia, etc.

110–260 °C, 5–20 min, 10 MPa

HPLC-MS

 

[195]

Betula pendula

birch bark

betulinic acid

160–200 °C, 10–30min, 10 MPa

HPLC

 

[196]

Inula racemose

plants

igalan, soalantolactone, alantolactone

23.2–56.8 min, 1.3–4.7

 mL/min, 129.5–230.5 °C

HPLC, 1

Pfaffia

glomerata

, Amaranthaceae

ginseng root

sugar, fructooligosaccharides, beta-ecdysone

80–180 °C, 5–15 min, 2–12 MPa

HPLC-ELSD, HPLC

 

[24]

Panax ginseng C.A. Meyer

ginseng root

TP, maltol, panaxadiol, panaxatriol

150–200 °C, 5–30 min, 100 MPa

HPLC, UV

convention (water 32.6%; methanol 24.1%; ethanol 18.7%)

[25]

Panax ginseng C.A. Meyer stem

leave
TP and flavonoids antibacterial 110 and 165 °C, 15 min

190 °C, 10 min
TEM, UV heating (water 95.4%; ethanol 91.3%) [15][2]
Chamomilla matricaria
] who investigated the extraction of four flavonoids from okara and from Puerariae lobata, respectively.

2.2. Polyphenols

Polyphenols, also known as polyhydroxyphenols, are a structural class that is mainly natural, by the presence of more than one phenolic unit and being deprived of nitrogen-based functions. Many fruits, vegetables, herbs, tea leaves, nuts, and algae contain high levels of naturally occurring phenols. It has been reported that polyphenols can resist oxidation [31][47]. As shown in Table 2, extractions of polyphenols can be carried out either using a sole solvent such as water, methanol, ethanol or a mixture of solvents such as ethanol-water and methanol-water-formic acid.
Table 2. Subcritical water extraction of polyphenols.
Samples Medicinal Parts Compounds Extracted Extracts Activity Extraction Conditions Analytical Methods Other Extraction Methods (Solvent, Ratios of Yields) Ref.

H-NMR

13

C-NMR, MS

Soxhlet (ethanol 100%), UAE (ethanol 70.36%), SCCO

2

(76.06%)

[197]

Semen richonsanthis

seeds

3,29-dibenzoylkarounidiol, polysaccharides

80–160 °C, 5.0–30.0 min

HPLC, UV, SEM

 

[198]

Cucurbita pepo

pumpkin peel

14 carotenoid compounds

120 °C, 3 h, 5 MPa

UV, HPLC

SCCO2 (75.4%)

[199]

Betula pendula

birch bark

sesquiterpenes, steroids

10 min, 100–200 °C

LC, GC/MS, NMR

 

[200]

S. rebaudiana

Bertoni leaves

steviol glycosides, tannins, chlorophyll A

100–160 °C, 5–10 min,

10.34 MPa, 1:3 g/mL

HPLC, UV, UV/Vis

 

[201]

 

Lignans

Linum usitatissimum L.

flaxseed

SDG lignan, phenolics, flavonoids

160–180 °C, 5–60 min, 10 MPa

HPLC-MS/MS, UV

 

[41]

Sesamum indicum L.

sesame seeds

lignans, TP, flavonoids, flavonols

140–220 °C, 8–14 MPa, 0–95% ethanol, 0–75 min

UV

 

[42]

Linum usitatissimum

L.

flaxseed

Panax ginseng

C.A. Meyer

ginseng root

total ginsenosides, total sugar,

1-oleanane ginsenosides, etc.

120–200 °C, 20 min, 1:20 g/mL, 6.0 MPa

FT-IR, UV, UFLC-MS/MS

heating (water, 30.9%; ethanol 94.4%)

[26]

grapevine

root,

wood, cane

E-piceid, E-piceatannol, E-resveratrol, E-parthenocissin, etc.

100–190 °C, 5–30 min, 10 MPa

LC-DAD/ESI-IT, Q-TOF, NMR

ASE (116% for cane; 103% for wood; 1.5-fold for root)

[203]

Withania somnifera L

root leaves

TP, withanoside IV V, withaferin A, withanolide A, B

100–200 °C, 10–30 min, 10 MPa

HPLC, UV

maceration (water 31.7%), Soxhlet (ethanol 39.2%), MAE (methanol 45.8%)

[204]

Acanthophyllum glandulosum

root

saponin

 

121 °C, 0.15MPa,

15 min, pH 4–9

FT-IR, UV-vis, HPLC

 

[205]

Vaccaria segetalis

Allium ursinum L. leaves TP, TF, 5-HMF, catechin, p-cumaric, ferulic acids, etc. antioxidant (DPPH, ABTS), Millard products 120–200 °C, 10–30 min, 0–1.5% HCl, 1:10 g/mL HPLC-DAD antioxidant (DPPH, ABTS, FRAP, HRS) 100–240 °C, 15 min,

4–9 MPa, 200 rpm
Phaleria macrocarpa fruits mangiferin   323–423 K, 1–7 h,

0.7–4.0 MPa
HPLC, LC-MS convention (water 69.6%; ethanol 34.1%; methanol 108%), HRE (water 85.7%; ethanol 60.8%; methanol 115%), Soxhlet (water 86.1%; ethanol 55.8%; methanol 113% methanol) [

total fat content, SDG lignan

120–180 °C, 15–90 min, 10–13.8 MPa

HPLC-MS/MS, UV

 

[43]

Sinopodophyllum hexandrum

cowcock seed

vaccarosides, segetosides

125–175 °C, 15–180 min

 

USE (methanol 46.8%; water 27.9%; ethanol 5.2%)

[206]

 
Lycium barbarum[31][47] berriesHPLC, UV   [23] total sugar content[ antioxidant (FRAP, TEAC), immunomodulatory73 1:30 g/mL, 110 °C, 5 MPa] HPGPC HWE (water 71.5%), UAE (water 89.9%), UWE (water 132%)36][94]
L. flowers TP, TF, 18 polyphenolic compounds, apigenin antioxidant, enzyme inhibitory activity 65–210 °C, 5–60 min

1:30–1:100 g/mL
TLC, UV, HPLC-MS   120–220 °C, 2–4 mL/min, 4 MPa TLC, UV, MS, NMR, HPLC[18][3]
Terminalia chebula fruits TP, allic acid, corilagin ellagic acid antioxidant (ABTS) Soxhlet (water 74.5%; ethanol 46.3%), HWE (water 46.3%)
Helicteres isora L.[  34 hexadecanoic acid, octadecnoic acid, heptadecen-8-carbonic acid etc. antibiofilm, antioxidant,

antimicrobial, antienzymatic
][48]
160 °C, 30 min, 1 MPa, 1: 30 g/mL GC-MS, UV   [27][74]
[11][107 Punica granatum L. pomegranate seed TP, kaempferol

-3-O-rutinoside
antioxidant (DPPH, ABTS) 80–280 °C, 5–120 min, 1:10–1:50 g/mL, 6.0 MPa HPLC-DAD, UV, HPLC-ABTS+ leaching (water 40.6%; methanol 79.7%; ethanol 41.7%; acetone 45.5%), UAE (water11.3%; methanol 20.6%; ethanol 18.9%; acetone 15.2%), Soxhlet (methanol 71.4%; acetone 39.7%) [144][95] Allium cepa
]
sunflower sunflower heads galacturonic acid, pectin   10–50 min, 2–8 mL/g, 100–140 °C, 0.2–1 MPa TG/TGA, DSC, UV−vis, FTIR, HPSEC, NMR   [40][108] Lycium ruthenicum Murr.onion wastes quercetin-4′-glycoside, quercetin, etc.   40–160 °C, 5 min, 5 MPa, Teucrium montanum L. aerial parts

rutin, naringin, epicatechin, etc.1–10 mm, pH 3.0–7.0 LC-MS/MS HPLC-UV convention (methanol and hydrochloric acid 94.3%) [19] fruits[4]
XiLan olive fruit olive dregtotal anthocyanin, seven anthocyanins antioxidant (ABTS, DPPH) 110–170 °C, 30–90 min, 1–3 min/L HPLC, UPLC-MS UAE (water 59.8%; methanol 81.1%) [35][49]
TP, chlorogenic acid, gallic acid, syringic acid, etc. antioxidant (ABTS, DPPH, reducing power) 100–180 °C, 5–60 min, 1:20–1:60 g/mL LC-MS-IT-TOF, UV convention (methanol 3.2%; ethanol 0.6%; DMK 0.9%)
Aronia melanocarpa chokeberry stems 1 amino acid, 8 alcohols, 11 sugars, 2 fatty acids, etc.antioxidant (DPPH, FRAP) antioxidant (DPPH), enzyme inhibitory activity60–200 °C, 30 min,

1–10 MPa, 1:10 g/mL
[33][ 130 °C, 3.5 MPa, 20 min, 1:20 g/mLHPLC-PDA, UV75]   [ GC-MS145  ][96]
[49][109] Crocus sativus L. stigmas Paeonia lactiflora rootTP, dodecane, γ-terpinene, tetradecane, etc. antioxidant (DPPH, FRAP), antibacterial 100–180 °C, 10–30 min, albiflorin, paeoniflorin

 1:10 g/mL GC/MS, UV-vis   [21] Punica granatum L.[5]
peels TP, TF, punicalin, etc.   100–220 °C, 5–30 min, 3.0 MPa UV-vis, HPLC MAE (water 121%; ethanol 146%) [
Lentinus edodes fruit bodies hetero–polysaccharides, xylose, mannose, etc.100–260 °C, 10–60 min,10–40 mL/g109]
Camellia oleifera Abel.[ HPLC50] reflux (water 83.5%), UAE (ethanol 77.8%) [ antioxidant (OH·, DPPH, ABTS)146] Saururus chinensis, etc.
seeds[ 120–160 °C,30–50 min, 0.033–0.05 g/mL97] skin, leave, peel, etc. quercetin, isorhamnetin, kaempferol, isoquercitrin, etc.  
UV-vis, SEM, GC, GPC, FT-IR   [54][110] Castanea sativa shells tannins, phenolic acids, flavonoids, anthocyanins antioxidant (DPPH, FRAP, ABTS)10 MPa, 110–200 °C, 5–15 min HPLC   [ Morus nigra L.30][6]
fruits51–249 °C, 6–30 min UV-vis,

LC/ESI-MS   [110][51] TP, TF, cyanidin 3-glucoside, etc. 40–80 °C, 20–60 min, 2–6 mL/min, 15 MPa tyrosinase inhibitory activity UPLC-DAD-ESI-MS/MS shaker (ethanol:water 116%), UAE (ethanol:water:TFA 134%) [147][98]
Lentinus edodes fruit bodies l-rhamnose, d-arabinose, d-xylose, d-mannose antioxidant (ABTS), growth inhibitory effect 100–150 °C, 10–30 min, 5 MPa FT-IR, UV-Vis, AFM, GC, HP SEC-MALLS   [55][106] Camellia sinensis leaves epigallocatechin gallate   80–120 °C, 3–7 min,

40–60 mL/g
HPLC convention (water 87.6%) [44]
Salvia officinalis L. by–products TP, TF antioxidant (DPPH, TEAC, reducing power)[7]
120–220°C, 10–30 min, 3 MPa, 0–1.5% HCl UV maceration (water 59.9%) [ Stevia rebaudiana111 leaves TP, stevioside,

rebaudioside A
] antioxidants (DPPH)[ 100–150°C, 30–60 min, 23 MPa, 1:10 g/mL HPLC-UV, UV52  ] [148][99]
Lentinus edodes fruit bodies polysaccharides, rhamnose, arabinose, xylose, etc. antioxidant (DPPH, reducing power) 140 °C, 40 min, 1:25 g/mL, 5 MPa GC, FT-IR, AFM, SEM   [56][111] Origanum vulgare L. leaves TP, flavanone, flavone, flavanol antioxidant (DPPH, TEAC, ABTS) 10.34 MPa, 30 or 15 min

25–200 °C
HPLC-

DAD, UV
  [47][8]
Pistacia vera L. hulls gallotannin, anacardic acid, etc. antioxidant (ABTS, FRAP) 110–190 °C, 6.9 MPa, 4 mL/min HPLC-ESI/MSn Erigeron breviscapuUAE (methanol 83.9%)) s whole parts[112 scutellarin, 20 inorganic elements, etc.] antioxidant (DPPH) 120–140 °C, 5–15 min, 150–420 um
Lentinula edodesHPLC, HPLC-MS fruit bodies TCC, total β-glucan, chitin HMGCR, immuno-

modulatory
reflux (methanol 86.1%; ethanol 84.8%) [149][100]
200 °C, 11.7 MPa, 15–60 min[53] GC-MS, HPSEC, NMR UAE (water 65.2%), HWE (water 32.3%), SPE (water 33.0%) orange peels
reducing sugar, TP, pectin, hesperidin, narirutin antioxidant (DPPH, FRAP) 110–150 °C, 10–30 mL/min

10 MPa HPLC,

UV-vis
Soxhlet (ethanol 79.2%), shaker (ethanol 250%), UAE (ethanol 114%) [50][ Zingiber officinale9]
[57][112] pulp and peel 6-gingerol, 6-shogaol antioxidant (FRAP) 10 MPa, 110–190 °C, 5–40 min HPLC convention (methanol 114%; water 77.1%) [113][54] orange peels flavones, 7-hydroxyflavone  
Sorfhum bicolor L. bran TP, oligomeric procyanidins, taxifolin, taxifolin hexoside100–150 °C, 0.5 mL/min GC-FID UAE (methylene chloride) [70][10]
antioxidant (DPPH, ABTS), antiproliferative 110–190 °C, 5–40 min, 1:10–1:50 g/mL HPLC, ESI-MS/MS heating (water 74.9%) [114][55]
Nelumbo nucifera seed epicarp TP, proanthocyanidin dimers, trimer, cyanidin, etc. antiproliferation effect (MTT) 100–180 °C, 5–25 min, 1:20–1:60 g/mL, 1–5‰ NaHSO3 HPLC-ESI-MS, UV HWE (water 33.9%) [115][56]
German chamomile
Panax ginseng Meyer
free fatty acids (palmitic acid, stearate, oleic acid, etc.), tea saponin
antioxidant (DPPH) 60–160 °C,2–7 MPa,

5–60 min, 1:3–1:25 g/mL GC-MS, FT-IR Soxhlet (petroleum ether 100%), cold pressed (100%) [37][76]
sunflower seeds (Natura) dehulled seeds total proteins, total carbohydrates, TP antioxidant capacities 60–160 °C, 5–120 min,

3 MPa, 1:10–1:30 g/mL
GC-FID, UV-Vis, HPLC Soxhlet (hexane 67.3%) [38][77]
cottonseed (Egypt) cottonseed linoleic acid, palmatic acid, oleic acid, myristic acid   180–280 °C, 5–60 min, 1:2–2:1 g/mL GC-FID, heating (hexane 89.5%) [39][78]
green coffee (Robusta Uganda) beans chlorogenic acid   130–170 °C, 40–90 min, 0–30 % ethanol HPLC convention (ethanol 66.7%) [45][79]
Nannochloropsis gaditana   fatty acids, omega-3, omega-6, lipid Mangifera indica L. leaves  quercetin3-d-glucoside, mangiferin antioxidant (DPPH) 100 °C, 4 MPa, 10 g/min, 3 h UV, HPLC SCCO2 (20% methanol 18.7%)
Grifola frondosa[150 fruit bodies][101]
total polysaccharide, total protein156.1–273.9 °C, 6.6–23.4 min, 33–117 g/L GC-FID, SEM Soxhlet (n-hexane 100%) [51][80]
antioxidant (DPPH, reducing power) 100–230 °C, 2–4 min, 20–100 mesh, 5 MPa FT-IR, SEM HWE (water ~87.8%) [58][113] Saccharina japonica   gallic, caffeic, vanillic, syringic, chlorogenic, p-hydroxybenzoic acids, etc. antioxidant (DPPH, ABTS, total antioxidant (FRAP) 100–250 °C, 5 min, 5 MPa, 0.25–1.00 M ILs HPLC, UV convention (DMK 0.2%; DCM 0.3%; Et2 Crocus sativus L. stigmasO 0.8%; IL 1.6%) [52][81] picrocrocin, safranal, crocin   5–15 min, 105–125 °C GC-MS, UV, HPLC   Citrus unshiu Markovich peels rutin, naringin, hesperidin, naringenin  
[
Sagittaria sagittifolia L. fruit bodies polysaccharides antioxidant (DPPH, ABTS, reducing power)151] 150–190°C, 12–20 min, 1:20–1:40 g/mL, pH 7–9[102] Haematococcus pluvialis   p-hydroxybenzoic acid, gallic acid, siringic acid, vanillic acid, etc. antioxidant (ABTS, TEAC), antimicrobial activity0.5–14 MPa, 5–15 min, 100–190 °C HPLC   50–200 °C, 20 min,

10 MPa
[74
FT-IR, 1H and 13C NMR, UV Glycyrrhiza uralensis Fisch licorice

root
TP, glycyrrhetic acid, glycyrrhizin, liquiritin antioxidant (DPPH, reducing power) 50–300 °C, 10–60 min,

0.002–5 MPa
HPLC, UV-Vis   [152][103]
2.5. Carbohydrates
Carbohydrates is a very common term that include sugars, starch, and cellulose, which are an important class of organic compounds widely distributed in nature. The saccharides are divided into four groups: monosaccharides, disaccharides, oligosaccharides, and polysaccharides. As shown in Table 5, carbohydrates extracted by SBWE possess antioxidants [153][104], antimitotic [154

root

podophyllotoxin

12 mL/g, 3 MPa, 2ml/min, 120–240 °C

HPLC

 

[202]

 

S

teroids

HWE (water 55.8%)
[
59
]
[
114
]
]
[
11]
HPLC-DAD-MS, SEM, GC-MS   [53]
Sagittaria sagittifolia L.[ fruit bodies82 l-rhamnose, d-arabinose, d-xylose, d-mannose] antioxidant,

immuno-modulatory
170°C, 16 min HPLC, GC, SEM, IR, AFM, HPSEC-MALLS HWE (water 75.6%); UAE (water 96.1%) [60][115] Allium cepa L. peels TP, TF, quercetin flowersantioxidant (DPPH, TBA, FTC) 110 and 165 °C, 15 min, p < 3.4 MPa HPLC, UV heating (ethanol 153%; water 45.6%) 9 phenolic acids and derivatives
Sagittaria sagittifolia L.[75][12]
fruit bodiesantioxidant, cytotoxic, enzyme 100 °C, 1–9 MPa, 30 min UHPLC-DAD, MS/MS   [116][57] α-pyranose polysaccharide, β-pyranose polysaccharide immuno-stimulatory Hippophae rhamnoides leaves TP, TF, isorhamnetin, kaempferol, quercetin
Momordica charantia fruits TP, gallic acid, gentisic acid, chlorogenic acid antioxidant (ABTS) 130–200 °C, 10 MPa, 2–5 mL/min 1 MPa, pH 7,170 °C, 16 min, 30:1 mL/gHPLC, UV Soxhlet (methanol 4.9%), UAE (methanol 4.0%) [ IR, GC-FID, UV, HPSEC, AFM132  ][ [61][116] antioxidant, cytotoxicity 25–200 °C, 15 min,

10.34 MPa
HPLC, UV, FM maceration (water 21.3%), Soxhlet (ethanol 64.6%) [76][13]
83] Fagopyrum tataricum grains phenols, 13 phenolics, 4 flavonoids, 3 anthocyanins antioxidant (TEAC, CAA and FRAP), cytotoxicity 220 °C, 60 min, 5 MPa, 1:60 g/mL HPLC-MS, UV UAE (water 83.5%)
Morus nigra L., Teucrium chamaedrys L., Geranium macrorrhizum L., Symphytum officinale L.[117][58]
leaves, flowers TP, chlorogenic acid, gallic acid, vanillic acid, etc. antioxidant, antifungal, antibacterial, cytotoxic 60–200 °C, 30 min, 1 MPa, 1:40g/mL HPLC-DADUV  
Cordyceps militaris fruit bodies total sugars, protein and uronic acid   180 °C, 13 min, pH = 8,

21 mL/g
[ IR, GC, AFM, GPC-MALLS133][  84] [62][117] Allium cepa L. peels TP, TF, kaempferol, quercetin antioxidant (DPPH) A. uva–ursi herbal dust TP, TF170–230 °C, 3 MPa, 30 min,
Prunus aviumantioxidant (DPPH, reducing power) L.,

pH 2–10 HPLC, UV-vis heating (ethanol 26.7%) 120–220 °C,3 MPa, 10–30 min, 0–1.5% HCl[77 UV Prunus cerasusmaceration (water 38.5%; ethanol 69.5%)][ L.14[118]
wheat[59]
stems bran3 alcohols, 10 organic acids, etc. antioxidant, antiproliferative 150 °C, 30 min, 2 MPa GC-MS, UV  ]
monosaccharide, etc. antioxidants (DPPH)[ 160–180°C, 5–60 min134] HPAEC-PAD, SEC[85]   [153][104] Achillea millefolium L. herbal dust TP, TF, HMF, chlorogenic acid antioxidant (DPPH, TEAC, ABTS) 120–200 °C, 10–30 min Hippophaë rhamnoides L.

0–1.5% HCl, 3 MPa
HPLC, UV-vis   seed residue TP, TF, proanthocyanidins antioxidant (DPPH) 80–180 °C, 15–90 min, 1:10–1:50 g/mL, 6 MPa UV[ convention (water 19.6%; methanol 104%; ethanol 80.0%)78
Castanea sativa nuts ellagic acid, feru lic acid, gallic acid, etc. antioxidant 120–135 °C,

15–60 min
][ HPLC15]
[119
Saccharina japonica][60]
  [  135 fucoidan, fucose, glucose, galactose, mannose, etc. antioxidant, antimitotic

anti-proliferative
][86] 100–180 °C, 5–15 min, 2–8 MPa FTIR, TGA, UV-Vis convention (0.05 M HCl 100%) [154][105] Curculigo latifolia root TP, TF, pomiferin, etc. grape (Croatina)antioxidant (DPPH, ABTS, TEAC) pomace100–200 °C, 10 MPa

30–120 min, 0.5 mL/min
LC-MS, UV
Citrus grandis  TP, TF[79] antioxidant (DPPH)[
Solanum tuberosum100–140 °C, 8–15 MPa, 1–2 mL/min16]
potato peel TP, gallic acid, caffeic acid, chlorogenic acid, protocatechuic acid, etc.   100–240 °C, UV convention (water 5.3%; ethanol 7.87%) [120]
root TP, chlorogenic acid, caffeic acid, gallic acid, etc.

30–120 min, 6 MPa] HPLC, UV[ convention (methanol 1.6%; ethanol 2.0%)61 L.[136][87] pomelo peel pectin   90–120 °C, 3–10 MPa HPSEC-MALLS   [155][118] Citrus unshiu peels hesperidin and narirutin   Matricaria chamomilla L. flowers polyphenolic compounds, etc. antioxidant, cytotoxic, enzyme inhibitory110–190 °C

3–15 min
HPLC 65–210 °C, 30 min, 4.5 MPa UHPLC-ESI-MS/MS, UV  
Actinidia deliciosa pomace TP, chlorogenic acid, protocatechuic acid, etc.  antioxidant (DPPH, FRAP, ABTS) 170–225 °C

10–180 min, 5 MPa
UV, HPLC, pH[80][17]
[
Theobroma cacao L.121][62]
  [ cacao pod husks xylose, arabinose, etc.   121 °C, 30 min, 10.3 MPa FT-IR, GC-FID, SEM137] convention (4% citric acid 76.1%)[ [156][119] Glycine max
Kappaphycus alvarezii. Aokara genistin, daidzin, genistein, daidzein Nelumbo nucifera seedpods    TP, TF, proanthocyanidin dimer, isoquercetin, etc. antioxidant, antiproliferative (HepG2) ĸ-carrageenan, glucose, 3,6-anhydrogalactose, etc.100–180 °C, 30–70 mL/g, 5–25 min, 1–6‰ NaHSO3 UV-Vis, HPLC, ESI-MSn HWE (water 91.4%) [122][63]
88]
hypnea musciformis   chlorogenic, protocatechuic, and gallic acids, TP, TF, etc. antioxidant (DPPH, ABTS), emulsify100–200 °C, 5 min, 2–5 MPa, 10–30 g/mL HPLC Soxhlet (methanol, 108%) 120–270 °C, 10 min,

1:50–1:150 g/mL
antioxidant (DPPH, ABTS)[81][18]
pH, UV, HPLC   [138][89] 60–180°C, 5 MPa, 5 min FTIR, TGA, XRD convention (water 94.3%; water with IL 101%) [157][120] onion skins quercetin, quercetin-4′-glucoside   100–190°C, 5–30 min,

9–13 MPa
HPLC Vitis vinifera L.
Carica papayagrape pomace L. papaya catechins, flavonols, tannins, proanthocyanidins, etc.

convention (methanol, 92.8%) antioxidant (DPPH, ABTS) 40–120 °C, 10 min, 10.34 MPa, 10–40% NADES seedsUV, HPLC-ESI-MS
Pseuderanthemum palatiferum leaves  TCC, monosaccharides[82][19]
TP, 18 phenolic acids, 20 flavonoids, 1 stilbene, etc. antioxidant (DPPH, β-carotene bleaching) 70–150 °C, 10 MPa, 1–40 min, 4 mL/min anticoagulant, antioxidant 150–200°C, 5–10 mL/minLC-ESI-MS/MS, UV[123][64]
Soxhlet (water 37.1%) HPLC, GPC, NMR, UV[139] convention (0.1 M NaOH 48.8%)[90] [158][121] Puerariae lobata root puerarin, daidzin, daidzein

3-methoxypuerarin
  100–200 °C, 15–75 min sweet chestnut

1:10–1:25 g/mL
HPLC reflux (ethanol 91.6%), UAE (water 95.9%) [83][20]
bark TP, tannins, ellagic and gallic acids, ellagitannins, etc. antioxidant (DPPH)
wheat150–250 °C, 10–60 min, 10–30 mL/g, 4.5 MPa UV-Vis, HPLC   bran Coriandrum sativum seeds TP, TF antioxidant (DPPH) 100–200 °C, 10–30 min

3–9 MPa
Zingiber officinale ginger

rhizome
12 sugars, 8 diols, 4 phenolic acids, etc.[ antimicrobial, cytotoxic 150 °C, 1 h, 1:10 g/mL124 TCC, reducing sugar, arabinose, xylose, etc.HPLC-ESI-TOFMS][ antioxidant, α-amylase inhibitory 140 °C, 5 MPa, 30 minheating (water) SEC-MALLS, FT-IR, DLS, DSC, UV65]
[140 SBWE (water with citric acid 97.6%); UWE (water with citric acid 103%)][91] [159][122] UV   [84] Symphytum officinale[ root TP, TF21 antioxidant (DPPH), enzyme inhibitory 120–200 °C,10–30 min, 0–1.5% HCl
ChlorellaUV, ELISA sp. microalgaeUAE (methanol 2.5%; ethanol 17.4%); maceration (methanol 4.4%; ethanol 29.8%)]
[125
Lycium barbarum L.][66]
  TP, caffeic acid, ferulic acid, p-coumaric acid antioxidant (DPPH) 100–250 °C,

5–20 min
UV, SEM, HPLC   [141 fruits][92] polysaccharides antioxidant (O2·, OH·, DPPH) 5 MPa, 25 mL/g, 110 °C, 1 h UV HWE (water 86.2%); UAE (water74.9%); UWE (water 111%) [160][123] Citrus unshiu peels flavanones, polymethoxy-Flavones, etc. anticancer, cardioprotectives 120–180 °C, 1.0–2.0 mL/min, 5.0 ± 0.1 MPa GC, HPLC, convention (methanol 75.0%; ethanol 41.6%; acetone 17.2%) [85] Pinot Nero[ grape skins22 TP]
Cocos nucifera  80–120 °C, 2 h,10 MPa, 2–5 mL/min UV-Vis   [126][67]
Coffea arabica
Vitis vinifera vine-canes TP, flavonoids, phenolic acids, flavonols antioxidant, antiradical 125–250 °C, 50 min HPLC, UV L.  [142 defatted coconut] mannose, galactosamine, xylose, rhamnose, etc. antioxidant,

hypoglycaemic, adsorption
1:10–1:50 g/mL, 10–50 min,

120–200 °C, 20–100 mesh[93]
HPLC, XRD, TGA, DTGA, SEM, FT-IR   [161][124] Phlomis umbrosa whole part TP, TF, iridoids glycosides antioxidant (DPPH, ABTS) 110–200 °C, 10 MPa, 1–25 min HPLC,

ESI-MS
convention (ethanol; methanol; water) L. spent coffee grounds TP, caffeoylquinic acid, feruloylquinic acid, etc. antioxidant (DPPH, ABTS) 160–180 °C, 35–55 min, 14.1–26.3 g/L
okara   polysaccharides, TP, TFHPLC-ABTS+, MS, UV
Cinnamomum Cassia Blume [86][23]
antioxidant (ABTS, DPPH)[127][68]
cinnamon coumarin, cinnamic acid, cinnamaldehyde, cinnamyl alcohol, etc.   110–130°C, 20–60 min, 2–4 MPa, 1:10 g/mL HPLC   1:30 g/mL, 160–230 °C, 10 min UV   [162][125] Actinidia deliciosa peels TP, TF, antioxidant (DPPH, ABTS, FRAP) 120–160 °C, 0–30 min, 3 MPa,

pH 2–5.5
CurcumaUV-vis, pH longaconvention (ethanol 81.9%) L. rhizomes curcumin, demethoxycurcumin  [ 120–160 °C, 6–22 min, 1–2.5 MPa87] HPLC-UV, SEM[24]
  [128][
Saccharina japonica   polysaccharide, fucoidan, alginate69 antioxidant (ABTS, DPPH, FRAP)] 100 –150 °C, 1–5 MPa, 1:30–1:50 g/mL IR, DSC, TGA, 1HNMR, HPLC, HPSEC-ELSD   [163][126] Scutellaria baicalensis root baicalin, baicalein, wogonin,

wogonoside
  110–160 °C, 10–90 min,

20–100 mesh
HPLC HRE (ethanol 93.0%) [88][25]
Curcuma longa L. rhizomes α-phellandrene, curcumin, β-caryophyllene, trans-β-farnesene, β-bisabolene, γ-curcumin, etc.   90–150 °C, 1–4 mL/min, 2 MPa, 0.5–1.5 mm GC/GC-MS,

GC -FID
HD (80.7%), Soxhlet (n-hexane 1.2-fold) [129][
Passiflora edulis fruit peel pectic polysaccharide, mannose, glucose, etc.70 antioxidant (DPPH)] 100–160 °C, 5.64–7.94 min, 10–30% ethanol HPLC, UV, viscometer   [164] Citrus unshiu pomaces TP, polymethoxylated flavones, sinensetin, etc. antioxidant (DPPH, TP) 25–250 °C, 10–60 min,

0.1–5.0 MPa
HPLC, UV  
[127] Curcuma longa L. rhizomes[
Chlorella vulgaris, Sargassum vulgare, Sargassum muticum, Porphyra spp., Cystoseira abies–marina, Undaria pinnatifida and Halopitys incurvus, Rosmarinus officinaliscurcumin, demethoxycurcumin, bisdemethoxycurcumin89]  [26]
L., 110–150 °C, 1–10 min, 0.5–10 MPa HPLC Thymus vulgaris, Verbena officinalisconvention (ethanol, 1.13-fold) [130 microalgae, algae, leaves] sugar, TP, melanoidins antioxidant (ABTS, O2¯)[ 100–200 °C, 20 min, 10 MPa71] UV   [165][128] citrus unshiu peels hesperidin, narirutin, prunin, naringenin, sinensetin, etc. antioxidants (DPPH, FRAP), enzyme
Curcuma longa L.145–175 °C, 15 min rhizomes

5 MPa, 0.75–2.2 mL/min
HPLC 2M HCl extraction 42.9%; 2 M NaOH extraction 38.9% [90][27]
curcumin, demethoxycurcumin, bisdemethoxycurcumin   90–250 °C, pH 1.0–5.5 5.0 MPa, 0.5 mL/min HPLC, UPLC, LC-MS Soxhlet (acetone, 1.17-fold) [131][ citrus unshiu peels hesperidin and narirutin   110–200 °C, 5–20 min,
rice bran bran protein, TCC, TP antioxidant (DPPH) 120–250 °C,0.5–5 mL/min UV, UV-Vis   [166][129]

10 ± 1 MPa
HPLC, MS/MS convention (ethanol 56.4%; methanol 35.8%; water 6.2%) [91][28]
Nizamuddinia zanardinii   TCC, rhamnose, xylose, arabinose, fucoidan, fucose antioxidant, anticancer, macrophage, etc. 425 rpm, 10–30 min, 90–150 °C, 0–40 mL/g, 0.75 MPa, 1500 W FT-IR, GC-MS, SEM, UV, HPSEC-MALLS-RI   [167][130] palatiferum Radlk. leaves TP, TF, protein, saponin, sugar, apigenin, kaempferol antioxidants (DPPH, FRAP, ABTS),
Dendrobiumnobile Lindl. stems110–270 °C, 15 min, 8 MPa polysaccharide, arabinose, galactose, glucose, etc.

1:70 g/mL
HPLC, UV convention (water 77.7%; methanol 32.8%), Soxhlet (ethanol 43.7%) antioxidant (OH·, ABTS)[92] 0.5–1.5 MPa, 5–20 min 120–160 °C, 1:25 g/mL[ UV−vis, GPC, HPLC, HPAEC29  ]
72] [168][131] Glycyrrhiza uralensis Fisch. root TP, TF, liquiritin, flavanone, isoflavone antioxidants (DPPH, ABTS) 80–320°C, 2–100 min, 7.0 MPa, 1:30 g/mL, pH 3–11 HPLC,

MS/MS, UPLC
UAE (water 20.6%; ethanol 44.9%), MAE (water 25.6%; ethanol 63.8%)
Ecklonia maxima  [ TP, polysaccharide, sulphate, and alginate93] antioxidant (ABTS)[30]
100–180 °C, 5–30 min, 10–50 mL/g, 4 MPa UV, elemental analysis, ICP-MS convention (70% ethanol 0%; 0.05 M HCl 20.1%) [169][132] Tagetes erecta L. flower residues TP, TF, 5-HMF, reducing sugar, free amino acids antioxidants (DPPH, ABTS) 80–260 °C, 15–90 min

1:20–1:60 g/mL,120 rpm
HPLC-DAD, UV leaching (water 9.4%; methanol 69.9%; ethanol 68.8%; acetone 94.0%), UAE (water 9.9%; methanol 69.8%; ethanol 64.3%; acetone 87.6%) [94][31]
Vitis vinifera grape pomace glucose, fructose, galactose, arabinose, mannose, etc. antimicrobial, antioxidant (DPPH) 170–210 °C, 10 MPa, 5–10 mL/min HPLC, UV   [170][133] Daucus carota leaves polyphenols, luteolin   110–230 °C, 0–114 min, 4 MPa UV, PLC   [95][32]
Matricaria chamomilla L. flowers
green coffee beans spent coffee grounds carbohydrates, phenolics antioxidant, antibacterial 150–220 °C, 7 MPa, 10 mL/min, HPLC, UV,   [171][134] TP, TF, apigenin-7-O-glucoside, etc. antimicrobial, cytotoxic activity 200 °C, 40 min, 1:50 g/mL
Tamarindus indica seed TP, xyloglucanUHPLC, HESI- antioxidant (DPPH)

MS/MS, UV
100–200°C, 1:20 g/mLSoxhlet (ethanol 129%), MAE (ethanol 117%), UAE (ethanol 104%) SEC, UV[96] convention (water 74.6%)[33]
[172][135] Silybum murianum L seeds taxifolin, silychristin, silydianin, and silybin   75–250 °C, 40–60 min, 12.5 MPa, 0.1–0.5 mm HPLC convention (ethanol 101%; water 43.6%)
Mentha arvensis leaves carbohydrates, apocynin[97][34]
antioxidant (DPPH) 180–260 °C, 1:20 g/mL, 5 min HPLC, GC-MS, UV,   [173 Echinacea purpurea L. flowers TP, TF antioxidant

(TEAC, ABTS)
103.4–216.56 °C, 3 MPa, 5.86–34.414 min UV-vis   [98][35]
Humulus lupulus pellets TP, desmetylxanthohumol, prenylflavonoids, etc. anti-inflammatory 50–200 °C, 30 min, 10 MPa HPLC,

MS/MS
convention (hexane 17.2%; ethanol 105%) [99][36]
][136 Kunzea ericoides leaves TP, TF, 5-HMF, quercetin, catechin, syringic acid, etc. antioxidant

(DPPH, FRAP)
150–210 °C, 0–40 min

15–35 g/mL, 4 MPa
HPLC, UV convention (ethanol 37.5%) [100][37 Pistacia atlantica subsp. mutica hull TP, kaffesaure, ethyl vanillin, flavanomarein, etc. antioxidant (DPPH), reducing power 110–200 °C, 30–60 min,

10–50 g/mL
HPLC-DAD, UV HWE (85 °C 42.8%) [101][38]
Satureja hortensis L. whole part TP, TF, rosmarinic acid, rutin, quercetin, etc. cytotoxic, antibacterial 140 °C, 30 min

4 MPa, 1:20 g/mL
HPLC-PDA, UV maceration (ethanol 57.2%), Soxhlet (ethanol 18.4%), UAE (ethanol 69.2%), MAE (ethanol 81.3%) [102][39]
Urtica dioica L. leaves TP, TF, twenty-seven compounds cytotoxic, antifungal, antimicrobial 125 °C, 30 min, 3.5 MPa,

1:30 g/mL
UHPLC-HESI-MS/MS UAE (water 48.5%), MAE (water 100%) [103][40]
] Chamomilla recutita R. flowers 2 flavonoids, 4 esters, 1 amino acid, 11 phenols, etc.   150 or 200 °C, 5.0 ± 0.1 MPa,

1.7 mL/min, 40 min
UV, HPLC, GC-MS   [104][41]
Glycine max okara TP, gallic acid, syringic acid, ferruric acid, etc. antioxidant (ABTS, DPPH, FRAP) 150 °C, 4 MPa, 5–275 min

20 mg/mL
UV, HPLC   [105][42]
Carménère grape pomace flavanols, stilbenes, and phenolic acids   90–150 °C, 5 min, 10 MPa, 15–50% glycerol UPLC-MS   [106][43]
Zingiber officinale root TP, TF, four macro- and five microelements antioxidant (OH·, ABTS, TRP, etc.) 80–180 °C, 1 h, 5MPa,

1:10 g/mL
UV-vis, ICP-MS convention (water, 62.5%) [107][44]
Momordica foetida leaves quercetin, kaempferol, isorhamnetin   100–300 °C, 5 mL/s

6.9± 1.4 MPa psi
UHPLC-q-TOF-MS   [108][45]
Ko and coworkers have investigated the relationship between flavonoid structure and SBWE. They found that flavonoids with an OH side chain were optimally extracted at lower temperatures than O-CH3 and H side chains. The optimal temperatures of the glycoside forms are lower than that of the less polar aglycones [30][6]. Turner et al. found that different glycosidic compounds may be converted by their respective aglycones in less than 10 min reaction time in water from onion waste [20][46]. Similar results were obtained by Nkurunziza et al. [81][18] and Zhang et al. [83][20
2.3. Organic Acids
The use of SBWE was explored for the extraction of gallic acid, chlorogenic acid, caffeic acid, ferulic acid, vanillic acid, and coumaric acid from various matrices. Inevitably, some other active components such as phenolics [23][73], flavonoids [108][45], proteins [23][73], lipids, peptides, amino acids, and other organic compounds were often coextracted. Švarc-Gajić et al. [134][85] have used SBWE for the extraction of alcohols, organic acids, sugars, and other organic compounds from both sweet and sour cherry stems, finding the chemical compositions of the two samples similar. Harun et al. [51][80] reported lipid extraction with a relatively high content of eicosapentaenoic acid from Nannochloropsis gaditana, finding 237 °C and 14 min to be the optimum extraction conditions.

2.4. Glycosides

Glycosides are compounds in which sugars or sugar derivatives are bound to another type of non-sugar substance (also called aglycones, ligands or substituents). Glycosides are linked by an O- N-, S-, or C-glycosidic bond between a sugar and a non-sugar component, which are widely found in the root, stems, leaves, flowers, and fruits of plants. Most glycosides are colored crystals, and generally a little bitter.
Glycosides extracted by SBWE have been proven to have antioxidant activities and tyrosinase inhibitory activity, as shown in Table 4 [36,144,145,146,147,148,149,150,151,152][94][95][96][97][98][99][100][101][102][103]. Gao et al. [144]
]
2.6. Essential Oils, Alkaloids, Quinones, Terpenes, Lignans, and Steroids
 
 

 

References

  1. Espley, R.V.; Butts, C.A.; Laing, W.A.; Martell, S.; Smith, H.; McGhie, T.K.; Zhang, J.; Paturi, G.; Hedderley, D.; Bovy, A.G.; et al. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J. Nutr. 2014, 144, 146–154.
  2. Lee, K.A.; Kim, W.J.; Kim, H.J.; Kim, K.T.; Paik, H.D. Antibacterial activity of Ginseng (Panax ginseng C. A. Meyer) stems-leaves extract produced by subcritical water extraction. Int. J. Food Sci. Technol. 2013, 48, 947–953.
  3. Cvetanović, A.; Švarc-Gajić, J.; Gašić, U.; Tešić, Ž.; Zengin, G.; Zeković, Z.; Đurović, S. Isolation of apigenin from subcritical water extracts: Optimization of the process. J. Supercrit. Fluids 2017, 120, 32–42.
  4. Kim, S.W.; Ko, M.J.; Chung, M.S. Extraction of the flavonol quercetin from onion waste by combined treatment with intense pulsed light and subcritical water extraction. J. Clean. Prod. 2019, 231, 1192–1199.
  5. Esmaeelian, M.; Jahani, M.; Einafshar, S.; Feizy, J. Optimization of experimental parameters in subcritical water extraction of bioactive constituents from the saffron (Crocus sativus L.) corm based on response surface methodology. J. Food Meas. Charact. 2020, 14, 1822–1832.
  6. Ko, M.J.; Cheigh, C.I.; Chung, M.S. Relationship analysis between flavonoids structure and subcritical water extraction (SBWE). Food Chem. 2014, 143, 147–155.
  7. Hiep, N.T.; Duong, H.T.; Anh, D.T.; Nguyen, N.H.; Thai, D.Q.; Linh, D.; Anh, V.T.H.; Khoi, N.M. Subcritical water extraction of epigallocatechin gallate from Camellia sinensis and optimization study using response surface methodology. Processes 2020, 8, 1028.
  8. Rodríguez-Meizoso, I.; Marin, F.R.; Herrero, M.; Señorans, F.J.; Reglero, G.; Cifuentes, A.; Ibáñez, E. Subcritical water extraction of nutraceuticals with antioxidant activity from oregano. chemical and functional characterization. J. Pharm. Biomed. Anal. 2006, 41, 1560–1565.
  9. Lachos-Perez, D.; Baseggio, A.M.; Mayanga-Torres, P.C.; Maróstica, M.R.; Rostagno, M.A.; Martínez, J.; Forster-Carneiro, T. Subcritical water extraction of flavanones from defatted orange peel. J. Supercrit. Fluids 2018, 138, 7–16.
  10. Lamm, L.; Yang, Y. Off-line coupling of subcritical water extraction with subcritical water chromatography via a sorbent trap and thermal desorption. Anal. Chem. 2003, 75, 2237–2242.
  11. Ko, M.J.; Kwon, H.L.; Chung, M.S. Pilot-scale subcritical water extraction of flavonoids from satsuma mandarin (Citrus unshiu Markovich) peel. Innov. Food Sci. Emerg. Technol. 2016, 38, 175–181.
  12. Lee, K.A.; Kim, K.T.; Kim, H.J.; Chung, M.S.; Chang, P.S.; Park, H.; Pai, H.D. Antioxidant activities of onion (Allium cepa L.) peel extracts produced by ethanol, hot water, and subcritical water extraction. Food Sci. Biotechnol. 2014, 23, 615–621.
  13. Kumar, M.S.; Dutta, R.; Prasad, D.; Misra, K. Subcritical water extraction of antioxidant compounds from Seabuckthorn (Hippophae rhamnoides) leaves for the comparative evaluation of antioxidant activity. Food Chem. 2011, 127, 1309–1316.
  14. Munir, M.T.; Kheirkhah, H.; Baroutian, S.; Quek, S.Y.; Young, B.R. Subcritical water extraction of bioactive compounds from waste onion skin. J. Clean. Prod. 2018, 183, 487–494.
  15. Vladić, J.; Jakovljević, M.; Molnar, M.; Vidović, S.; Tomić, M.; Drinić, Z.; Jokić, S. Valorization of yarrow (Achillea millefolium L.) by-product through application of subcritical water extraction. Molecules 2020, 25, 1878.
  16. Zabidi, N.A.; Ishak, N.A.; Hamid, M.; Ashari, S.E. Subcritical water extraction of antioxidants from Curculigo latifolia root. J. Chem. 2019, 2019, 1–10.
  17. Hwang, H.J.; Kim, H.J.; Ko, M.J.; Chung, M.S. Recovery of hesperidin and narirutin from waste citrus unshiu peel using subcritical water extraction aided by pulsed electric field treatment. Food Sci. Biotechnol. 2021, 30, 217–226.
  18. Nkurunziza, D.; Pendleton, P.; Chun, B.S. Optimization and kinetics modeling of okara isoflavones extraction using subcritical water. Food Chem. 2019, 295, 613–621.
  19. Ko, M.J.; Cheigh, C.I.; Cho, S.W.; Chung, M.S. Subcritical water extraction of flavonol quercetin from onion skin. J. Food Eng. 2011, 102, 327–333.
  20. Zhang, H.; Liu, S.; Li, H.; Xue, F.; Han, S.; Wang, L.; Cheng, Y.; Wang, X. Extraction of isoflavones from Puerariae lobata using subcritical water. RSC Adv. 2018, 8, 22652–22658.
  21. Zeković, Z.; Vidović, S.; Vladić, J.; Radosavljević, R.; Cvejin, A.; Elgndi, M.A.; Pavlić, B. Optimization of subcritical water extraction of antioxidants from Coriandrum sativum seeds by response surface methodology. J. Supercrit. Fluids 2014, 95, 560–566.
  22. Kim, D.S.; Lim, S.B. Kinetic study of subcritical water extraction of flavonoids from citrus unshiu peel. Sep. Purif. Technol. 2020, 250, 117259.
  23. Ko, M.J.; Lee, J.H.; Nam, H.H.; Chung, M.S. Subcritical water extraction of phytochemicals from Phlomis umbrosa Turcz. Innov. Food Sci. Emerg. Technol. 2017, 42, 1–7.
  24. Guthrie, F.; Wang, Y.; Neeve, N.; Quek, S.Y.; Mohammadi, K.; Baroutian, S. Recovery of phenolic antioxidants from green kiwifruit peel using subcritical water extraction. Food Bioprod. Process. 2020, 122, 136–144.
  25. Cheng, Y.; Qu, S.; Wang, Z.; Xue, F.; Li, F. Controlled extraction of flavonoids from Radix Scutellariae by subcritical water. Clean Soil Air Water 2016, 44, 299–303.
  26. Kim, J.W.; Nagaoka, T.; Ishida, Y.; Hasegawa, T.; Kitagawa, K.; Lee, S.C. Subcritical water extraction of nutraceutical compounds from citrus pomaces. Sep. Sci. Technol. 2009, 44, 2598–2608.
  27. Kim, D.S.; Lim, S.B. Semi-continuous subcritical water extraction of flavonoids from Citrus unshiu peel: Their antioxidant and enzyme inhibitory activities. Antioxidants 2020, 9, 360.
  28. Cheigh, C.I.; Chung, E.Y.; Chung, M.S. Enhanced extraction of flavanones hesperidin and narirutin from Citrus unshiu peel using subcritical water. J. Food Eng. 2012, 110, 472–477.
  29. Ho, T.C.; Chun, B.S. Extraction of bioactive compounds from pseuderanthemum palatiferum (nees) radlk. using subcritical water and conventional solvents: A comparison study. J. Food Sci. 2019, 84, 1201–1207.
  30. Fan, R.; Xiang, J.; Li, N.; Jiang, X.; Gao, Y. Impact of extraction parameters on chemical composition and antioxidant activity of bioactive compounds from Chinese licorice (Glycyrrhiza uralensis Fisch.) by subcritical water. Sep. Sci. Technol. 2015, 51, 609–621.
  31. Xu, H.; Wang, W.; Jiang, J.; Yuan, F.; Gao, Y. Subcritical water extraction and antioxidant activity evaluation with on-line HPLC-ABTS(·+) assay of phenolic compounds from marigold (Tagetes erecta L.) flower residues. J. Food Sci. Technol. 2015, 52, 3803–3811.
  32. Song, R.; Ismail, M.; Baroutian, S.; Farid, M. Effect of subcritical water on the extraction of bioactive compounds from carrot leaves. Food Bioprocess Technol. 2018, 11, 1895–1903.
  33. Cvetanović, A.; Švarc-Gajić, J.; Mašković, P.; Savić, S.; Nikolić, L. Antioxidant and biological activity of chamomile extracts obtained by different techniques: Perspective of using superheated water for isolation of biologically active compounds. Ind. Crop. Prod. 2015, 65, 582–591.
  34. Platonov, I.A.; Nikitchenko, N.V.; Onuchak, L.A.; Arutyunov, Y.I.; Kurkin, V.A.; Smirnov, P.V. Subcritical water extraction of biologically active substances from milk thistle seed (Silybum murianum L.). Russ. J. Phys. Chem. B 2011, 4, 1211–1216.
  35. Vidović, S.; Nastić, N.; Gavarić, A.; Cindrić, M.; Vladić, J. Development of green extraction process to produce antioxidant-rich extracts from purple coneflower. Sep. Sci. Technol. 2018, 54, 1174–1181.
  36. Gil-Ramírez, A.; Mendiola, J.A.; Arranz, E.; Ruíz-Rodríguez, A.; Reglero, G.; Ibáñez, E.; Marín, F.R. Highly isoxanthohumol enriched hop extract obtained by pressurized hot water extraction (PHWE). Chemical and functional characterization. Innov. Food Sci. Emerg. Technol. 2012, 16, 54–60.
  37. Essien, S.; Young, B.; Baroutian, S. Subcritical water extraction for selective recovery of phenolic bioactives from kānuka leaves. J. Supercrit. Fluids 2020, 158, 104721.
  38. Shaddel, R.; Maskooki, A.; Haddad-Khodaparast, M.H.; Azadmard-Damirchi, S.; Mohamadi, M.; Fathi-Achachlouei, B. Optimization of extraction process of bioactive compounds from Bene hull using subcritical water. Food Sci. Biotechnol. 2014, 23, 1459–1468.
  39. Mašković, P.; Veličković, V.; Mitić, M.; Đurović, S.; Zeković, Z.; Radojković, M.; Cvetanović, A.; Švarc-Gajić, J.; Vujić, J. Summer savory extracts prepared by novel extraction methods resulted in enhanced biological activity. Ind. Crop. Prod. 2017, 109, 875–881.
  40. Zeković, Z.; Cvetanović, A.; Švarc-Gajić, J.; Gorjanović, S.; Sužnjević, D.; Mašković, P.; Savić, S.; Radojković, M.; Đurović, S. Chemical and biological screening of stinging nettle leaves extracts obtained by modern extraction techniques. Ind. Crop. Prod. 2017, 108, 423–430.
  41. Pavlova, L.V.; Platonov, I.A.; Kurkin, V.A.; Afanasyeva, P.V.; Novikova, E.A.; Mukhanova, I.M. Evaluation of the extraction efficiency of biologically active compounds from chamomile flowers (Chamomilla recutita R.) grown in the Samara region by extractants in the subcritical state. Russ. J. Phys. Chem. B 2019, 12, 1212–1224.
  42. Nkurunziza, D.; Pendleton, P.; Sivagnanam, S.P.; Park, J.S.; Chun, B.S. Subcritical water enhances hydrolytic conversions of isoflavones and recovery of phenolic antioxidants from soybean byproducts (okara). J. Ind. Eng. Chem. 2019, 80, 696–703.
  43. Huaman-Castilla, N.L.; Mariotti-Celis, M.S.; Martinez-Cifuentes, M.; Perez-Correa, J.R. Glycerol as alternative co-solvent for water extraction of polyphenols from carmenere pomace: Hot pressurized liquid extraction and computational chemistry calculations. Biomolecules 2020, 10, 474.
  44. Švarc-Gajić, J.; Cvetanović, A.; Segura-Carretero, A.; Mašković, P.; Jakšić, A. Functional coffee substitute prepared from ginger by subcritical water. J. Supercrit. Fluids 2017, 128, 32–38.
  45. Khoza, B.S.; Dubery, I.A.; Byth-Illing, H.A.; Steenkamp, P.A.; Chimuka, L.; Madala, N.E. Optimization of pressurized hot water extraction of flavonoids from Momordica foetida using UHPLC-qTOF-MS and multivariate chemometric approaches. Food Anal. Methods 2015, 9, 1480–1489.
  46. Turner, C.; Turner, P.; Jacobson, G.; Almgren, K.; Waldebäck, M.; Sjöberg, P.; Karlsson, E.N.; Markides, K.E. Subcritical water extraction and β-glucosidase-catalyzed hyrolysis of quercetin glycosides in onion waste. Green Chem. 2006, 8, 949–959.
  47. Tomšik, A.; Pavlić, B.; Vladić, J.; Cindrić, M.; Jovanov, P.; Sakač, M.; Mandić, A.; Vidović, S. Subcritical water extraction of wild garlic (Allium ursinum L.) and process optimization by response surface methodology. J. Supercrit. Fluids 2017, 128, 79–88.
  48. Rangsriwong, P.; Rangkadilok, N.; Satayavivad, J.; Goto, M.; Shotipruk, A. Subcritical water extraction of polyphenolic compounds from Terminalia chebula Retz. fruits. Sep. Purif. Technol. 2009, 66, 51–56.
  49. Wang, Y.; Luan, G.; Zhou, W.; Meng, J.; Wang, H.; Hu, N.; Suo, Y. Subcritical water extraction, UPLC-Triple-TOF/MS analysis and antioxidant activity of anthocyanins from Lycium ruthenicum Murr. Food Chem. 2018, 249, 119–126.
  50. Vladić, J.; Janković, T.; Živković, J.; Tomić, M.; Zdunić, G.; Šavikin, K.; Vidović, S. Comparative study of subcritical water and microwave-assisted extraction techniques impact on the phenolic compounds and 5-hydroxymethylfurfural content in pomegranate peel. Plant Foods Hum. Nutr. 2020, 75, 553–560.
  51. Pinto, D.; Vieira, E.F.; Peixoto, A.F.; Freire, C.; Freitas, V.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chem. 2021, 334, 127521.
  52. Pavlić, B.; Vidović, S.; Vladić, J.; Radosavljević, R.; Cindrić, M.; Zeković, Z. Subcritical water extraction of sage (Salvia officinalis L.) by-products—Process optimization by response surface methodology. J. Supercrit. Fluids 2016, 116, 36–45.
  53. Ersan, S.; Ustundag, O.G.; Carle, R.; Schweiggert, R.M. Subcritical water extraction of phenolic and antioxidant constituents from pistachio (Pistacia vera L.) hulls. Food Chem. 2018, 253, 46–54.
  54. Ko, M.J.; Nam, H.H.; Chung, M.S. Conversion of 6-gingerol to 6-shogaol in ginger (Zingiber officinale) pulp and peel during subcritical water extraction. Food Chem. 2019, 270, 149–155.
  55. Luo, X.; Cui, J.; Zhang, H.; Duan, Y. Subcritical water extraction of polyphenolic compounds from sorghum (Sorghum bicolor L.) bran and their biological activities. Food Chem. 2018, 262, 14–20.
  56. Yan, Z.; Luo, X.; Cong, J.; Zhang, H.; Ma, H.; Duan, Y. Subcritical water extraction, identification and antiproliferation ability on HepG2 of polyphenols from lotus seed epicarp. Ind. Crop. Prod. 2019, 129, 472–479.
  57. Cvetanović, A.; Švarc-Gajić, J.; Zeković, Z.; Gašić, U.; Tešić, Z.; Zengin, G.; Mašković, P.; Mahomoodally, M.F.; Ðurović, S. Subcritical water extraction as a cutting edge technology for the extraction of bioactive compounds from chamomile: Influence of pressure on chemical composition and bioactivity of extracts. Food Chem. 2018, 266, 389–396.
  58. Dzah, C.S.; Duan, Y.; Zhang, H.; Authur, D.A.; Ma, H. Ultrasound-, subcritical water- and ultrasound assisted subcritical water-derived Tartary buckwheat polyphenols show superior antioxidant activity and cytotoxicity in human liver carcinoma cells. Food Res. Int. 2020, 137, 109598.
  59. Naffati, A.; Vladić, J.; Pavlić, B.; Radosavljević, R.; Gavarić, A.; Vidović, S. Recycling of filter tea industry by-products: Application of subcritical water extraction for recovery of bioactive compounds from A. uva-ursi herbal dust. J. Supercrit. Fluids 2017, 121, 1–9.
  60. Gong, Y.; Zhang, X.; He, L.; Yan, Q.; Yuan, F.; Gao, Y. Optimization of subcritical water extraction parameters of antioxidant polyphenols from sea buckthorn (Hippophae rhamnoides L.) seed residue. J. Food Sci. Technol. 2015, 52, 1534–1542.
  61. Aliakbarian, B.; Fathi, A.; Perego, P.; Dehghani, F. Extraction of antioxidants from winery wastes using subcritical water. J. Supercrit. Fluids 2012, 65, 18–24.
  62. Cvetanović, A.; Švarc-Gajić, J.; Zeković, Z.; Jerković, J.; Zengin, G.; Gašić, U.; Tešić, Z.; Mašković, P.; Soares, C.; Barroso, M.F.; et al. The influence of the extraction temperature on polyphenolic profiles and bioactivity of chamomile (Matricaria chamomilla L.) subcritical water extracts. Food Chem. 2019, 271, 328–337.
  63. Yan, Z.; Zhang, H.; Dzah, C.S.; Zhang, J.; Diao, C.; Ma, H.; Duan, Y. Subcritical water extraction, identification, antioxidant and antiproliferative activity of polyphenols from lotus seedpod. Sep. Purif. Technol. 2020, 236, 116217.
  64. Loarce, L.; Oliver-Simancas, R.; Marchante, L.; Díaz-Maroto, M.C.; AlañǴn, M.E. Implementation of subcritical water extraction with natural deep eutectic solvents for sustainable extraction of phenolic compounds from winemaking by-products. Food Res. Int. 2020, 137, 109728.
  65. Gagić, T.; Knez, Z.; Škerget, M. Subcritical water extraction of chestnut bark and optimization of process parameters. Molecules 2020, 25, 2774.
  66. Vladic, J.; Nastic, N.; Stanojkovic, T.; Zizak, Z.; Cakarevic, J.; Popovic, L.; Vidovic, S. Subcritical water for recovery of polyphenols from comfrey root and biological activities of extracts. Acta Chim. Slov. 2019, 66, 473–783.
  67. Duba, K.S.; Casazza, A.A.; Mohamed, H.B.; Perego, P.; Fiori, L. Extraction of polyphenols from grape skins and defatted grape seeds using subcritical water: Experiments and modeling. Food Bioprod. Process 2015, 94, 29–38.
  68. Xu, H.; Wang, W.; Liu, X.; Yuan, F.; Gao, Y. Antioxidative phenolics obtained from spent coffee grounds (Coffea arabica L.) by subcritical water extraction. Ind. Crop. Prod. 2015, 76, 946–954.
  69. Kiamahalleh, M.V.; Najafpour-Darzi, G.; Rahimnejad, M.; Moghadamnia, A.A.; Kiamahalleh, M.V. High performance curcumin subcritical water extraction from turmeric (Curcuma longa L.). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1022, 191–198.
  70. Mottahedin, P.; Asl, A.H.; Khajenoori, M. Extraction of curcumin and essential oil from Curcuma longa L. by subcritical water via response surface methodology. J. Food Process. Preserv. 2017, 41, e13095.
  71. Kwon, H.; Chung, M. Pilot-scale subcritical solvent extraction of curcuminoids from Curcuma long L. Food Chem. 2015, 185, 58–64.
  72. Euterpio, M.A.; Cavaliere, C.; Capriotti, A.L.; Crescenzi, C. Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by pH control: Curcumin from the turmeric rhizome. Anal. Bioanal. Chem. 2011, 401, 2977–2985.
  73. Cho, Y.N.; Saravana, P.S.; David, N.; Chun, B.S. Biofunctional properties of wild cultivated and cultivated Ginseng (Panax ginseng Meyer) extracts obtained using subcritical water extraction. Sep. Sci. Technol. 2021, 56, 1370–1382.
  74. Didar, Z. Comparative in vitro study of the biological activity and chemical composition extracts of Helicteres isora L. obtained by water and subcritical water extraction. Food Qual. Saf. 2020, 4, 101–106.
  75. Yu, X.M.; Zhu, P.; Zhong, Q.P.; Li, M.Y.; Ma, H.R. Subcritical water extraction of antioxidant phenolic compounds from XiLan olive fruit dreg. J. Food Sci. Technol. 2015, 52, 5012–5020.
  76. Wu, H.; Li, C.; Li, Z.; Liu, R.; Zhang, A.; Xiao, Z.; Ma, L.; Li, J.; Deng, S. Simultaneous extraction of oil and tea saponin from Camellia oleifera Abel. seeds under subcritical water conditions. Fuel Process. Technol. 2018, 174, 88–94.
  77. Ravber, M.; Knez, Z.; Škerget, M. Simultaneous extraction of oil- and water-soluble phase from sunflower seeds with subcritical water. Food Chem. 2015, 166, 316–323.
  78. Abdelmoez, W.; Abdelfatah, R.; Tayeb, A.; Yoshida, H. Extraction of cottonseed oil using subcritical water technology. AIChE J. 2011, 57, 2353–2359.
  79. Lekar, A.V.; Filonova, O.V.; Borisenko, S.N.; Maksimenko, E.V.; Vetrova, E.V.; Borisenko, N.I.; Minkin, V.I. Subcritical water extraction of chlorogenic acid from green coffee beans. Russ. J. Phys. Chem. B 2016, 9, 1043–1047.
  80. Ho, B.C.H.; Kamal, S.M.M.; Danquah, M.K.; Harun, R. Optimization of subcritical water extraction (SBWE) of lipid and eicosapentaenoic acid (EPA) from nannochloropsis gaditana. BioMed Res. Int. 2018, 2018, 8273581.
  81. Vo Dinh, T.; Saravana, P.S.; Woo, H.C.; Chun, B.S. Ionic liquid-assisted subcritical water enhances the extraction of phenolics from brown seaweed and its antioxidant activity. Sep. Purif. Technol. 2018, 196, 287–299.
  82. Rodríguez-Meizoso, I.; Jaime, L.; Santoyo, S.; Seíoráns, F.J.; Cifuentes, A.; Ibáñez, E. Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J. Pharm. Biomed. Anal. 2010, 51, 456–463.
  83. Budrat, P.; Shotipruk, A. Enhanced recovery of phenolic compounds from bitter melon (Momordica charantia) by subcritical water extraction. Sep. Purif. Technol. 2009, 66, 125–129.
  84. Nastić, N.; Švarc-Gajić, J.; Delerue-Matos, C.; Barroso, M.F.; Soares, C.; Moreira, M.M.; Morais, S.; Mašković, P.; Srček, V.G.; Slivac, I.; et al. Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Ind. Crop. Prod. 2018, 111, 579–589.
  85. Švarc-Gajić, J.; Cerdà, V.; Clavijo, S.; Suárez, R.; Mašković, P.; Cvetanović, A.; Delerue-Matos, C.; Carvalho, A.P.; Novakov, V. Bioactive compounds of sweet and sour cherry stems obtained by subcritical water extraction. J. Chem. Technol. Biotechnol. 2018, 93, 1627–1635.
  86. Gagić, T.; Knez, Ž.; Škerget, M. Hydrothermal hydrolysis of sweet chestnut (Castanea sativa) tannins. J. Serb. Chem. Soc. 2020, 85, 867–881.
  87. Singh, P.P.; Saldaña, M.D.A. Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 2011, 44, 2452–2458.
  88. Kheirkhah, H.; Baroutian, S.; Quek, S.Y. Evaluation of bioactive compounds extracted from Hayward kiwifruit pomace by subcritical water extraction. Food Bioprod. Process. 2019, 115, 143–153.
  89. Pangestuti, R.; Getachew, A.T.; Siahaan, E.A.; Chun, B.S. Characterization of functional materials derived from tropical red seaweed Hypnea musciformis produced by subcritical water extraction systems. J. Appl. Psychol. 2019, 31, 2517–2528.
  90. Rodrigues, L.G.G.; Mazzutti, S.; Vitali, L.; Micke, G.A.; Ferreira, S.R.S. Recovery of bioactive phenolic compounds from papaya seeds agroindustrial residue using subcritical water extraction. Biocatal. Agric. Biotechnol. 2019, 22, 101367.
  91. Švarc-Gajić, J.; Cvetanović, A.; Segura-Carretero, A.; Linares, I.B.; Mašković, P. Characterisation of ginger extracts obtained by subcritical water. J. Supercrit. Fluids 2017, 123, 92–100.
  92. Zakaria, S.M.; Kamal, S.M.M.; Harun, M.R.; Omar, R.; Siajam, S.I. Subcritical water technology for extraction of phenolic compounds from Chlorella sp. microalgae and assessment on its antioxidant activity. Molecules 2017, 22, 1092.
  93. Dorosh, O.; Moreira, M.M.; Pinto, D.; Freire, C.; Costa, P.; Rodrigues, F.; Delerue-Matos, C. Evaluation of the extraction temperature influence on polyphenolic profiles of vine-canes (Vitis vinifera) subcritical water extracts. Foods 2020, 9, 872.
  94. Kim, W.J.; Veriansyah, B.; Lee, Y.W.; Kim, J.; Kim, J.D. Extraction of mangiferin from Mahkota Dewa (Phaleria macrocarpa) using subcritical water. J. Ind. Eng. Chem. 2010, 16, 425–430.
  95. He, L.; Zhang, X.; Xu, H.; Xu, C.; Yuan, F.; Knez, Ž.; Novak, Z.; Gao, Y. Subcritical water extraction of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation into their antioxidant activities with HPLC-ABTS+ assay. Food Bioprod. Process. 2012, 90, 215–223.
  96. Nastić, N.; Švarc-Gajić, J.; Delerue-Matos, C.; Morais, S.; Barroso, M.F.; Moreira, M.M. Subcritical water extraction of antioxidants from mountain germander (Teucrium montanum L.). J. Supercrit. Fluids 2018, 138, 200–206.
  97. Wu, Y.; Jiang, Y.; Zhang, L.; Zhou, J.; Yu, Y.; Zhang, S.; Zhou, Y. Green and efficient extraction of total glucosides from Paeonia lactiflora Pall. ‘Zhongjiang’ by subcritical water extraction combined with macroporous resin enrichment. Ind. Crop. Prod. 2019, 141, 111699.
  98. Koyu, H.; Kazan, A.; Ozturk, T.K.; Yesil-Celiktas, O.; Haznedaroglu, M.Z. Optimizing subcritical water extraction of Morus nigra L. fruits for maximization of tyrosinase inhibitory activity. J. Supercrit. Fluids 2017, 127, 15–22.
  99. Yildiz-Ozturk, E.; Tag, O.; Yesil-Celiktas, O. Subcritical water extraction of steviol glycosides from Stevia rebaudiana leaves and characterization of the raffinate phase. J. Supercrit. Fluids 2014, 95, 422–430.
  100. Meng, F.; Cheng, Y. Subcritical water extraction of phenolic compounds and analysis of inorganic elements from Erigeron breviscapus. ChemistrySelect 2019, 4, 7173–7180.
  101. Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Rodríguez, M.; de la Ossa, E.M. Extraction of antioxidant compounds from different varieties of Mangifera indica leaves using green technologies. J. Supercrit. Fluids 2012, 72, 168–175.
  102. Sarfarazi, M.; Jafari, S.M.; Rajabzadeh, G.; Feizi, J. Development of an environmentally-friendly solvent-free extraction of saffron bioactives using subcritical water. LWT 2019, 114, 108428.
  103. Baek, J.Y.; Lee, J.M.; Lee, S.C. Extraction of nutraceutical compounds from licorice root with subcritical water. Sep. Purif. Technol. 2008, 63, 661–664.
  104. Yilmaz-Turan, S.; Jimenez-Quero, A.; Moriana, R.; Arte, E.; Katina, K.; Vilaplana, F. Cascade extraction of proteins and feruloylated arabinoxylans from wheat bran. Food Chem. 2020, 333, 127491.
  105. Saravana, P.S.; Tilahun, A.; Gerenew, C.; Tri, V.D.; Kim, N.H.; Kim, G.D.; Woo, H.C.; Chun, B.S. Subcritical water extraction of fucoidan from Saccharina japonica: Optimization, characterization and biological studies. J. Appl. Phycol. 2017, 30, 79–590.
  106. Zhang, J.; Wen, C.; Gu, J.; Ji, C.; Duan, Y.; Zhang, H. Effects of subcritical water extraction microenvironment on the structure and biological activities of polysaccharides from Lentinus edodes. Int. J. Biol. Macromol. 2019, 123, 1002–1011.
  107. Yang, R.F.; Zhao, C.; Chen, X.; Chan, S.W.; Wu, J.Y. Chemical properties and bioactivities of Goji (Lycium barbarum) polysaccharides extracted by different methods. J. Funct. Foods 2015, 17, 903–909.
  108. Ma, X.; Jing, J.; Wang, J.; Xu, J.; Hu, Z. Extraction of low methoxyl pectin from fresh sunflower heads by subcritical water extraction. ACS Omega 2020, 5, 15095–15104.
  109. Švarc-Gajić, J.; Cerdà, V.; Clavijo, S.; Suárez, R.; Zengin, G.; Cvetanoviá, A. Chemical and bioactivity screening of subcritical water extracts of chokeberry (Aronia melanocarpa) stems. J. Pharm. Biomed. Anal. 2019, 164, 353–359.
  110. Chikari, F.; Han, J.; Wang, Y.; Ao, W. Synergized subcritical-ultrasound assisted aqueous two-phase extraction, purification, and characterization of Lentinus edodes polysaccharides. Process Biochem. 2020, 95, 297–306.
  111. Zhang, J.; Wen, C.; Qin, W.; Qin, P.; Zhang, H.; Duan, Y. Ultrasonic-enhanced subcritical water extraction of polysaccharides by two steps and its characterization from Lentinus edodes. Int. J. Biol. Macromol. 2018, 118, 2269–2277.
  112. Morales, D.; Smiderle, F.R.; Villalva, M.; Abreu, H.; Rico, C.; Santoyo, S.; Iacomini, M.; Soler-Rivas, C. Testing the effect of combining innovative extraction technologies on the biological activities of obtained β-glucan-enriched fractions from Lentinula edodes. J. Funct. Foods 2019, 60, 103446.
  113. Yang, L.; Qu, H.; Mao, G.; Zhao, T.; Li, F.; Zhu, B.; Zhang, B.; Wu, X. Optimization of subcritical water extraction of polysaccharides from Grifola frondosa using response surface methodology. Pharmacogn. Mag. 2013, 9, 120–129.
  114. Zhang, J.; Wen, C.; Chen, M.; Gu, J.; Zhou, J.; Duan, Y.; Zhang, H.; Ma, H. Antioxidant activities of Sagittaria sagittifolia L. polysaccharides with subcritical water extraction. Int. J. Biol. Macromol. 2019, 134, 172–179.
  115. Gu, J.; Zhang, H.; Yao, H.; Zhou, J.; Duan, Y.; Ma, H. Comparison of characterization, antioxidant and immunological activities of three polysaccharides from Sagittaria sagittifolia L. Carbohydr. Polym. 2020, 235, 115939.
  116. Zhang, J.; Chen, M.; Wen, C.; Zhou, J.; Gu, J.; Duan, Y.; Zhang, H.; Ren, X.; Ma, H. Structural characterization and immunostimulatory activity of a novel polysaccharide isolated with subcritical water from Sagittaria sagittifolia L. Int. J. Biol. Macromol. 2019, 133, 11–20.
  117. Luo, X.; Duan, Y.; Yang, W.; Zhang, H.; Li, C.; Zhang, J. Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction from Cordyceps militaris. Carbohydr. Polym. 2017, 157, 794–802.
  118. Liew, S.Q.; Teoh, W.H.; Tan, C.K.; Yusoff, R.; Ngoh, G.C. Subcritical water extraction of low methoxyl pectin from pomelo (Citrus grandis (L.) Osbeck) peels. Int. J. Biol. Macromol. 2018, 116, 128–135.
  119. Munoz-Almagro, N.; Valadez-Carmona, L.; Mendiola, J.A.; Ibanez, E.; Villamiel, M. Structural characterisation of pectin obtained from cacao pod husk. comparison of conventional and subcritical water extraction. Carbohydr. Polym. 2019, 217, 69–78.
  120. Gereniu, C.R.N.; Saravana, P.S.; Chun, B.S. Recovery of carrageenan from Solomon Islands red seaweed using ionic liquid-assisted subcritical water extraction. Sep. Purif. Technol. 2018, 196, 309–317.
  121. Ho, T.C.; Kiddane, A.T.; Sivagnanam, S.P.; Park, J.S.; Cho, Y.J.; Getachew, A.; Nguyen, T.T.; Kim, G.D.; Chun, B.S. Green extraction of polyphenolic-polysaccharide conjugates from Pseuderanthemum palatiferum (Nees) Radlk.: Chemical profile and anticoagulant activity. Int. J. Biol. Macromol. 2020, 157, 484–493.
  122. Yan, J.K.; Wu, L.X.; Cai, W.D.; Xiao, G.S.; Duan, Y.; Zhang, H. Subcritical water extraction-based methods affect the physicochemical and functional properties of soluble dietary fibers from wheat bran. Food Chem. 2019, 298, 124987.
  123. Chao, Z.; Ri, Y.; Tai, Q. Ultrasound-enhanced subcritical water extraction of polysaccharides from Lycium barbarum L. Sep. Purif. Technol. 2013, 120, 141–147.
  124. Du, X.; Bai, X.; Gao, W.; Jiang, Z. Properties of soluble dietary fibre from defatted coconut flour obtained through subcritical water extraction. Int. J. Food Sci. Technol. 2019, 54, 1390–1404.
  125. Sun, H.; Yuan, X.; Zhang, Z.; Su, X.; Shi, M. Thermal processing effects on the chemical constituent and antioxidant activity of Okara extracts using subcritical water extraction. J. Chem. 2018, 2018, 1–8.
  126. Saravana, P.S.; Cho, Y.N.; Woo, H.C.; Chun, B.S. Green and efficient extraction of polysaccharides from brown seaweed by adding deep eutectic solvent in subcritical water hydrolysis. J. Clean. Prod. 2018, 198, 1474–1484.
  127. Klinchongkon, K.; Chanthong, N.; Ruchain, K.; Khuwijitjaru, P.; Adachi, S. Effect of ethanol addition on subcritical water extraction of pectic polysaccharides from Passion fruit peel. J. Food Process. Preserv. 2017, 41, e13138.
  128. Plaza, M.; Amigo-Benavent, M.; Castillo, M.D.; Ibáñez, E.; Herrero, M. Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Res. Int. 2010, 43, 2341–2348.
  129. Viriya-Empikul, J.W.N.; Takashi, K.; Shuji, A. Effects of temperature and flow rate on subcritical-water extraction from defatted rice bran. Food Sci. Technol. Res. 2012, 18, 333–340.
  130. Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; You, S.; Mariatti, F.; Cravotto, G. Subcritical water extraction as an efficient technique to isolate biologically-active fucoidans from Nizamuddinia zanardinii. Int. J. Biol. Macromol. 2019, 128, 244–253.
  131. Liu, J.; Li, Y.; Liu, W.; Qi, Q.; Hu, X.; Li, S.; Lei, J.; Rong, L. Extraction of polysaccharide from dendrobium nobile Lindl. by subcritical water extraction. ACS Omega 2019, 4, 20586–20594.
  132. Bordoloi, A.; Goosen, N.J. A greener alternative using subcritical water extraction to valorize the brown macroalgae Ecklonia maxima for bioactive compounds. J. Appl. Phycol. 2020, 32, 2307–2319.
  133. Pedras, B.; Salema-Oom, M.; Sá-Nogueira, I.; Simões, P.; Paiva, A.; Barreiros, S. Valorization of white wine grape pomace through application of subcritical water: Analysis of extraction, hydrolysis, and biological activity of the extracts obtained. J. Supercrit. Fluids 2017, 128, 138–144.
  134. Pedras, B.M.; Nascimento, M.; Sá-Nogueira, I.; Simões, P.; Paiva, A.; Barreiros, S. Semi-continuous extraction/hydrolysis of spent coffee grounds with subcritical water. J. Ind. Eng. Chem. 2019, 72, 453–456.
  135. Limsangouan, N.; Milasing, N.; Thongngam, M.; Khuwijitjaru, P.; Jittanit, W. Physical and chemical properties, antioxidant capacity, and total phenolic content of xyloglucan component in tamarind (Tamarindus indica) seed extracted using subcritical water. J. Food Process. Preserv. 2019, 43, 1–10.
  136. Nomura, S.; Lee, W.J.; Konishi, M.; Saitoh, T.; Murata, M.; Ohtsu, N.; Shimotori, Y.; Kohari, Y.; Nagata, Y.; Chiou, T.Y. Characteristics of Japanese mint extracts obtained by subcritical-water treatment. Food Sci. Technol. Res. 2019, 25, 695–703.
More
Top