Lyme Neuroborreliosis: Comparison
Please note this is a comparison between Version 2 by Vivi Li and Version 1 by Danielle Tufts.

Lyme borreliosis is the most prevalent tick-borne disease in the United States, infecting ~476,000 people annually. Borrelia spp. spirochetal bacteria are the causative agents of Lyme disease in humans and are transmitted by Ixodes spp ticks. Clinical manifestations vary depending on which B. burgdorferi sensu stricto outer surface protein C (OspC) genotype infects the patient and only certain genotypes may exhibit neurotropism in humans.

  • Lyme disease
  • Borrelia burgdorferi
  • infectious disease
  • tick-borne pathogen
  • post-treatment Lyme disease syndrome
  • neurotropism

1. Introduction

Lyme disease is the most common tick-borne disease in North America and Europe, affecting over half a million people annually [1,2,3,4][1][2][3][4]. Lyme disease is caused by Borrelia spp. spirochetal bacteria and transmitted by Ixodes spp. ticks [5,6][5][6]. The most common symptoms include the presence of a skin rash (erythema migrans) at the tick bite site, as well as fever, headache, and fatigue [7,8,9,10][7][8][9][10]. If not treated with antibiotics, Lyme disease can persist and the patient may develop neurological, cardiac, chronic skin, or articular symptoms [10,11,12,13,14][10][11][12][13][14]. This review focuses on the later-stage neurological symptoms that can arise from Lyme disease infection in humans from North America.
The first discovery of a neurological symptom from Lyme disease infection was a 1922 finding of meningoradiculitis occurring after a tick bite [11,15][11][15]. Lyme neuroborreliosis (LNB), or Lyme disease-causing symptoms of the central and peripheral nervous system, is multifaceted and patients generally present with meningitis, cranial neuritis, radiculoneuritis, parenchymal inflammation of the brain or spinal cord, peripheral neuropathy, and/or encephalopathy [12,16,17,18][12][16][17][18]. In Europe, where the first meningoradiculitis findings occurred, Bannwarth Syndrome (also known as Garin–Bujadoux–Bannwarth syndrome) has been characterized in which LNB manifests as severe radicular pain accompanied by cranial nerve paresis [17]. Occasionally confusion and central nervous system dysfunction occur, while meningeal and encephalitic features are rare [16,19,20][16][19][20]. LNB is caused by the Borrelia burgdorferi sensu lato complex which includes the species: B. gariniiB. afzelii (common in Europe), and B. burgdorferi sensu stricto (ss) (common in North America) [21,22,23][21][22][23]. Minimal Bannwarth syndrome cases have been reported in North America and most LNB manifestations differ between continents, possibly as a result of the different genospecies of Borrelia that are present in these locations [8,24][8][24]. For this reason, we focus on rare North American B. burgdorferi ss LNB which affects 10–20% of patients [19,25,26][19][25][26]. The estimated number of cases in the US was nearly 2 million cases in 2020 [27]. Recently, various LNB cases have been reported in Minnesota and Wisconsin [28]; indicating that cases may be increasing in the US. In western Pennsylvania from 2003 to 2013, neurological symptoms were observed in 12% of Lyme-infected patients [29]. This study also showed that cases of pediatric Lyme disease doubled every 1.6 years [29]. Collectively, these data indicate a rising precedence of LNB in the United States and underscore the importance of studying this disease.
North American LNB largely manifests as lymphocytic meningitis, cranial neuritis, radiculoneuritis, and/or mononeuritis multiplex [9,10,11,12,13,14,16,17,19,20,22,26,30,31,32,33,34,35,36,37,38,39][9][10][11][12][13][14][16][17][19][20][22][26][30][31][32][33][34][35][36][37][38][39]. Antibodies in response to B. burgdorferi ss infection can persist in the cerebrospinal fluid (CSF) for several weeks or in serum for several years [40,41][40][41]. Within the first few weeks of infection, disruptions to cortex function have been measured as magnetic resonance imaging (MRI)-identified hyperintensities and positron emission tomography (PET)-identified mild-moderate hypometabolism [37,42,43][37][42][43]. Psychological symptoms are also present in this early stage (3–32 days), consisting of depression, decreased concentration, sleep disturbance, and memory impairment [44]. Post-B. burgdorferi ss infection stages (several weeks to months) can manifest as more severe neurological and psychological disruptions, including distal paresthesias, chronic encephalomyelitis, panic attacks, severe dementias, personality changes, catatonia, and mania [37,39,44][37][39][44]. Currently, antibiotic treatment is the only FDA-approved treatment method available for Lyme disease; however, LNB presents in the late stage of infection and tends to be resistant to antibiotics [45,46][45][46]. LNB that is antibiotic unresponsive, also called post-treatment Lyme disease syndrome (PTLDS), affects 10–20% of disease patients [17,30,39,45,46,47,48,49,50,51][17][30][39][45][46][47][48][49][50][51]. The prevalence of late-stage LNB and the lack of agreement amongst clinicians for treatment options punctuates the need for further mechanistic and translational studies of LNB.

2. B. burgdorferi ss Transmission Cycle and the Importance of Outer-Surface Proteins

The transmission of B. burgdorferi ss bacteria from host–tick–host is an intricate and complex process which requires spatial and temporal gene regulation of the bacteria to adapt to the vector biological environment and evasion of the host innate immune system [52,53][52][53]. White-footed mice, Peromyscus leucopus, are the most effective reservoir hosts of B. burgdorferi ss in North America; however, other small- and medium- sized mammals and several avian species may also serve as competent hosts [54,55,56,57,58,59,60,61,62,63,64,65][54][55][56][57][58][59][60][61][62][63][64][65]. Reservoir hosts generally experience persistent asymptomatic infections and B. burgdorferi ss may utilize various mechanisms to effectively evade the host innate immune response [65,66][65][66]. Transmission occurs predominantly via hard-bodied ticks in the Ixodes genus [67,68,69][67][68][69]. When a larval tick takes a bloodmeal from an infected host, it may acquire B. burgdorferi ss spirochetes. The engorged larva will molt into the nymphal life stage and will subsequently infect susceptible hosts including humans [6,10,12][6][10][12]. Transmission of spirochetal bacteria from tick vector to a susceptible host begins during bloodmeal uptake. Various borrelial outer surface proteins (Osp) play important roles in pathogen virulence, transmission, and survival within the host and vector. In unfed ticks, OspA and OspB are expressed and promote adherence and survival of spirochetes in the tick midgut between bloodmeals [10,70,71][10][70][71]. Spirochetes are sequestered in the tick midgut by expressing OspA and binding to a tick protein (TROSPA) present in tick gut epithelial cells [72,73,74][72][73][74]. During a bloodmeal uptake, spirochetes in the midgut begin to multiply rapidly, expression of OspA on the surface decreases, and an increase in OspC expression promotes the migration of spirochetes to the tick salivary glands [75,76,77][75][76][77]. OspC is crucial in the early phase of B. burgdorferi ss infection to evade the host innate immune system; expression decreases after 2–3 weeks in response to host antibodies [52,78,79,80,81,82][52][78][79][80][81][82]. OspC also plays a role in the attachment of spirochetes to the tick salivary protein Salp15, enhancing the spirochete load and protecting them from the host complement system by impairing the function of macrophages, neutrophils, and dendritic cells [77,83,84,85,86,87,88][77][83][84][85][86][87][88]. The ospC gene is hypervariable with genotypes varying in their genetic sequences, geographic distribution, host preferences, pathogenicity, and disease phenotypes [59,89,90,91,92][59][89][90][91][92]. Over 35 unique B. burgdorferi ss OspC genotypes are currently recognized, some of which cause the typical erythema migrans rash and others disseminate through the bloodstream or CNS and are associated with severe disease (A, B, I, K human invasive genotypes) [23,24,89,90,93,94[23][24][89][90][93][94][95][96][97][98][99],95,96,97,98,99], suggesting that only certain strains may exhibit neurotropism. Disease severity is dependent on several factors including genotype virulence, the abundance of spirochetes present in the tissue, co-infection with other B. burgdorferi ss genotypes and tick-borne pathogens, and intrinsic differences in host immune responses [21,93,97,100,101,102,103,104][21][93][97][100][101][102][103][104]. Ticks may be simultaneously infected with five or more B. burgdorferi ss genotypes [105,106,107,108,109][105][106][107][108][109]; however, the number of genotypes a tick is able to transmit during feeding is currently unclear. Certain B. burgdorferi ss genotypes may disseminate through the host system more rapidly than others, they may compete against each other effectively eliminating less efficient genotypes from the host, or they may facilitate infection allowing additional genotypes to thrive [110,111][110][111]. Co-infections with other tick-borne pathogens are also common in I. scapularis ticks and reservoir hosts (i.e., Anaplasma phagocytophilumBabesia microtiBartonella spp., other Borrelia spp., Ehrlichia muris, Powassan virus, etc.) which may also affect pathogen prevalence, persistence, and transmission efficiency [112,113,114,115,116][112][113][114][115][116]Borrelia burgdorferi ss genotype genetic diversity is thought to be maintained through vertebrate hosts which may act as species specific niches [59,65,90,117][59][65][90][117].

Borrelia spp. genomes are complex, consisting of circular and linear plasmids along with a linear chromosome of ~900kb [118]. Different species and genotypes contain a variable number of plasmids due to frequent reorganization and deletion; most of the genes required for metabolism and regulation are found on the linear chromosome, with a few protein encoding genes for growth and specific virulence factors being located on the plasmids [119,120,121,122,123]. The presence or absence of specific plasmids has been linked to infectivity in hosts [124] and specific plasmids or plasmid combinations may be necessary for LNB infection.

Various studies have identified numerous genes and proteins important for B. burgdorferi ss infection and host complement evasion in mammals [65,125,126,127,128,129,130]. In large part, these studies focus on skin, blood, and joint tissues. These data have provided a wealth of information that suggests strain specificity is critical to infection of different host species. Borrelia burgdorferi ss strains may be classified in several ways including: the polymorphic ospC gene, the ribosomal DNA spacer restriction fragment–length polymorphism genotypes (RSTs), and the rrs–rrlA rDNA intergenic spacer (IGS) region [24,106,107]. Complete classification for each B. burgdorferi ss strain is lacking and it is unclear how different combinations of these genes and regions may contribute to the variation in human invasive genotypes and LNB.

Spirochetal infection of the nervous system is further complicated because B. burgdorferi gene expression can be distinct in host blood compared to CSF [96,131,132]. For example, OspA is known to be downregulated in the skin and blood of the host, yet CSF OspA levels are upregulated in early stages of the disease [131]. In a study by Schutzer and colleagues [131], antibody levels against B. burgdorferi OspB and OspC increased during early infection, however as the disease progressed to the late stage, only 23% of patients contained antibodies against OspC in their CSF. 

3. Mechanisms of B. burgdorferi ss Entrance into the Nervous System

Borrelia burgdorferi ss strain specificity plays an important role in infectivity of the nervous system. While strain specificity remains a critical question in the field, various studies have identified methods of B. burgdorferi ss entry into the nervous system [133,134,135][118][119][120]. First, spirochetes enter the CNS via the bloodstream or peripheral nervous system and can be recovered from human CSF 14–18 days post-tick bite [136,137,138,139][121][122][123][124]. The presence of spirochetes in the CSF is a key factor for LNB development, as it provides an access point to the brain. Next, B. burgdorferi ss infiltrate the protective membranous meninges in animal models of Lyme disease [134[119][120],135], identifying the first point of brain penetration. Specifically, spirochetes are present in vascular, perivascular, and extravascular regions of the dura mater [134][119]. Spirochete presence is associated with an increase in T cells and leukocytes within the meninges [134,135][119][120]. The host immune response plays an important role in early stages of LNB [52,140,141,142,143,144][52][125][126][127][128][129]. Short-term infection of Rhesus macaque frontal cortex tissue by B. burgdorferi ss (24 h) and subsequent transcriptomic analysis identified over 2200 genes that were significantly altered, primarily those involved in immune and inflammatory response pathways [145][130]. Some early inflammatory responses arise from glial cells in the brain and are measured as an increase in cytokine and chemokine markers [146,147][131][132]. Alongside this early inflammation, an increased production of the pro-inflammatory cytokine astrocytic interleukin 6 (IL-6) can be measured, as well as oligodendrocyte and neuronal death [146,147,148][131][132][133]Borrelia burgdorferi ss caused direct inflammation and apoptosis of the oligodendrocytes, but neuronal death was dependent on microglial activation [148][133]. These experiments identify the immediate inflammatory response in the animal brain as a result of B. burgdorferi ss infection, and attempt to explain the cell-type specificity that causes this inflammation. While acute LNB is marked by the host immune response, long-term LNB may disrupt additional molecular pathways in the nervous system. Bouquet et al. [129][134] tracked the transcriptomic CSF profile of North American Lyme disease patients at the point of diagnosis and again 6 months after antibiotic treatment. Pre-treated transcriptomes exhibited a change in over 1000 genes, with approximately 60% upregulated. Post-treatment transcriptomes still exhibited a change in nearly 700 genes, with approximately 50% of them being upregulated. Interestingly, inflammatory response and immune cell trafficking pathways were decreased post-treatment [129][134]. A decrease in the inflammatory and immune pathways in the dura mater was also observed over time in a mouse model of Lyme disease [135][120]. This post-treatment, antibiotic-resistant stage of LNB seems to be triggered by neither inflammatory nor immune response pathways. It is this stage of LNB that is considerably understudied and requires new mechanistic insight to identify avenues for clinical intervention. Currently, the FDA-approved treatment for LNB in humans is long-term antibiotic treatment; however, numerous clinical studies have found that some patients do not recover from LNB symptoms with this treatment method [45,46][45][46]. Approximately 10–20% of patients claim to suffer from persistent Lyme disease-like symptoms months to years following appropriate antibiotic treatment. Chronic Lyme, or the more acceptable term post-treatment Lyme disease syndrome (PTLDS), is steeped in controversy as no evidence of systemic B. burgdorferi infection can be found in these patients and prolonged antibiotic treatments may be detrimental to the health of these patients [149,150,151,152]. 

4. Conclusions and Future Directions

LNB is an extremely complicated disease: from the strain infectivity of the various genotypes of the B. burgdorferi ss spirochete, to its ability to move from the host bloodstream to the nervous system, to neurotropisms that allow penetrance of the blood–brain barrier and downstream acute inflammatory and immune response, and finally to long-lasting changes in cell adhesion and signaling pathways that coincide with spirochete deposition in the brain. Here, we propose a basic science approach to investigating post-treatment LNB. First, there is a lack of information regarding which B. burgdorferi ss strains are most infectious to the human brain. The OspC genotypes A, B, I, and K are the most infectious in humans [89], but is there an OspC genotype that promotes brain infectivity? Do different combinations of B. burgdorferi ss genes and plasmids contribute to strain invasiveness and neurotropism? Laboratory studies often utilize the Bb-297 strain which was isolated from an LNB patient [135,171][120][135] and may not fully encompass all infectious genetic elements due to loss and reorganization of plasmids and genes over time. Furthermore, OspC is not the only Osp protein to be upregulated in human CSF after infection; OspA and OspB are also upregulated [70,71,76,131][70][71][76][136]. Additionally, erp genes (OspE-F-related lipoproteins) function as receptors for complement inhibitory factor H molecules and may contribute to the ability of B. burgdorferi spirochetes to evade the host innate immune system [172,173,174][137][138][139]. Investigating the role of other Osp proteins is necessary for fully understanding LNB infection, particularly OspA which can tether spirochetes to the meninges [134][119]. Additionally, RSTs and IGS sequences are used to distinguish strain infectivity [24[24][106][107],106,107], and so genotypic variations in non-coding regions must also be considered. Multilocus sequence typing and deep amplicon sequencing will be critical for better understanding the pathogenicity of certain strains and their ability to invade the human brain. Since spirochetes can deposit in the human brain and B. burgdorferi ss DNA can be identified in brain cells, we propose that next-generation sequencing is crucial to genotype the infectious spirochetes from human CSF and post-mortem LNB brain samples. Second, the question remains whether post-treatment LNB results from a downstream host immune response or whether additional pathways are disrupted from spirochete penetrance into the brain. We believe that an in-depth study of acute vs. posttreatment Lyme disease profiling of antibody, chemokine, and cytokine response pathways is a critical first step to address this complicated question. One of the major limitations for this approach is the lack of appropriate animal models for LNB studies, although a recently developed murine model may offer an accessible option [135][120]. This mouse model exhibited an increase in the interferon response pathway in the cortex and hippocampus in acute, but not long-term, infection [135][120]. Interestingly, post-treatment LNB human serum retained elevated interferon levels [175,176][140][141]. These mouse and human studies suggest that interferon signaling may play an important role in post-treatment LNB and indeed, could possibly influence the long-term psychiatric symptoms [176][141]. This begs the question whether additional pathways are also disrupted during long-term LNB infection. Third, better clinical diagnostic tests for detection of early stages of Lyme disease and better therapeutic treatments for patients affected by PTLDS are needed. Understanding the mechanisms and processes involved with why some patients fully recover and others develop long-term symptoms will be beneficial in addressing these needs. Some recent research suggests that small fiber neuropathy may be associated with PTLDS and might serve as a useful biomarker for evaluating PTLDS in patients [177][142]. Borrelia burgdorferi ss spirochetes regulate Osp expression based on its anatomical location in reservoir hosts and vectors. Therefore, this demands study of LNB in brain tissues, fluids, and cells, as B. burgdorferi ss gene expression differs between CSF and blood/skin [74,178,179][74][143][144]. Due to the limitations of accessing tissue from human patients, we propose that LNB is best studied using a mixture of human CSF and post-mortem tissue, in vivo animal infection using murine and non-human primates, and human primary brain cell cultures. There is likely a difference in infectivity of strains and genotypes across hosts, and so any mechanistic studies found in murine or non-human primate models will need to be verified in humans. Nonetheless, we believe that infectious strain specificity can be identified in patient tissues and long-term mechanistic studies can be carried out in laboratory animals. Combined, these works have the potential to influence clinical intervention of the currently untreatable and incurable symptoms of post-treatment LNB. Additionally, prevention of disease is an equally important component to address Lyme disease in public health. By surveilling natural B. burgdorferi ss infection in reservoir hosts and tick vectors, we can begin to identify locations with high human health risks of contracting neuroinvasive Lyme disease in North America. References Cited

[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62][63][64][65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86][87][88][89][90][91][92][93][94][95][96][97][98][99][100][101][102][103][104][105][106][107][108][109][110][111][112][113][114][115][116][117][118][119][120][121][122][123][124][125][126][127][128][129][130][131][132][133][134][135][136][137][138][139][140][141][142][143][144][145][146][147][148][149][150][151][152][153][154][155][156][157][158][159][160][161][162][163][164][165][166][167][168][169][170][171][172][173][174][175][176][177][178][179]

References

  1. Van den Wijngaard C.C.; Hofhuis A.; Simões M.; Rood E.; van Pelt W.; Zeller H. et al. Surveillance perspective on Lyme borreliosis across the European Union and European economic area. Eurosurveillance 2017, 22(27), 30569.Van den Wijngaard, C.C.; Hofhuis, A.; Simões, M.; Rood, E.; Van Pelt, W.; Zeller, H.; Van Bortel, B. Surveillance perspective on Lyme borreliosis across the European Union and European economic area. Eurosurveillance 2017, 22, 30569.
  2. Cairns V.; Wallenhorst C.; Rietbrock S.; Martinez C. Incidence of Lyme disease in the UK: a population-based cohort study. BMJ open 2019, 9(7), e025916.Cairns, V.; Wallenhorst, C.; Rietbrock, S.; Martinez, C. Incidence of Lyme disease in the UK: A population-based cohort study. BMJ Open 2019, 9, e025916.
  3. Kugeler K.J.; Schwartz A.M.; Delorey M. Estimating the frequency of Lyme disease diagnoses—United States, 2010-2018. Emerg Infect Dis 2021, 27, 616-619.Kugeler, K.J.; Schwartz, A.M.; Delorey, M. Estimating the frequency of Lyme disease diagnoses—United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 616–619.
  4. Schwartz A.M.; Kugeler K.J.; Nelson C.A. Use of commercial claims data for evaluating trends in Lyme disease diagnoses, United States, 2010-2018. Emerg Infect Dis 2021, 27, 499-507.Schwartz, A.M.; Kugeler, K.J.; Nelson, C.A. Use of commercial claims data for evaluating trends in Lyme disease diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 499–507.
  5. Radolf J.D.; Caimano M.J.; Stevenson B.; Hu L.T. Of ticks, mice and men: understanding the dual‐host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 2012, 10(2), 87-99.Radolf, J.D.; Caimano, M.J.; Stevenson, B.; Hu, L.T. Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 2012, 10, 87–99.
  6. Centers for Disease Control and Prevention. National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Vector-Borne Diseases (DVBD). Updated May 28, 2021.Centers for Disease Control and Prevention. National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Vector-Borne Diseases (DVBD). Available online: (accessed on 28 May 2021).
  7. Smith R.P.; Schoen R.T.; Rahn D.W.; Sikand V.K.; Nowakowski J.; Parenti D.L.; et al. Clinical characteristics and treatment outcome of early Lyme disease in patients with microbiologically confirmed erythema migrans. Ann Intern Med 2002, 136(6), 421-428.Smith, R.P.; Schoen, R.T.; Rahn, D.W.; Sikand, V.K.; Nowakowski, J.; Parenti, D.L.; Holman, M.S.; Persing, D.H. Clinical characteristics and treatment outcome of early Lyme disease in patients with microbiologically confirmed erythema migrans. Ann. Intern. Med. 2002, 136, 421–428.
  8. Hengge U.R.; Tannapfel A.; Tyring S.K.; Erbel R.; Arendt G.; Ruzicka T. Lyme borreliosis. Lancet Infect Dis 2003, 3(8), 489-500.Hengge, U.R.; Tannapfel, A.; Tyring, S.K.; Erbel, R.; Arendt, G.; Ruzicka, T. Lyme borreliosis. Lancet Infect. Dis. 2003, 3, 489–500.
  9. Wormser G.P. Early Lyme disease. New Engl J Med 2006, 354(26), 2794-2801.Wormser, G.P. Early Lyme disease. N. Engl. J. Med. 2006, 354, 2794–2801.
  10. Steere A.C.; Strle F.; Wormser G.P.; Hu L.T.; Branda J.A.; Hovius J.W.; et al. Lyme borreliosis. Nat Rev Dis Primers, 2016, 2(1), 1-19.Steere, A.C.; Strle, F.; Wormser, G.P.; Hu, L.T.; Branda, J.A.; Hovius, J.W.; Li, X.; Mead, P.S. Lyme borreliosis. Nat. Rev. Dis. Primers 2016, 2, 1–19.
  11. Logigian E.L.; Kaplan R.F.; Steere A.C. Chronic neurologic manifestations of Lyme disease. New Engl J Med, 1990, 323(21), 1438-1444.Logigian, E.L.; Kaplan, R.F.; Steere, A.C. Chronic neurologic manifestations of Lyme disease. N. Engl. J. Med. 1990, 323, 1438–1444.
  12. Stanek G.; Wormser G.P.; Gray J.; Strle F. Lyme borreliosis. The Lancet, 2012, 379(9814), 461-473.Stanek, G.; Wormser, G.P.; Gray, J.; Strle, F. Lyme borreliosis. Lancet 2012, 379, 461–473.
  13. Cardenas-de la Garza J.A.; De la Cruz-Valadez E.; Ocampo-Candiani J.; Welsh O. Clinical spectrum of Lyme disease. Eur J Clin Microbiol Infect Dis 2019, 38(2), 201-208.Cardenas-de la Garza, J.A.; De la Cruz-Valadez, E.; Ocampo-Candiani, J.; Welsh, O. Clinical spectrum of Lyme disease. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 201–208.
  14. Radolf J.D.; Strle K.; Lemieux J.E.; Strle F. Lyme Disease in Humans. Curr Issues Mol Biol 2021, 42, 333-384.Radolf, J.D.; Strle, K.; Lemieux, J.E.; Strle, F. Lyme Disease in Humans. Curr. Issues Mol. Biol. 2021, 42, 333–384.
  15. Garin C.; Bujadoux A. Paralysis by Ticks. Clin Infect Dis 1993, 16(1), 168-169.Garin, C.; Bujadoux, A. Paralysis by Ticks. Clin. Infect. Dis. 1993, 16, 168–169.
  16. Pachner A.R.; Steere A.C. The triad of neurologic manifestations of Lyme disease: meningitis, cranial neuritis, and radiculoneuritis. Neurology 1984, 35(1), 47-53.Pachner, A.R.; Steere, A.C. The triad of neurologic manifestations of Lyme disease: Meningitis, cranial neuritis, and radiculoneuritis. Neurology 1984, 35, 47–53.
  17. Knudtzen F.C.; Andersen N.S.; Jensen T.G.; Skarphedinsson S. Characteristics and clinical outcome of Lyme Neuroborreliosis in a high endemic area, 1995-2014: A retrospective cohort study in Denmark. Clin Infect Dis 2017, 65, 1489-1495.Knudtzen, F.C.; Andersen, N.S.; Jensen, T.G.; Skarphedinsson, S. Characteristics and clinical outcome of Lyme Neuroborreliosis in a high endemic area, 1995-2014: A retrospective cohort study in Denmark. Clin. Infect. Dis. 2017, 65, 1489–1495.
  18. Halperin J.J.; Shapiro E.D.; Logigian E.; Belman A.L.; Dotevall L.; Wormser G.P.; et al. Practice parameter: treatment of nervous system Lyme disease (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2007, 69(1), 91-102.Halperin, J.J.; Shapiro, E.D.; Logigian, E.; Belman, A.L.; Dotevall, L.; Wormser, G.P.; Krupp, L.; Gronseth, G.; Bever, C.T. Practice parameter: Treatment of nervous system Lyme disease (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2007, 69, 91–102.
  19. Kristoferitsch W. Neurological manifestations of Lyme borreliosis. Infection 1991, 19, 268-272.Kristoferitsch, W. Neurological manifestations of Lyme borreliosis. Infection 1991, 19, 268–272.
  20. Kruger H.; Reuss K.; Pulz M.; Rohrbach E.; Pflughaupt K.W.; Martin R.; et al. Meningoradiculitis and encephalomyelitis due to Borrelia burgdorferi: a follow-up study of 72 patients over 27 years. J Neurol 1989, 236, 322-328.Kruger, H.; Reuss, K.; Pulz, M.; Rohrbach, E.; Pflughaupt, K.W.; Martin, R.; Mertens, H.G. Meningoradiculitis and encephalomyelitis due to Borrelia burgdorferi: A follow-up study of 72 patients over 27 years. J. Neurol. 1989, 236, 322–328.
  21. van Dam A.P.; Kuiper H.; Vos K.; Widjojokusumo A.; de Jongh B.M.; Spanjaard L. et al. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis 1993, 17(4), 708-717.Van Dam, A.P.; Kuiper, H.; Vos, K.; Widjojokusumo, A.; De Jongh, B.M.; Spanjaard, L.; Ramselaar, A.C.; Kramer, M.D.; Dankert, J. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin. Infect. Dis. 1993, 17, 708–717.
  22. Wilske B. Epidemiology and diagnosis of Lyme borreliosis. Ann Med 2005, 37(8), 568-579.Wilske, B. Epidemiology and diagnosis of Lyme borreliosis. Ann. Med. 2005, 37, 568–579.
  23. Brisson D.; Drecktrah D.; Eggers C.H.; Samuels D.S. Genetics of Borrelia burgdorferi. Ann Rev Genet 2012, 46, 515-536.Brisson, D.; Drecktrah, D.; Eggers, C.H.; Samuels, D.S. Genetics of Borrelia burgdorferi. Ann. Rev. Genet. 2012, 46, 515–536.
  24. Cerar T.; Strle F.; Stupica D.; Ruzic-Sabljic E.; McHugh G.; Steere A.C.; et al. Differences in genotype, clinical features, and inflammatory potential of Borrelia burgdorferi sensu stricto strains from Europe and the United States. Emerg Infect Dis 2016, 22(5), 818.Cerar, T.; Strle, F.; Stupica, D.; Ruzic-Sabljic, E.; McHugh, G.; Steere, A.C.; Strle, K. Differences in genotype, clinical features, and inflammatory potential of Borrelia burgdorferi sensu stricto strains from Europe and the United States. Emerg. Infect. Dis. 2016, 22, 818.
  25. Reik L.; Steere A.C.; Bartenhagen N.H.; Shope R.E.; Malawista S.E. Neurologic abnormalities of Lyme disease. Medicine 1979, 58(4), 281-294.Reik, L.; Steere, A.C.; Bartenhagen, N.H.; Shope, R.E.; Malawista, S.E. Neurologic abnormalities of Lyme disease. Medicine 1979, 58, 281–294.
  26. Koedel U.; Fingerle V.; Pfister H.W. Lyme neuroborreliosis—epidemiology, diagnosis and management. Nat Rev Neurol 2015, 11(8), 446-456.Koedel, U.; Fingerle, V.; Pfister, H.W. Lyme neuroborreliosis—Epidemiology, diagnosis and management. Nat. Rev. Neurol. 2015, 11, 446–456.
  27. DeLong A.; Hsu M.; Kotsoris H. Estimation of cumulative number of post-treatment Lyme disease cases in the US, 2016 and 2020. BMC Public Health 2019, 19(1), 352.DeLong, A.; Hsu, M.; Kotsoris, H. Estimation of cumulative number of post-treatment Lyme disease cases in the US, 2016 and 2020. BMC Public Health 2019, 19, 352.
  28. Shah A.; O’Horo J.C.; Wilson J.W.; Granger D.; Theel E.S. An unusual cluster of neuroinvasive Lyme disease cases presenting with Bannwarth Syndrome in the Midwest United States. Open Forum Infect Dis 2017, 5(1), ofx276.Shah, A.; O’Horo, J.C.; Wilson, J.W.; Granger, D.; Theel, E.S. An unusual cluster of neuroinvasive Lyme disease cases presenting with Bannwarth Syndrome in the Midwest United States. Open Forum Infect. Dis. 2017, 5, ofx276.
  29. Eddens T.; Kaplan D.J.; Anderson A.J.; Nowalk A.J.; Campfield B.T. Insights from the geographic spread of the Lyme Disease epidemic. Clin Infect Dis 2019, 68(3), 426-434.Eddens, T.; Kaplan, D.J.; Anderson, A.J.; Nowalk, A.J.; Campfield, B.T. Insights from the geographic spread of the Lyme Disease epidemic. Clin. Infect. Dis. 2019, 68, 426–434.
  30. Morrissette M.; Pitt N.; Gonzalez A.; Strandwitz P.; Caboni M.; Rebman A.W.; et al. A distinct microbiome signature in posttreatment Lyme disease patients. MBio 2020, 11(5), e02310-20.Morrissette, M.; Pitt, N.; Gonzalez, A.; Strandwitz, P.; Caboni, M.; Rebman, A.W.; Knight, R.; D’Onofrio, A.; Aucott, J.N.; Soloski, M.J.; et al. A distinct microbiome signature in posttreatment Lyme disease patients. MBio 2020, 11, e02310-20.
  31. Kan L.; Sood S.K.; Maytal J. Pseudotumore cerebri in Lyme disease: a case report and literature review. Pediatr Neurol 1998, 18(5), 439-441.Kan, L.; Sood, S.K.; Maytal, J. Pseudotumore cerebri in Lyme disease: A case report and literature review. Pediatr. Neurol. 1998, 18, 439–441.
  32. Steenhoff A.P.; Smith M.J.; Shah S.S.; Coffin S.E. Neuroborreliosis with progression from pseudotumore cerebri to aseptic meningitis. Pediatr Infect Dis 2006, 25(1), 91-92.Steenhoff, A.P.; Smith, M.J.; Shah, S.S.; Coffin, S.E. Neuroborreliosis with progression from pseudotumore cerebri to aseptic meningitis. Pediatr. Infect. Dis. 2006, 25, 91–92.
  33. Moses J.M.; Riseberg R.S.; Mansbach J.M. Lyme disease presenting with persistent headache. Pediatrics 2003, 112(6), e466-479.Moses, J.M.; Riseberg, R.S.; Mansbach, J.M. Lyme disease presenting with persistent headache. Pediatrics 2003, 112, e466–e479.
  34. Ewers E.C.; Dennison D.H.; Stagliano D.R. A unique case of adolescent neuroborreliosis presenting with multiple cranial neuritis and cochlear inflammation on magnetic resonance imaging. Pediatr Neurol 2015, 52(1), 107-109.Ewers, E.C.; Dennison, D.H.; Stagliano, D.R. A unique case of adolescent neuroborreliosis presenting with multiple cranial neuritis and cochlear inflammation on magnetic resonance imaging. Pediatr. Neurol. 2015, 52, 107–109.
  35. Walker A.R; Morales-Yurick T. A noteworthy case report of neuroborreliosis in an unvaccinated pediatric patient. Clin Pract Cases Emerg Med 2020, 4(4), 671-674.Walker, A.R.; Morales-Yurick, T. A noteworthy case report of neuroborreliosis in an unvaccinated pediatric patient. Clin. Pract. Cases Emerg. Med. 2020, 4, 671–674.
  36. Ramgopal S.; Obeid R.; Zuccoli G.; Cleves-Bayon C.; Nowalk A. Lyme disease-related intracranial hypertension in children: clinical and imaging findings. J Neurol 2016, 263(3), 500-507.Ramgopal, S.; Obeid, R.; Zuccoli, G.; Cleves-Bayon, C.; Nowalk, A. Lyme disease-related intracranial hypertension in children: Clinical and imaging findings. J. Neurol. 2016, 263, 500–507.
  37. Bransfield R.C.; Aidlen D.M.; Cook M.J.; Javia S. A clinical diagnostic system for late-stage neuropsychiatric Lyme Borreliosis based upon an analysis of 100 patients. Healthcare (Basel) 2020, 8(1), healthcare8010013.Bransfield, R.C.; Aidlen, D.M.; Cook, M.J.; Javia, S. A clinical diagnostic system for late-stage neuropsychiatric Lyme Borreliosis based upon an analysis of 100 patients. Healthcare 2020, 8, 13.
  38. Halperin J.J. Chronic Lyme disease: misconceptions and challenges for patient management. Infect Drug Resist 2015, 8, 119-128.Halperin, J.J. Chronic Lyme disease: Misconceptions and challenges for patient management. Infect. Drug. Resist. 2015, 8, 119–128.
  39. Garcia-Monco J.C.; Benach J.L. Lyme Neuroborreliosis: Clinical outcomes, controversy, pathogenesis, and polymicrobial infections. Ann Neurol 2019, 85, 21-31.Garcia-Monco, J.C.; Benach, J.L. Lyme Neuroborreliosis: Clinical outcomes, controversy, pathogenesis, and polymicrobial infections. Ann. Neurol. 2019, 85, 21–31.
  40. Henriksson A.; Link H.; Cruz M.; Stiernstedt G. Immunoglobulin abnormalities in cerebrospinal fluid and blood over the course of lymphocytic meningoradiculitis (Bannwarth’s syndrome). Ann Neurol 1986, 20, 337-345.Henriksson, A.; Link, H.; Cruz, M.; Stiernstedt, G. Immunoglobulin abnormalities in cerebrospinal fluid and blood over the course of lymphocytic meningoradiculitis (Bannwarth’s syndrome). Ann. Neurol. 1986, 20, 337–345.
  41. Kalish R.A.; McHugh G.; Granquist J.; Shea B.; Ruthazer R.; Steere A.C. Persistence of immunoglobulin M or immunoglobulin G antibody responses to Borrelia burgdorferi 10–20 years after active Lyme disease. Clin Infect Dis 2001, 33(6), 780-785.Kalish, R.A.; McHugh, G.; Granquist, J.; Shea, B.; Ruthazer, R.; Steere, A.C. Persistence of immunoglobulin M or immunoglobulin G antibody responses to Borrelia burgdorferi 10–20 years after active Lyme disease. Clin. Infect. Dis. 2001, 33, 780–785.
  42. Hurley R.A.; Taber K.H. Acute and chronic Lyme disease: controversies for neuropsychiatry. J Neuropsychiatry Clin Neurosci 2008, 20, iv-6.Hurley, R.A.; Taber, K.H. Acute and chronic Lyme disease: Controversies for neuropsychiatry. J. Neuropsychiatry Clin. Neurosci. 2008, 20, iv-6.
  43. Newberg A.; Hassan A.; Alavi A. Cerebral metabolic changes associated with Lyme disease. Nucl Med Commun 2002, 23(8), 773-777.Newberg, A.; Hassan, A.; Alavi, A. Cerebral metabolic changes associated with Lyme disease. Nucl. Med. Commun. 2002, 23, 773–777.
  44. Paparone P.W. Neuropsychiatric manifestations of Lyme disease. J Am Osteopath Assoc 1998, 98, 373-378.Paparone, P.W. Neuropsychiatric manifestations of Lyme disease. J. Am. Osteopath. Assoc. 1998, 98, 373–378.
  45. Krupp L.B.; Hyman L.G.; Grimson R.; Coyle P.K.; Melville P.; Ahnn S. et al. Study and treatment of post Lyme disease (STOP-LD): a randomized double masked clinical trial. Neurology 2003, 60(12), 1923-1930.Krupp, L.B.; Hyman, L.G.; Grimson, R.; Coyle, P.K.; Melville, P.; Ahnn, S.; Dattwyler, R.; Chandler, B. Study and treatment of post Lyme disease (STOP-LD): A randomized double masked clinical trial. Neurology 2003, 60, 1923–1930.
  46. Klempner M.S.; Baker P.J,; Shapiro E.D.; Marques A.; Dattwyler R.J.; Halperin J.J.; et al. Treatment trials for post-Lyme Disease symptoms revisited. Am J Med 2014, 126(8), 665-669.Klempner, M.S.; Baker, P.J.; Shapiro, E.D.; Marques, A.; Dattwyler, R.J.; Halperin, J.J.; Wormser, G.P. Treatment trials for post-Lyme Disease symptoms revisited. Am. J. Med. 2014, 126, 665–669.
  47. Ljostad U.; Mygland A. Remaining complaints 1 year after treatment for acute Lyme neuroborreliosis; frequency, pattern and risk factors. Eur J Neurol 2010, 17(1), 118-123.Ljostad, U.; Mygland, A. Remaining complaints 1 year after treatment for acute Lyme neuroborreliosis; frequency, pattern and risk factors. Eur. J. Neurol. 2010, 17, 118–123.
  48. Sharma B.; Brown A.V.; Matluck N.E.; Hu L.T.; Lewis K. Borrelia burgdorferi, the causative agent of Lyme disease, forms drug-tolerant persister cells. Antimicrob Agents Chem 2015, 59(8), 4616-4624.Sharma, B.; Brown, A.V.; Matluck, N.E.; Hu, L.T.; Lewis, K. Borrelia burgdorferi, the causative agent of Lyme disease, forms drug-tolerant persister cells. Antimicrob. Agents Chem. 2015, 59, 4616–4624.
  49. Ogrinc K.; Lusa L.; Lotric-Furlan S.; Bogovic P.; Stupica D.; Cerar T.; et al. Course and outcome of early European Lyme neuroborreliosis (Bannwarth syndrome): clinical and laboratory findings. Rev Infect Dis 2016, 63(3), 346-353.Ogrinc, K.; Lusa, L.; Lotric-Furlan, S.; Bogovic, P.; Stupica, D.; Cerar, T.; Ruzic-Sabljic, E.; Strle, F. Course and outcome of early European Lyme neuroborreliosis (Bannwarth syndrome): Clinical and laboratory findings. Rev. Infect. Dis. 2016, 63, 346–353.
  50. Eikeland R.; Ljostad U.; Helgeland G.; Sand G.; Flemmen H.O.; Bo, M.H.; et al. Patient‐reported outcome after treatment for definite Lyme neuroborreliosis. Brain Behav 2020, 10(4), e01595.Eikeland, R.; Ljostad, U.; Helgeland, G.; Sand, G.; Flemmen, H.O.; Bo, M.H.; Nordaa, L.; Owe, J.F.; Mygland, A.; Lorentzen, A.R. Patient-reported outcome after treatment for definite Lyme neuroborreliosis. Brain Behav. 2020, 10, e01595.
  51. Nordberg C.L.; Bodilsen J.; Knudtzen F.C.; Storgaard M.; Brandt C.; Wiese L.; et al. Lyme neuroborreliosis in adults: A nationwide prospective cohort study. Ticks Tick-borne Dis 2020, 11(4), 101411.Nordberg, C.L.; Bodilsen, J.; Knudtzen, F.C.; Storgaard, M.; Brandt, C.; Wiese, L.; Hansen, B.R.; Andersen, A.B.; Nielsen, H.; Lebech, A.-M.; et al. Lyme neuroborreliosis in adults: A nationwide prospective cohort study. Ticks Tick Borne Dis 2020, 11, 101411.
  52. Liang F.T.; Yan J.; Mbow M.L.; Sviat S.L.; Gilmore R.D.; Mamula M.; et al. Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses. Infect Immun 2004, 72(10), 5759-5767.Liang, F.T.; Yan, J.; Mbow, M.L.; Sviat, S.L.; Gilmore, R.D.; Mamula, M.; Fikrig, E. Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses. Infect. Immun. 2004, 72, 5759–5767.
  53. Kurtenbach K.; Hanincova K.; Tsao J.I.; Margos G.; Fish D.; Ogden N.H. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat Rev Microbiol 2006, 4(9), 660-669.Kurtenbach, K.; Hanincova, K.; Tsao, J.I.; Margos, G.; Fish, D.; Ogden, N.H. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat. Rev. Microbiol. 2006, 4, 660–669.
  54. Mather T.N.; Wilson M.L.; Moore S.I.; Ribeiro J.M.C.; Spielman A. Comparing the relative potential of rodents as reservoirs of the Lyme disease spirochete (Borrelia burgdorferi). Am J Epi 1989, 130(1), 143-150.Mather, T.N.; Wilson, M.L.; Moore, S.I.; Ribeiro, J.M.C.; Spielman, A. Comparing the relative potential of rodents as reservoirs of the Lyme disease spirochete (Borrelia burgdorferi). Am. J. Epidemiol. 1989, 130, 143–150.
  55. Telford III S.R.; Mather T.N.; Adler G.H.; Spielman A. Short-tailed shrews as reservoirs of the agents of Lyme disease and human babesiosis. J Parasitol 1990, 76(5), 681-683.Telford, S.R., III; Mather, T.N.; Adler, G.H.; Spielman, A. Short-tailed shrews as reservoirs of the agents of Lyme disease and human babesiosis. J. Parasitol. 1990, 76, 681–683.
  56. Levin M.; Levine J.F.; Apperson C.S.; Norris D.E.; Howard P.B. Reservoir competence of the rice rat (Rodentia: Cricetidae) for Borrelia burgdorferi. J Med Entomol 1995, 32(2), 138-142.Levin, M.; Levine, J.F.; Apperson, C.S.; Norris, D.E.; Howard, P.B. Reservoir competence of the rice rat (Rodentia: Cricetidae) for Borrelia burgdorferi. J. Med. Entomol. 1995, 32, 138–142.
  57. Markowski D.; Ginsberg H.S.; Hyland K.E.; Hu R. Reservoir competence of the meadow vole (Rodentia: Cricetidae) for the Lyme disease spirochete Borrelia burgdorferi. J Med Entomol 1998, 35(5), 804-808.Markowski, D.; Ginsberg, H.S.; Hyland, K.E.; Hu, R. Reservoir competence of the meadow vole (Rodentia: Cricetidae) for the Lyme disease spirochete Borrelia burgdorferi. J. Med. Entomol. 1998, 35, 804–808.
  58. Richter D.; Spielman A.; Komar N.; Matuschka F.R. Competence of American robins as reservoir hosts for Lyme disease spirochetes. Emerg Infect Dis 2000, 6(2), 133-138.Richter, D.; Spielman, A.; Komar, N.; Matuschka, F.R. Competence of American robins as reservoir hosts for Lyme disease spirochetes. Emerg. Infect. Dis. 2000, 6, 133–138.
  59. Brisson D.; Dykhuizen DE. ospC diversity in Borrelia burgdorferi: different hosts are different niches. Genetics 2004, 168, 713-722.Brisson, D.; Dykhuizen, D.E. ospC diversity in Borrelia burgdorferi: Different hosts are different niches. Genetics 2004, 168, 713–722.
  60. Ginsberg H.S.; Buckley P.A.; Balmforth M.G.; Zhioua E.; Mitra S.; Buckley F.G. Reservoir competence of native North American birds for the Lyme disease spirochete, Borrelia burgdorferi. J Med Entomol 2005, 42(3), 445-449.Ginsberg, H.S.; Buckley, P.A.; Balmforth, M.G.; Zhioua, E.; Mitra, S.; Buckley, F.G. Reservoir competence of native North American birds for the Lyme disease spirochete, Borrelia burgdorferi. J. Med. Entomol. 2005, 42, 445–449.
  61. Lane R.S.; Mun J.; Eisen R.J.; Eisen L. Western gray squirrel (Rodentia: Sciuridae): a primary reservoir host of Borrelia burgdorferi in Californian oak woodlands? J Med Entomol 2005, 42(3), 388-396.Lane, R.S.; Mun, J.; Eisen, R.J.; Eisen, L. Western gray squirrel (Rodentia: Sciuridae): A primary reservoir host of Borrelia burgdorferi in Californian oak woodlands? J. Med. Entomol. 2005, 42, 388–396.
  62. Hamer S.A.; Hickling G.J.; Sidge J.L.; Rosen M.E.; Walker E.D.; Tsao J.I. Diverse Borrelia burgdorferi strains in a bird-tick cryptic cycle. Appl Environ Microbiol 2011, 77(6), 1999-2007.Hamer, S.A.; Hickling, G.J.; Sidge, J.L.; Rosen, M.E.; Walker, E.D.; Tsao, J.I. Diverse Borrelia burgdorferi strains in a bird-tick cryptic cycle. Appl. Environ. Microbiol. 2011, 77, 1999–2007.
  63. Hersh M.H.; Ostfeld R.S.; McHenry D.J.; Tibbetts M.; Brunner J.L.; Killilea M.E.; et al. Co-infection of blacklegged ticks with Babesia microti and Borrelia burgdorferi is higher than expected and acquired from small mammal hosts. PloS One 2014, 9(6), e99348.Hersh, M.H.; Ostfeld, R.S.; McHenry, D.J.; Tibbetts, M.; Brunner, J.L.; Killilea, M.E.; LoGiudice, K.; Schmidt, K.A.; Keesing, F. Co-infection of blacklegged ticks with Babesia microti and Borrelia burgdorferi is higher than expected and acquired from small mammal hosts. PLoS ONE 2014, 9, e99348.
  64. Vuong H.B.; Canham C.D.; Fonseca D.M.; Brisson D.; Morin P.J.; Smouse P.E.; et al. Occurrence and transmission efficiencies of Borrelia burgdorferi ospC types in avian and mammalian wildlife. Infect Genet Evol 2014, 27, 594-600.Vuong, H.B.; Canham, C.D.; Fonseca, D.M.; Brisson, D.; Morin, P.J.; Smouse, P.E.; Ostfeld, R.S. Occurrence and transmission efficiencies of Borrelia burgdorferi ospC types in avian and mammalian wildlife. Infect. Genet. Evol. 2014, 27, 594–600.
  65. Tufts D.M.; Hart T.M.; Chen G.F.; Kolokotronis S-O.; Diuk-Wasser M.A.; Lin Y-P. Outer surface protein polymorphisms linked to host-spirochete association in Lyme borreliae. Mol Microbiol 2019, 111, 868-882.Tufts, D.M.; Hart, T.M.; Chen, G.F.; Kolokotronis, S.-O.; Diuk-Wasser, M.A.; Lin, Y.-P. Outer surface protein polymorphisms linked to host-spirochete association in Lyme borreliae. Mol. Microbiol. 2019, 111, 868–882.
  66. Tracy K.E; Baumgarth N. Borrelia burgdorferi manipulates innate and adaptive immunity to establish persistence in rodent reservoir hosts. Front Immunol 2017, 8, 116.Tracy, K.E.; Baumgarth, N. Borrelia burgdorferi manipulates innate and adaptive immunity to establish persistence in rodent reservoir hosts. Front. Immunol. 2017, 8, 116.
  67. Piesman J. Dynamics of Borrelia burgdorferi transmission by nymphal Ixodes dammini ticks. J Infect Dis 1993, 167(5), 1082-1085.Piesman, J. Dynamics of Borrelia burgdorferi transmission by nymphal Ixodes dammini ticks. J. Infect. Dis. 1993, 167, 1082–1085.
  68. Peavey C.A.; Lane R.S. Transmission of Borrelia burgdorferi by Ixodes pacificus nymphs and reservoir competence of deer mice (Peromyscus maniculatus) infected by tick-bite. J Parasitol 1995, 81(2), 175-178.Peavey, C.A.; Lane, R.S. Transmission of Borrelia burgdorferi by Ixodes pacificus nymphs and reservoir competence of deer mice (Peromyscus maniculatus) infected by tick-bite. J. Parasitol. 1995, 81, 175–178.
  69. Crippa M.; Rais O.; Gern L. Investigations on the mode and dynamics of transmission and infectivity of Borrelia burgdorferi sensu stricto and Borrelia afzelii in Ixodes ricinus ticks. Vector-Borne Zoonot Dis 2002, 2(1), 3-9.Crippa, M.; Rais, O.; Gern, L. Investigations on the mode and dynamics of transmission and infectivity of Borrelia burgdorferi sensu stricto and Borrelia afzelii in Ixodes ricinus ticks. Vector Borne Zoonot. Dis. 2002, 2, 3–9.
  70. Yang X.F.; Pal U.; Alani S.M.; Fikrig E.; Norgard M.V. Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med 2004, 199(5), 641-648.Yang, X.F.; Pal, U.; Alani, S.M.; Fikrig, E.; Norgard, M.V. Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J. Exp. Med. 2004, 199, 641–648.
  71. Neelakanta G.; Li X.; Pal U.; Liu X.; Beck D.S.; DePonte K.; et al. Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks. PLoS Pathog 2007, 3, e33.Neelakanta, G.; Li, X.; Pal, U.; Liu, X.; Beck, D.S.; DePonte, K.; Fish, D.; Kantor, F.S.; Fikrig, E. Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks. PLoS Pathog. 2007, 3, e33.
  72. Pal U.; Li X.; Wang T.; Montgomery R.R.; Ramamoorthi N.; DeSilva A.M.; et al. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 2004, 119(4), 457-468.Pal, U.; Li, X.; Wang, T.; Montgomery, R.R.; Ramamoorthi, N.; DeSilva, A.M.; Bao, F.; Yang, X.; Pypaert, M.; Pradhan, D.; et al. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 2004, 119, 457–468.
  73. Caimano M.J.; Drecktrah D.; Kung F.; Samuels D.S. Interaction of the Lyme disease spirochete with its tick vector. Cell Microbiol 2016, 18(7), 919-927.Caimano, M.J.; Drecktrah, D.; Kung, F.; Samuels, D.S. Interaction of the Lyme disease spirochete with its tick vector. Cell. Microbiol. 2016, 18, 919–927.
  74. Hyde J.A. Borrelia burgdorferi keeps moving and carries on: a review of Borrelial dissemination and invasion. Front Immunol 2017, 8, 114.Hyde, J.A. Borrelia burgdorferi keeps moving and carries on: A review of Borrelial dissemination and invasion. Front. Immunol. 2017, 8, 114.
  75. Hubner A.; Yang X.; Nolen D.M.; Popova T.G.; Cabello F.C.; Norgard M.V. Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN–RpoS regulatory pathway. P Natl Acad Sci 2001, 98(22), 12724-12729.Hubner, A.; Yang, X.; Nolen, D.M.; Popova, T.G.; Cabello, F.C.; Norgard, M.V. Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN–RpoS regulatory pathway. Proc. Natl. Acad. Sci. USA 2001, 98, 12724–12729.
  76. Srivastava S.Y.; de Silva A.M. Reciprocal expression of ospA and ospC in single cells of Borrelia burgdorferi. J Bacteriol 2008, 190(10), 3429.Srivastava, S.Y.; De Silva, A.M. Reciprocal expression of ospA and ospC in single cells of Borrelia burgdorferi. J. Bacteriol. 2008, 190, 3429.
  77. Carrasco S.E.; Yang Y.; Troxell B.; Yang X.; Pal U.; Yang X.F. Borrelia burgdorferi elongation factor EF-Tu is an immunogenic protein during Lyme borreliosis. Emerg Microbes Infect 2015, 4, e54.Carrasco, S.E.; Yang, Y.; Troxell, B.; Yang, X.; Pal, U.; Yang, X.F. Borrelia burgdorferi elongation factor EF-Tu is an immunogenic protein during Lyme borreliosis. Emerg. Microbes Infect. 2015, 4, e54.
  78. Liang F.T.; Jacobs M.B.; Bowers L.C.; Philipp M.T. An immune evasion mechanism for spirochetal persistence in Lyme borreliosis. J Exp Med 2002, 195(4), 415-422.Liang, F.T.; Jacobs, M.B.; Bowers, L.C.; Philipp, M.T. An immune evasion mechanism for spirochetal persistence in Lyme borreliosis. J. Exp. Med. 2002, 195, 415–422.
  79. Grimm D.; Eggers C.H.; Caimano M.J.; Tilly K.; Stewart P.E.; Elias A.F.; et al. Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infect Immun 2004, 72(10), 5938.Grimm, D.; Eggers, C.H.; Caimano, M.J.; Tilly, K.; Stewart, P.E.; Elias, A.F.; Radolf, J.D.; Rosa, P. A Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infect. Immun. 2004, 72, 5938.
  80. Pal U.; Yang X.; Chen M.; Bockenstedt L.K.; Anderson J.F.; Flavell R.A.; et al. OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 2004, 113, 220-230.Pal, U.; Yang, X.; Chen, M.; Bockenstedt, L.K.; Anderson, J.F.; Flavell, R.A.; Norgard, M.V.; Fikrig, E. OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J. Clin. Invest. 2004, 113, 220–230.
  81. Tilly K.; Krum J.G.; Bestor A.; Jewett; M.W.; Grimm D.; Bueschel D.; et al. Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Infect Immun 2006, 74, 3554-3564.Tilly, K.; Krum, J.G.; Bestor, A.; Jewett, M.W.; Grimm, D.; Bueschel, D.; Byram, R.; Dorward, D.; VanRaden, M.J.; Stewart, P.; et al. Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Infect. Immun. 2006, 74, 3554–3564.
  82. Xu Q.; McShan K.; Liang F.T. Essential protective role attributed to the surface lipoproteins of Borrelia burgdorferi against innate defences. Molec Microbiol 2008, 69(1), 15-29.Xu, Q.; McShan, K.; Liang, F.T. Essential protective role attributed to the surface lipoproteins of Borrelia burgdorferi against innate defences. Mol. Microbiol. 2008, 69, 15–29.
  83. Gilmore R.D.; Kappel K.J.; Dolan M.C.; Burkot T.R.; Johnson B.J. Outer surface protein C (OspC), but not P39, is a protective immunogen against a tick-transmitted Borrelia burgdorferi challenge: evidence for a conformational protective epitope in OspC. Infect Immun 1996, 64, 2234-2239.Gilmore, R.D.; Kappel, K.J.; Dolan, M.C.; Burkot, T.R.; Johnson, B.J. Outer surface protein C (OspC), but not P39, is a protective immunogen against a tick-transmitted Borrelia burgdorferi challenge: Evidence for a conformational protective epitope in OspC. Infect. Immun. 1996, 64, 2234–2239.
  84. Zeidner N.S.; Schneider B.S.; Nuncio M.S.; Gern L.; Piesman J. Coinoculation of Borrelia spp. with tick salivary gland lysate enhances spirochete load in mice and is tick species–specific. J Parasitol 2002, 88, 1276-1278.Zeidner, N.S.; Schneider, B.S.; Nuncio, M.S.; Gern, L.; Piesman, J. Coinoculation of Borrelia spp. with tick salivary gland lysate enhances spirochete load in mice and is tick species–specific. J. Parasitol. 2002, 88, 1276–1278.
  85. Anguita J.; Hedrick M.N.; Fikrig E. Adaptation of Borrelia burgdorferi in the tick and the mammalian host. FEMS Microbiol Rev 2003, 27(4), 493-504.Anguita, J.; Hedrick, M.N.; Fikrig, E. Adaptation of Borrelia burgdorferi in the tick and the mammalian host. FEMS Microbiol. Rev. 2003, 27, 493–504.
  86. Schuijt T.J.; Hovius J.W.; van Burgel N.D.; Ramamoorthi N.; Fikrig E.; van Dam A.P. The tick salivary protein Salp15 inhibits the killing of serum-sensitive Borrelia burgdorferi sensu lato isolates. Infect Immun 2008, 76, 2888-2894.Schuijt, T.J.; Hovius, J.W.; Van Burgel, N.D.; Ramamoorthi, N.; Fikrig, E.; Van Dam, A.P. The tick salivary protein Salp15 inhibits the killing of serum-sensitive Borrelia burgdorferi sensu lato isolates. Infect. Immun. 2008, 76, 2888–2894.
  87. Guo X.; Booth C.J.; Paley M.A.; Wang X.; DePonte K.; Fikrig E.; et al. Inhibition of neutrophil function by two tick salivary proteins. Infect Immun 2009, 77, 2320-2329.Guo, X.; Booth, C.J.; Paley, M.A.; Wang, X.; DePonte, K.; Fikrig, E.; Narasimhan, S.; Montgomery, R.R. Inhibition of neutrophil function by two tick salivary proteins. Infect. Immun. 2009, 77, 2320–2329.
  88. Mason L.M.; Veerman C.C.; Geijtenbeek T.B.; Hovius J.W. Menage a trois: Borrelia, dendritic cells, and tick saliva interactions. Trends Parasitol 2014, 30, 95-103.Mason, L.M.; Veerman, C.C.; Geijtenbeek, T.B.; Hovius, J.W. Menage a trois: Borrelia, dendritic cells, and tick saliva interactions. Trends Parasitol. 2014, 30, 95–103.
  89. Seinost G.; Dykhuizen D.E.; Dattwyler R.J.; Golde W.T.; Dunn J.J.; Wang I.N.; et al. Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect Immun 1999, 67, 3518-3524.Seinost, G.; Dykhuizen, D.E.; Dattwyler, R.J.; Golde, W.T.; Dunn, J.J.; Wang, I.N.; Wormser, G.P.; Schriefer, M.E.; Luft, B.J. Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect. Immun. 1999, 67, 3518–3524.
  90. Wormser G.P.; Brisson D.; Liveris D.; Hanincova K.; Sandigursky S.; Nowakowski J.; et al. Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J Infect Dis 2008, 198, 1358-1364.Wormser, G.P.; Brisson, D.; Liveris, D.; Hanincova, K.; Sandigursky, S.; Nowakowski, J.; Nadelman, R.B.; Ludin, S.; Schwartz, I. Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J. Infect. Dis. 2008, 198, 1358–1364.
  91. Barbour A.G.; Bunikis J.; Travinsky B.; Hoen A.G.; Diuk-Wasser M.A.; Fish D.; et al. Niche partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same tick vector and mammalian reservoir species. Am J Trop Med Hyg 2009, 81, 1120-1131.Barbour, A.G.; Bunikis, J.; Travinsky, B.; Hoen, A.G.; Diuk-Wasser, M.A.; Fish, D.; Tsao, J.I. Niche partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same tick vector and mammalian reservoir species. Am. J. Trop. Med. Hyg. 2009, 81, 1120–1131.
  92. Mechai S.; Margos G.; Feil E.J.; Barairo N.; Lindsay L.R.; Michel P.; et al. Evidence for host-genotype associations of Borrelia burgdorferi sensu stricto. PloS One 2016, 11(2), e0149345.Mechai, S.; Margos, G.; Feil, E.J.; Barairo, N.; Lindsay, L.R.; Michel, P.; Ogden, N.H. Evidence for host-genotype associations of Borrelia burgdorferi sensu stricto. PLoS ONE 2016, 11, e0149345.
  93. Wang G.; Ojaimi C.; Wu H.; Saksenberg V.; Iyer R.; Liveris D.; et al. Disease severity in a murine model of Lyme borreliosis is associated with the genotype of the infecting Borrelia burgdorferi sensu stricto strain. J Infect Dis 2002, 186, 782-791.Wang, G.; Ojaimi, C.; Wu, H.; Saksenberg, V.; Iyer, R.; Liveris, D.; McClain, S.A.; Wormser, G.P.; Schwartz, I. Disease severity in a murine model of Lyme borreliosis is associated with the genotype of the infecting Borrelia burgdorferi sensu stricto strain. J. Infect. Dis. 2002, 186, 782–791.
  94. Earnhart C.G.; Buckles E.L.; Dumler J.S.; Marconi R.T. Demonstration of OspC type diversity in invasive human Lyme disease isolates and identification of previously uncharacterized epitopes that define the specificity of the OspC murine antibody response. Infect Immun 2005, 73(12), 7869.Earnhart, C.G.; Buckles, E.L.; Dumler, J.S.; Marconi, R.T. Demonstration of OspC type diversity in invasive human Lyme disease isolates and identification of previously uncharacterized epitopes that define the specificity of the OspC murine antibody response. Infect. Immun. 2005, 73, 7869.
  95. Brisson D.; Dykhuizen D.E. A modest model explains the distribution and abundance of Borrelia burgdorferi strains. Am J Trop Med Hyg 2006, 74, 615-622.Brisson, D.; Dykhuizen, D.E. A modest model explains the distribution and abundance of Borrelia burgdorferi strains. Am. J. Trop. Med. Hyg. 2006, 74, 615–622.
  96. Dykhuizen D.E.; Brisson D.; Sandigursky S.; Wormser G.P.; Nowakowski J.; Nadelman R.B.; et al. The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. Am J Trop Med Hyg 2008, 78(5), 806-810.Dykhuizen, D.E.; Brisson, D.; Sandigursky, S.; Wormser, G.P.; Nowakowski, J.; Nadelman, R.B.; Schwartz, I. The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. Am. J. Trop. Med. Hyg. 2008, 78, 806–810.
  97. Brisson D.; Baxamusa N.; Schwartz I.; Wormser G.P. Biodiversity of Borrelia burgdorferi strains in tissues of Lyme disease patients. PloS One 2011, 6(8), e22926.Brisson, D.; Baxamusa, N.; Schwartz, I.; Wormser, G.P. Biodiversity of Borrelia burgdorferi strains in tissues of Lyme disease patients. PLoS ONE 2011, 6, e22926.
  98. Hanincova K.; Mukherjee P.; Ogden N.H.; Margos G.; Wormser G.P.; Reed K.D.; et al. Multilocus sequence typing of Borrelia burgdorferi suggests existence of lineages with differential pathogenic properties in humans. PLoS One 2013, 8, e73066.Hanincova, K.; Mukherjee, P.; Ogden, N.H.; Margos, G.; Wormser, G.P.; Reed, K.D.; Meece, J.K.; Vandermause, M.F.; Schwartz, I. Multilocus sequence typing of Borrelia burgdorferi suggests existence of lineages with differential pathogenic properties in humans. PLoS ONE 2013, 8, e73066.
  99. Coipan E.C.; Jahfari S.; Fonville M.; Oei G.A.; Spanjaard L.; Takumi K.; et al. Imbalanced presence of Borrelia burgdorferi sl multilocus sequence types in clinical manifestations of Lyme borreliosis. Infect Genet Evol 2016, 42, 66-76.Coipan, E.C.; Jahfari, S.; Fonville, M.; Oei, G.A.; Spanjaard, L.; Takumi, K.; Hovius, J.W.R.; Sprong, H. Imbalanced presence of Borrelia burgdorferi sl multilocus sequence types in clinical manifestations of Lyme borreliosis. Infect. Genet. Evol. 2016, 42, 66–76.
  100. Liveris D.; Wormser G.P.; Nowakowski J.; Nadelman R.; Bittker S.; Cooper D.; et al. Molecular typing of Borrelia burgdorferi from Lyme disease patients by PCR-restriction fragment length polymorphism analysis. J Clin Microbiol 1996, 34(5), 1306.Liveris, D.; Wormser, G.P.; Nowakowski, J.; Nadelman, R.; Bittker, S.; Cooper, D.; Varde, S.; Moy, F.H.; Forseter, G.; Pavia, C.S.; et al. Molecular typing of Borrelia burgdorferi from Lyme disease patients by PCR-restriction fragment length polymorphism analysis. J. Clin. Microbiol. 1996, 34, 1306.
  101. Peavey C.A.; Lane R.S. Comparison of infectivities of six tick-derived isolates of Borrelia burgdorferi for rodents and ticks. J Clin Microbiol 1996, 34(1), 71.Peavey, C.A.; Lane, R.S. Comparison of infectivities of six tick-derived isolates of Borrelia burgdorferi for rodents and ticks. J. Clin. Microbiol. 1996, 34, 71.
  102. Baranton G.; Seinost G.; Theodore G.; Postic D.; Dykhuizen D. Distinct levels of genetic diversity of Borrelia burgdorferi are associated with different aspects of pathogenicity. Res Microbiol 2001, 152(2), 149-156.Baranton, G.; Seinost, G.; Theodore, G.; Postic, D.; Dykhuizen, D. Distinct levels of genetic diversity of Borrelia burgdorferi are associated with different aspects of pathogenicity. Res. Microbiol. 2001, 152, 149–156.
  103. Thomas V.; Anguita J.; Barthold S.W.; Fikrig E. Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of Lyme arthritis. Infect Immun 2001, 69(5), 3359.Thomas, V.; Anguita, J.; Barthold, S.W.; Fikrig, E. Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of Lyme arthritis. Infect. Immun. 2001, 69, 3359.
  104. Xiang X.; Yang Y.; Du J.; Lin T.; Chen T.; Yang X.F.; et al. (2017). Investigation of ospC expression variation among Borrelia burgdorferi strains. Front Cell Infect Microbiol 2017, 7, 131.Xiang, X.; Yang, Y.; Du, J.; Lin, T.; Chen, T.; Yang, X.F.; Lou, Y. Investigation of ospC expression variation among Borrelia burgdorferi strains. Front. Cell. Infect. Microbiol. 2017, 7, 131.
  105. Bunikis J.; Garpmo U.; Tsao J.; Berglund J.; Fish D.; Barbour A.G. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiol 2004, 150(6), 1741-1755.Bunikis, J.; Garpmo, U.; Tsao, J.; Berglund, J.; Fish, D.; Barbour, A.G. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiology 2004, 150, 1741–1755.
  106. Travinsky B.; Bunikis J.; Barbour A.G. Geographic differences in genetic locus linkages for Borrelia burgdorferi. Emerg Infect Dis 2010, 16, 1147-1150.Travinsky, B.; Bunikis, J.; Barbour, A.G. Geographic differences in genetic locus linkages for Borrelia burgdorferi. Emerg. Infect. Dis. 2010, 16, 1147–1150.
  107. Ogden N.H.; Margos G.; Aanensen D.M.; Drebot M.A.; Feil E.J.; Hanincova K.; et al. Investigation of genotypes of Borrelia burgdorferi in Ixodes scapularis ticks collected during surveillance in Canada. Appl Environ Microbiol 2011, 77(10), 3244.Ogden, N.H.; Margos, G.; Aanensen, D.M.; Drebot, M.A.; Feil, E.J.; Hanincova, K.; Schwartz, I.; Tyler, S.; Lindsay, L.R. Investigation of genotypes of Borrelia burgdorferi in Ixodes scapularis ticks collected during surveillance in Canada. Appl. Environ. Microbiol. 2011, 77, 3244.
  108. States S.L.; Brinkerhoff R.J.; Carpi G.; Steeves T.K.; Folsom-O’Keefe C.; DeVeaux M; et al. Lyme disease risk not amplified in a species-poor vertebrate community: similar Borrelia burgdorferi tick infection prevalence and OspC genotype frequencies. Infect Genet Evol 2014, 27, 566-575.States, S.L.; Brinkerhoff, R.J.; Carpi, G.; Steeves, T.K.; Folsom-O’Keefe, C.; DeVeaux, M.; Diuk-Wasser, M.A. Lyme disease risk not amplified in a species-poor vertebrate community: Similar Borrelia burgdorferi tick infection prevalence and OspC genotype frequencies. Infect. Genet. Evol. 2014, 27, 566–575.
  109. Di L.; Wan Z.; Akther S.; Ying C.; Larracuente A.; Li L.; et al. Genotyping and quantifying Lyme pathogen strains by deep sequencing of the outer surface protein C (ospC) locus. J Clin Microbiol 2018, 56(11): e00940-18.Di, L.; Wan, Z.; Akther, S.; Ying, C.; Larracuente, A.; Li, L.; Di, C.; Nunez, R.; Cucura, D.M.; Goddard, N.L.; et al. Genotyping and quantifying Lyme pathogen strains by deep sequencing of the outer surface protein C (ospC) locus. J. Clin. Microbiol. 2018, 56, e00940-18.
  110. Rynkiewicz E.C.; Brown J.; Tufts D.M.; Huang C.I.; Kampen H.; Bent S.J. et al. Closely-related Borrelia burgdorferi (sensu stricto) strains exhibit similar fitness in single infections and asymmetric competition in multiple infections. Parasit Vectors 2017, 10(1), 64.Rynkiewicz, E.C.; Brown, J.; Tufts, D.M.; Huang, C.I.; Kampen, H.; Bent, S.J.; Fish, D.; Diuk-Wassler, M.A. Closely-related Borrelia burgdorferi (sensu stricto) strains exhibit similar fitness in single infections and asymmetric competition in multiple infections. Parasites Vectors 2017, 10, 64.
  111. States S.L.; Huang C.I.; Davis S.; Tufts D.M.; Diuk-Wasser M.A. Co-feeding transmission facilitates strain coexistence in Borrelia burgdorferi, the Lyme disease agent. Epidemics 2017, 19, 33-42.States, S.L.; Huang, C.I.; Davis, S.; Tufts, D.M.; Diuk-Wasser, M.A. Co-feeding transmission facilitates strain coexistence in Borrelia burgdorferi, the Lyme disease agent. Epidemics 2017, 19, 33–42.
  112. Adelson M.E.; Rao R.V.S.; Tilton R.C.; Cabets K.; Eskow E.; Fein L.; et al. Prevalence of Borrelia burgdorferi, Bartonella spp., Babesia microti, and Anaplasma phagocytophila in Ixodes scapularis ticks collected in Northern New Jersey. J Clin Microbiol, 2004, 42(6), 2799-2801.Adelson, M.E.; Rao, R.V.S.; Tilton, R.C.; Cabets, K.; Eskow, E.; Fein, L.; Occi, J.L.; Mordechai, E. Prevalence of Borrelia burgdorferi, Bartonella spp., Babesia microti, and Anaplasma phagocytophila in Ixodes scapularis ticks collected in Northern New Jersey. J. Clin. Microbiol. 2004, 42, 2799–2801.
  113. Johnson T.L.; Graham C.B.; Maes S.E.; Hojgaard A.; Fleshman A.; Boegler K.A. et al. Prevalence and distribution of seven human pathogens in host-seeking Ixodes scapularis (Acari: Ixodidae) nymphs in Minnesota, USA. Ticks Tick Borne Dis 2018, 9(6), 1499-1507.Johnson, T.L.; Graham, C.B.; Maes, S.E.; Hojgaard, A.; Fleshman, A.; Boegler, K.A.; Delory, M.J.; Slater, K.S.; Karpathy, S.E.; Bjork, J.K.; et al. Prevalence and distribution of seven human pathogens in host-seeking Ixodes scapularis (Acari: Ixodidae) nymphs in Minnesota, USA. Ticks Tick Borne Dis. 2018, 9, 1499–1507.
  114. Parveen, N.; Bhanot, P. Babesia microti-Borrelia burgdorferi coinfection. Pathogens 2019, 8(3), 117.Parveen, N.; Bhanot, P. Babesia microti-Borrelia burgdorferi coinfection. Pathogens 2019, 8, 117.
  115. Little E.A.H.; Molaei G. Passive tick surveillance: exploring spatiotemporal associations of Borrelia burgdorferi, Babesia microti, and Anaplasma phagocytophilum infection in Ixodes scapularis. Vector Borne Zoonot Dis 2020, 20(3), 177-186.Little, E.A.H.; Molaei, G. Passive tick surveillance: Exploring spatiotemporal associations of Borrelia burgdorferi, Babesia microti, and Anaplasma phagocytophilum infection in Ixodes scapularis. Vector Borne Zoonot. Dis. 2020, 20, 177–186.
  116. Lehane A.; Maes S.E.; Graham C.B.; Jones E.; Delorey M.; Eisen R.J. Prevalence of single and coinfections of human pathogens in Ixodes ticks from five geographical regions in the United States, 2013-2019. Ticks Tick Borne Dis 2021, 12(2), 101637.Lehane, A.; Maes, S.E.; Graham, C.B.; Jones, E.; Delorey, M.; Eisen, R.J. Prevalence of single and coinfections of human pathogens in Ixodes ticks from five geographical regions in the United States, 2013–2019. Ticks Tick Borne Dis. 2021, 12, 101637.
  117. Lin Y.P.; Tufts D.M.; Dupuis A.P.; Combs M.; Marcinkiewicz A.L.; Hirsbrunner A.D.; et al. Host specialization in microparasites transmitted by generalist vectors: insights into the cellular and immunological mechanisms. bioRxiv 2020, doi: https://doi.org/10.1101/2020.11.13.380550Lin, Y.P.; Tufts, D.M.; Dupuis, A.P.; Combs, M.; Marcinkiewicz, A.L.; Hirsbrunner, A.D.; Diaz, A.J.; Stout, J.L.; Blom, A.M.; Strle, K.; et al. Host specialization in microparasites transmitted by generalist vectors: Insights into the cellular and immunological mechanisms. bioRxiv 2020.
  118. Seifert S.N.; Khatchikian C.E.; Zhou W.; Brisson B. Evolution and population genomics of the Lyme borreliosis pathogen, Borrelia burgdorferi. Trends Genet 2016, 31, 201-207.Pachner, A.R.; Delaney, E.; O’Neil, T.; Major, E. Inoculation of nonhuman primates with the N40 strain of Borrelia burgdorferi leads to a model of Lyme neuroborreliosis faithful to the human model. Neurology 1995, 45, 165–172.
  119. Fraser C.M.; Casjens S.; Huang W.M.; Sutton G.G.; Clayton R.; Lathigra R.; et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 1997, 390(6660), 580-586.Divan, A.; Casselli, T.; Narayanan, S.A.; Mukherjee, S.; Zawieja, D.C.; Watt, J.A.; Brissette, C.A.; Newell-Rogers, M.K. Borrelia burgdorferi adhere to blood vessels in the dura mater and are associated with increased meningeal T cells during murine disseminated borreliosis. PLoS ONE 2018, 13, e0196893.
  120. Casjens S. Borrelia genomes in the year 2000. J Molec Microbiol Biotech 2000, 2(4), 401-410.Casselli, T.; Divan, A.; Vomhof-DeKrey, E.E.; Tourand, Y.; Pecoraro, H.L.; Brissette, C.A. A murine model of Lyme disease demonstrates that Borrelia burgdorferi colonizes the dura mater and induces inflammation in the central nervous system. PLoS Pathog 2021, 17, e1009256.
  121. Casjens S.R.; Fraser-Liggett C.M.; Mongodin E.F.; Qiu W.G.; Dunn J.J.; Luft B.J.; et al. Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate. J Bacteriol 2011, 193(6), 1489-1490.Allal, J.; Thomas, P.; Mazzonelli, J. Borrelia isolated from cerebrospinal fluid in a French case of Lyme disease. Ann. Rheum. Dis. 1986, 45, 789.
  122. Schutzer S.E.; Fraser-Liggett C.M.; Casjens S.R.; Qiu W.G.; Dunn J.J.; Mongodin E.F.; et al. Whole-genome sequences of thirteen isolates of Borrelia burgdorferi. J Bacteriol 2011, 193(4), 1018.Luft, B.J.; Steinman, C.R.; Neimark, H.C.; Muralidhar, B.; Rush, T.; Finkel, M.F.; Kunkel, M.; Dattwyler, R.J. Invasion of the central nervous system by Borrelia burgdorferi in acute disseminated infection. JAMA 1992, 267, 1364–1367.
  123. Stewart P.E.; Rosa P.A. Physiologic and genetic factors influencing the zoonotic cycle of Borrelia burgdorferi. In: Spirochete Biology: The Post Genomic Era, 2017, Alder B. ed. pp: 63-82.Rupprecht, T.A.; Koedel, U.; Fingerle, V.; Pfister, H.W. The pathogenesis of Lyme neuroborreliosis: From infection to inflammation. Mol. Med. 2008, 14, 205–212.
  124. Purser J.E.; Norris S.J. Correlation between plasmid content and infectivity in Borrelia burgdorferi. P Natl Acad Sci 2000, 97(25), 13865-13870.Fallon, B.A.; Levin, E.S.; Schweitzer, P.J.; Hardesty, D. Inflammation and central nervous system Lyme disease. Neurobiol. Dis. 2010, 37, 534–541.
  125. Kraiczy P.; Skerka C.; Brade V.; Zipfel P.E. Further characterization of complement regulator‐acquiring surface proteins of Borrelia burgdorferi. Infect Immun 2001, 69, 7800-7809.Zipfel, P.F.; Skerka, C. Complement regulators and inhibitory proteins. Nat. Rev. Immun. 2009, 9, 729–740.
  126. Hartmann K.; Corvey C.; Skerka C.; Kirschfink M.; Karas M.; Brade V.; et al. Functional characterization of BbCRASP‐2, a distinct outer membrane protein of Borrelia burgdorferi that binds host complement regulators factor H and FHL‐1. Mol Microbiol 2006, 61, 1220-1236.Ricklin, D.; Hajishengallis, G.; Yang, K.; Lambris, J.D. Complement: A key system for immune surveillance and homeostasis. Nat. Immun. 2010, 11, 785–797.
  127. Bykowski T.; Woodman M.E.; Cooley A.E.; Brissette C.A.; Brade V.; Wallich R.; et al. Coordinated expression of Borrelia burgdorferi complement regulator‐acquiring surface proteins during the Lyme disease spirochete's mammal‐tick infection cycle. Infect Immun 2007, 75, 4227-4236.Petzke, M.; Schwartz, I. Borrelia burgdorferi pathogenesis and the immune response. Clin. Lab. Med. 2015, 35, 745–764.
  128. Kraiczy P.; Stevenson B. Complement regulator‐acquiring surface proteins of Borrelia burgdorferi: Structure, function and regulation of gene expression. Ticks Tick‐Borne Dis 2013, 4, 26-34.Verhaegh, D.; Joosten, L.A.; Oosting, M. The role of host immune cells and Borrelia burgdorferi antigens in the etiology of Lyme disease. Eur. Cytokine Netw. 2017, 28, 70–84.
  129. Bouquet J.; Soloski M.J.; Swei A.; Cheadle C.; Federman S.; Billaud J.N.; et al. Longitudinal transcriptome analysis reveals a sustained differential gene expression signature in patients treated for acute Lyme disease. mBio 2016, 7, e00100-e00116.Thompson, D.; Sorenson, J.; Greenmyer, J.; Brissette, C.A.; Watt, J.A. The Lyme disease bacterium, Borrelia burgdorferi, stimulates an inflammatory response in human choroid plexus epithelial cells. PLoS ONE 2020, 15, e0234993.
  130. Hart T.; Nguyen N.T.T.; Nowak N.A.; Zhang F.; Linhardt R.J.; Diuk‐Wasser M.; et al. Polymorphic factor H‐binding activity of CspA protects Lyme borreliae from the host complement in feeding ticks to facilitate tick‐to‐host transmission. PLoS Pathog 2018, 14, e1007106.Ding, Z.; Ma, M.; Tao, L.; Peng, Y.; Han, Y.; Sun, L.; Dai, X.; Ji, Z.; Bai, R.; Jian, M.; et al. Rhesus brain transcriptomic landscape in an ex vivo model of the interaction of live Borrelia burgdorferi with frontal cortex tissue explants. Front. Neurosci. 2019, 13, 651.
  131. Schutzer S.E.; Coye P.K.; Krupp L.B.; Deng Z.; Belman A.L.; Dattwyler R.; et al. Simultaneous expression of Borellia OspA and OspC and IgM response in cerebrospinal fluid in early neurologic Lyme disease. J Clin Invest 1997, 100, 763-767.Ramesh, G.; Borda, J.T.; Dufour, J.; Kaushal, D.; Ramamoorthy, R.; Lackner, A.A.; Philipp, M.T. Interaction of the Lyme disease spirochete Borrelia burgdorferi with brain parenchyma elicits inflammatory mediators from glial cells as well as glial and neuronal apoptosis. Am. J. Pathol. 2008, 173, 1415–1427.
  132. Schutzer S.E.; Angel T.E.; Liu T.; Schepmoes A.A.; Clauss T.R.; Adkins J.N.; et al. Distinct cerebrospinal fluid proteomes differentiate post-treatment Lyme disease from chronic fatigue syndrome. PLoS One 2011, 6, e17287.Ramesh, G.; Borda, J.T.; Gill, A.; Ribka, E.P.; Morici, L.A.; Mottram, P.; Martin, D.S.; Jacobs, M.B.; Didier, P.J.; Philipp, M.T. Possible role of glial cells in the onset and progression of Lyme neuroborreliosis. J. Neuroinflam. 2009, 6, 1–16.
  133. Pachner A.R.; Delaney E.; O’Neil T.; Major E. Inoculation of nonhuman primates with the N40 strain of Borrelia burgdorferi leads to a model of Lyme neuroborreliosis faithful to the human model. Neurol 1995, 45, 165-172.Parathasarathy, G.; Philipp, M.T. The MEK/ERK pathway is the primary conduit for Borrelia burgdorferi-induced inflammation and P53-mediated apoptosis in oligodendrocytes. Apoptosis 2014, 19, 76–89.
  134. Divan A.; Casselli T.; Narayanan S.A.; Mukherjee S.; Zawieja D.C.; Watt J.A.; et al. Borrelia burgdorferi adhere to blood vessels in the dura mater and are associated with increased meningeal T cells during murine disseminated borreliosis. PLoS One 2018, 13, e0196893.Bouquet, J.; Soloski, M.J.; Swei, A.; Cheadle, C.; Federman, S.; Billaud, J.N.; Rebman, A.W.; Kabre, B.; Halpert, R.; Boorgula, M.; et al. Longitudinal transcriptome analysis reveals a sustained differential gene expression signature in patients treated for acute Lyme disease. mBio 2016, 7, e00100–e00116.
  135. Casselli T.; Divan A.; Vomhof-DeKrey E.E.; Tourand Y.; Pecoraro H.L.; Brissette C.A. A murine model of Lyme disease demonstrates that Borrelia burgdorferi colonizes the dura mater and induces inflammation in the central nervous system. PLoS Pathog 2021, 17, e1009256.Steere, A.C.; Grodzicki, R.L.; Kornblatt, A.N.; Craft, J.E.; Barbour, A.G.; Burgdorfer, W.; Schmid, G.P.; Johnson, E.; Malawista, S.E. The spirochetal etiology of Lyme disease. N. Engl. J. Med. 1983, 308, 733–740.
  136. Allal J.; Thomas P.; Mazzonelli J. Borrelia isolated from cerebrospinal fluid in a French case of Lyme disease. Ann Rheum Dis 1986, 45(9), 789.Schutzer, S.E.; Coye, P.K.; Krupp, L.B.; Deng, Z.; Belman, A.L.; Dattwyler, R.; Luft, B.J. Simultaneous expression of Borellia OspA and OspC and IgM response in cerebrospinal fluid in early neurologic Lyme disease. J. Clin. Investig. 1997, 100, 763–767.
  137. Luft B.J.; Steinman C.R.; Neimark H.C.; Muralidhar B.; Rush T.; Finkel M.F.; et al. Invasion of the central nervous system by Borrelia burgdorferi in acute disseminated infection. JAMA 1992, 267(10), 1364-1367.Stevenson, B.; El-Hage, N.; Hines, M.A.; Miller, J.C.; Babb, K. Differential binding of host complement inhibitor factor H by Borrelia burgdorferi Erp surface proteins: A possible mechanism underlying the expansive host range of Lyme disease spirochetes. Infect. Immun. 2002, 70, 491–497.
  138. Rupprecht T.A.; Koedel U.; Fingerle V.; Pfister H.W. The pathogenesis of Lyme neuroborreliosis: From infection to inflammation. Molec Med 2008, 14(3), 205-212.Miller, J.C.; Stevenson, B. Borrelia burgdorferi erp genes are expressed at different levels within tissues of chronically infected mammalian hosts. Int. J. Med. Microbiol. 2006, 40, 185–194.
  139. Fallon B.A.; Levin E.S.; Schweitzer P.J.; Hardesty D. Inflammation and central nervous system Lyme disease. Neurobiol Dis 2010, 37(3), 534-541.Jutras, B.L.; Chenail, A.M.; Stevenson, B. Changes in bacterial growth rate govern expression of Borrelia burgdorferi OspC and Erp infection-associated surface proteins. J. Bacteriol. 2013, 195, 757–764.
  140. Zipfel P.F.; Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immun 2009, 9, 729-740.Bransfield, R.C. The psychoimmunoloy of Lyme/tick-borne diseases and its association with neuropsychiatric symptoms. Open Neurol. J. 2012, 6, 88–93.
  141. Ricklin D.; Hajishengallis G.; Yang K.; Lambris J.D. Complement: a key system for immune surveillance and homeostasis. Nat Immun 2010, 11, 785-797.Jacek, E.; Fallon, B.A.; Chandra, A.; Crow, M.K.; Wormser, G.P.; Alaedini, A. Increased IFNa activity and differential antibody response in patients with a history of Lyme disease and persistent cognitive deficits. J. Neuroimmunol. 2013, 255, 85–91.
  142. Petzke M.; Schwartz I. Borrelia burgdorferi pathogenesis and the immune response. Clin Lab Med 2015, 35(4), 745-764.Novak, P.; Felsenstein, D.; Mao, C.; Octavien, N.R.; Zubcevik, N. Association of small fiber neuropathy and post treatment Lyme disease syndrome. PLoS ONE 2019, 14, e0212222.
  143. Verhaegh D.; Joosten L.A.; Oosting M. The role of host immune cells and Borrelia burgdorferi antigens in the etiology of Lyme disease. Eur Cytokine Netw 2017, 28(2), 70-84.Lochhead, R.B.; Arvikar, S.L.; Aversa, J.M.; Sadreyev, R.I.; Strle, K.; Steere, A.C. Robus interferon signature and suppressed tissue repair gene expression in synovial tissue from patients with postinfections, Borrelia-burgdorferi-induced Lyme arthritis. Cell. Microbiol. 2019, 21, e12954.
  144. Thompson D.; Sorenson J.; Greenmyer J.; Brissette C.A.; Watt J.A. The Lyme disease bacterium, Borrelia burgdorferi, stimulates an inflammatory response in human choroid plexus epithelial cells. PloS One 2020, 15(7), e0234993.Miller, J.C.; Von Lackum, K.; Woodman, M.E.; Stevenson, B. Detection of Borrelia burgdorferi gene expression during mammalian infection using transcriptional fusions that produce green fluorescent protein. Microb. Pathog. 2006, 41, 43–47.
  145. Ding Z.; Ma M.; Tao L.; Peng Y.; Han Y.; Sun L.; et al. Rhesus brain transcriptomic landscape in an ex vivo model of the interaction of live Borrelia burgdorferi with frontal cortex tissue explants. Front Neurosci 2019, 13, 651.
  146. Ramesh G.; Borda J.T.; Dufour J.; Kaushal D.; Ramamoorthy R.; Lackner A.A.; et al. Interaction of the Lyme disease spirochete Borrelia burgdorferi with brain parenchyma elicits inflammatory mediators from glial cells as well as glial and neuronal apoptosis. Am J Pathol 2008, 173, 1415-1427.
  147. Ramesh G.; Borda J.T.; Gill A.; Ribka E.P.; Morici L.A.; Mottram P.; et al. Possible role of glial cells in the onset and progression of Lyme neuroborreliosis. J Neuroinflam 2009, 6(23), 1-16.
  148. Parathasarathy G.; Philipp M.T. The MEK/ERK pathway is the primary conduit for Borrelia burgdorferi-induced inflammation and P53-mediated apoptosis in oligodendrocytes. Apoptosis 2014, 19, 76-89.
  149. Lantos P.M. Chronic Lyme disease: the controversies and the science. Expert Rev Anti Infect Ther 2011, 9(7), 787-797.
  150. Maloney E.L. Controversies in Persistent (Chronic) Lyme Disease. J Infus Nurs 2016, 39(6), 369-375.
  151. Greenberg, R. Chronic Lyme Disease: An unresolved controversy. Am J Med 2017, 130(9), e423.
  152. Gocko X.; Tattevin P.; Lemogne C. Genesis and dissemination of a controversial disease: Chronic Lyme. Infect Dis Now 2021, 51(1), 86-89.
  153. Schmidt S.; Denk S.; Wiegering A. Targeting protein synthesis in colorectal cancer. Cancers 2020, 12, 1298.
  154. Bilsborough J.; Viney J.L. GPR15: a tale of two species. Nat Immunol 2015, 16, 137-139.
  155. Rao S-Q.; Hu H-L.; Ye N.; Shen Y.; Xu Q. Genetic variants in long non-coding RNA MIAT contribute to risk of paranoid schizophrenia in a Chinese Han population. Schizophr Res 2015, 166, 125-130.
  156. Casselli T.; Qureshi H.; Peterson E.; Perley D.; Blake E.; Jokinen B.; et al. MicroRNA and mRNA transcriptome profiling in primary human astrocytes infected with Borrelia burgdorferi. PLoS One 2017, 12, e0170961
  157. Garcia-Monco J.C.; Fernandez-Villar B.; Benach J.L. Adherence of the Lyme disease spirochete to glial cells and cells of glial origin. J Infect Dis 1989, 160, 497-506.
  158. Peters D.J.; Benach J.L. Borrelia burgdorferi adherence and injury to undifferentiated and differentiated neural cells in vitro. J Infect Dis 1997, 176, 470-477.
  159. Pulzova L.; Kovac A.; Mucha R.; Mlynarcik P.; Bencurova E.; Madar M.; et al. OspA-CD40 dyad: ligand-receptor interaction in the translocation of neuroinvasive Borrelia across the blood-brain barrier. Sci Rep 2011, 1, 1-10.
  160. Kim K.; Palmore G.T.R. Lipoproteins and diseases of the brain. Adv Lipopro Res. Rijeka: InTech 2017, 95-108.
  161. Livengood J.A.; Gilmore R.D. Invasion of human neuronal glial cells by an infectious strain of Borrelia burgdorferi. Microbes Infect 2006, 8(14-15), 2832-2840.
  162. MacDonald A.B.; Miranda J.M. Concurrent neocortical borreliosis and Alzheimer’s disease. Hum Pathol 1987, 18(70), 759-761.
  163. MacDonald A.B. Borrelia in the brains of patients dying with dementia. JAMA 1986, 256(16), 2195-2196.
  164. Miklossy J.; Khalili K.; Gern L.; Ericson R.L.; Darekar P.; Bolle L.; et al. Borrelia burgdorferi persists in the brain in chronic Lyme neuroborreliosis and may be associated with Alzheimers disease. J Alzheimers Dis 2004, 6, 639-649.
  165. MacDonald A.B. Plaques of Alzheimer’s disease originate from cysts of Borrelia burgdorferi, the Lyme disease spirochete. Med Hypotheses 2006, 67(3), 592-600.
  166. Miklossy J.; Kass S.; Zurn A.D.; McCall S.; Yu S.; McGreer P.L. Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis. J Neuroinflam 2008, 5, 1-18.
  167. Miklossy J. Chronic or late Lyme neuroborreliosis: analysis of evidence compared to chronic or late neurosyphilis. Open Neurol J 2012, 6, 146-157.
  168. Miklossy J. Historic evidence to support a causal relationship between spirochetal infections and Alzheimer’s disease. Front Aging Neurosci 2015, 7, 46.
  169. Sapi E.; Kasliwala R.S.; Ismail H.; Torres J.P.; Oldakowski M.; Markland S. et al. The long-term persistence of Borrelia burgdorferi antigens and DNA in the tissues of a patient with Lyme Disease. Antibiotics (Basel) 2019, 8(4), 183.
  170. MacDonald A.B. Alzheimer plaques visualized by in situ DNA hybridization with molecular beacons specific for Borrelia–a novel histomorphologic application. Med Clin Res, 2021 6 (2): 388-390.
  171. Steere A.C.; Grodzicki R.L.; Kornblatt A.N.; Craft J.E.; Barbour A.G.; Burgdorfer W.; et al. The spirochetal etiology of Lyme disease. N Engl J Med 1983, 308, 733-740.
  172. Stevenson B.; El-Hage N.; Hines M.A.; Miller J.C.; Babb K. Differential binding of host complement inhibitor factor H by Borrelia burgdorferi Erp surface proteins: a possible mechanism underlying the expansive host range of Lyme disease spirochetes. Infect Immun 2002, 70(2), 491-497.
  173. Miller J.C.; Stevenson B. Borrelia burgdorferi erp genes are expressed at different levels within tissues of chronically infected mammalian hosts. Int J Med Microbiol 2006, 40, 185-194.
  174. Jutras B.L.; Chenail A.M.; Stevenson B. Changes in bacterial growth rate govern expression of Borrelia burgdorferi OspC and Erp infection-associated surface proteins. J Bacteriol 2013, 195(4), 757-764.
  175. Bransfield R.C. The psychoimmunoloy of Lyme/tick-borne diseases and its association with neuropsychiatric symptoms. Open Neurol J 2012, 6, 88-93.
  176. Jacek E.; Fallon B.A.; Chandra A.; Crow M.K.; Wormser G.P.; Alaedini A. Increased IFNa activity and differential antibody response in patients with a history of Lyme disease and persistent cognitive deficits. J Neuroimmunol 2013, 255(1-2), 85-91.
  177. Novak P.; Felsenstein D.; Mao C.; Octavien N.R.; Zubcevik N. Association of small fiber neuropathy and post treatment Lyme disease syndrome. PloS One 2019, 14(2), e0212222.
  178. Lochhead R.B.; Arvikar S.L; Aversa J.M.; Sadreyev R.I.; Strle K.; Steere A.C. Robus interferon signature and suppressed tissue repair gene expression in synovial tissue from patients with postinfections, Borrelia-burgdorferi-induced Lyme arthritis. Cell Microbiol 2019, 21(2), e12954.
  179. Miller J.C., von Lackum K.; Woodman M.E.; Stevenson B. Detection of Borrelia burgdorferi gene expression during mammalian infection using transcriptional fusions that produce green fluorescent protein. Microb Pathog 2006, 41(1), 43-47.
More
ScholarVision Creations