Health Effects of Berry Anthocyanins: Comparison
Please note this is a comparison between Version 3 by Amina Yu and Version 6 by Amina Yu.

Supplementation with anthocyanins, which are a type of flavonoids mainly found in various berries, is hypothesized to be a promising approach to lower the risk of developing cognitive decline. The aim of this systematic review was to provide a comprehensive overview of dietary intervention trials describing effects of berry anthocyanins on cognitive performance in humans, while also addressing potential underlying mechanisms. 

  • anthocyanins
  • cognitive performance
  • vascular function
  • cardiometabolic risk markers

1. Introduction

Cognitive performance encompasses multiple mental abilities that can be categorized into various domains, such as attention and psychomotor speed, memory, and executive function [1]. From childhood, cognitive performance quickly improves until young adulthood, after which it gradually starts declining [2]. Therefore, it is becoming increasingly relevant to focus on improving and/or maintaining cognitive performance to delay and prevent cognitive decline, and ultimately the onset of dementia [3]. This could be achieved by targeting potential mechanisms that drive cognitive performance [4][5].

An impaired vascular function is a common pathophysiological characteristic of multiple age-related conditions [6][7]. Vascular function can be assessed by determining endothelial function with methods such as brachial artery flow-mediated vasodilation (FMD) or the reactive hyperemia index (RHI) [8]. Previous research has already shown that vascular health declines with age leading to an increased risk of cognitive impairment, which may partly be explained by co-existing cardiometabolic risk factors, such as high blood pressure (BP) or a disturbed lipid profile such as altered low-density lipoprotein cholesterol (LDL-C) or high-density lipoprotein cholesterol (HDL-C) concentrations [9]. Therefore, dietary interventions that target vascular function and/or cardiometabolic risk markers may improve cognitive performance [10][11][12].

Therefore, increasing dietary intake of anthocyanins through supplementation could be a useful strategy to lower the risk of developing cognitive decline. A recent systematic review by Kent and colleagues [13] reported different intervention studies with beneficial effects of food-derived anthocyanins on cognitive performance. However, a systematic review designed to evaluate the effects of dietary anthocyanin interventions on cognitive performance and underlying mechanisms (i.e., vascular function and cardiometabolic risk markers) in an integrated manner has not been published yet. Therefore, the aim of this systematic literature review was to provide an overview of dietary intervention trials describing effects of berry anthocyanins on cognitive performance, vascular function, and cardiometabolic risk markers in humans.

2. The Effect of Berry Anthocyanins on Cognitive Performance

Of the eighteen studies that determined the effects of berry anthocyanins on cognitive performance outcomes, fifteen used a blueberry intervention, while the other three studies used either a chokeberry extract, a blackcurrant juice, or a blackcurrant extract. Results on cognitive performance were clustered based on the domains evaluated in the studies, i.e., (i) attention and psychomotor speed domain, (ii) executive function domain, (iii) memory domain, or (iv) other tests. Study results are shown in Table 1.
Of the eighteen studies that determined the effects of berry anthocyanins on cognitive performance outcomes, fifteen used a blueberry intervention, while the other three studies used either a chokeberry extract, a blackcurrant juice, or a blackcurrant extract. Results on cognitive performance were clustered based on the domains evaluated in the studies, i.e., (i) attention and psychomotor speed domain, (ii) executive function domain, (iii) memory domain, or (iv) other tests. Study results are shown in Table 2.
Table 12.
 The effect of berry anthocyanins on cognitive performance outcomes, compared to control.

↑ or ↓ or = indicates statistically significant improved or deteriorated values or no significant change in the intervention group compared to control. ? indicates a trend. # indicates that the value was calculated; 1 indicates that the dosage was dependent on body weight. Abbreviations: AMT: attention matrices test; BPT: brown peterson task; CBT: Corsi blocks test; COWAT: controlled oral word association; CVLT: california verbal learning test; DST: digit span task; DVT: Digit vigilance test; FCRTT: five-choice reaction time task; GPT: grooved pegboard test; HVLT: hopkins verbal learning test; ISLT: international shopping list task; MANT: modified attention network task; MFT: modified flanker test; nr: not reported; OLT: object location task; PMT: picture matching task; NCT: number cross out test; PRT: picture recognition task; RAVLT: rey auditory verbal learning test; RVIP: rapid visual information processing; SMST: sternberg memory scanning task; SPAL: spatial paired associates learning; SRTT: simple reaction time task; SST: serial subtractions task; SWM: spatial working memory task; TMT: trail making test; TOWRE-2: test of word reading efficiency; TST: task switching test; VMWMT: Virtual Morris Water Maze test; VPAL: verbal paired associates learning; VSGT: visuospatial grid task; WRT: word recognition task.

3. The Effect of Berry Anthocyanins on Cardiometabolic Risk

Thirty-two studies determined effects of berry anthocyanins on cardiometabolic risk markers. The interventions used were blueberry (n = 12), chokeberry (n = 7), blackcurrant (n = 6), black raspberry (n = 4), elderberry (n = 2), and bilberry (n = 1). The results were clustered into (i) BP measurements, or (ii) metabolic risk markers. The results of all studies are displayed in Table 2.
Author (Year) Intervention Anthocyanin Dose Blood Pressure Metabolic Risk Markers
      SBP/DBP MAP Central SBP/DBP 24hr ABP SBP/DBP Heart Rate Glucose Insulin TC TAG HDL-C LDL-C non-HDL ApoA1 ApoB
Ahles (2020) [14] Chokeberry extract 16 mg =/=   =/=                      
27 mg =/=   =/=                      
Arevström (2019) [31] Bilberry powder 90 mg # =/=       =     = = = =      
Basu (2010) [32] Freeze-dried blueberry juice 742 mg ↓/↓         =   = = = =      
Castro-Acosta (2016) [33] Blackcurrant extract 131 mg =/=                          
322 mg =/=                          
599 mg =/=                          
Cho (2020) [34] Black raspberry extract nr =/=             = = =
Cook (2017) [35] New Zealand blackcurrant extract 210 mg =/= =     =                  
Cook (2017) [36] New Zealand blackcurrant extract 105 mg =/= =     =                  
210 mg =/=     =                  
315 mg =/= ↓?     =                  
Cook (2020) [18] New Zealand blackcurrant extract 210 mg ↓/↓                          
Curtis (2009) [37] Elderberry extract 500 mg =/=       = =   = = = =      
Curtis (2019) [38] Freeze-dried blueberry powder 182 mg =/=         = = = = = =      
Del Bó (2013) [39] Blueberry jello 348 mg =/=                          
Del Bó (2017) [40] Blueberry juice 309 mg =/=       =                  
Istas (2019) [41] Chokeberry extract and whole fruit 3.6 mg =/=   =/=   = =   = = = =      
30 mg =/=   =/=   = =   = = = =      
Jeong (2014) [42] Black raspberry extract nr               = = =   = =
Jeong (2016) [43] Black raspberry extract nr (low dose) =/=   =/- =/=                    
nr (high dose) =/=   =/- ↓/=                    
Jeong (2016) [44] Black raspberry extract nr =/=   =/-   =                  
Johnson (2015) [45] Freeze-dried blueberry powder 103 mg # ↓/↓ =     =                  
Khan (2014) [46] Blackcurrant juice 10 mg =/=             =            
35.75 mg =/=             =            
Loo (2016) [47] Chokeberry juice and powder 1024 mg =/=     =/↓?   =   = = =     = =
McAnulty (2014) [48] Blueberry powder nr ↓/=                          
McAnulty (2019) [49] Freeze-dried blueberry powder nr ↓/=                          
Murkovic (2004) [50] Elderberry juice 40 mg               = = = =      
Naruszewicz (2007) [51] Chokeberry extract 64 mg # ↓/↓         =   = = = =      
Okamoto (2020) [52] New Zealand blackcurrant extract 210 mg ↓/↓? =/↓     =     = = =      
Petrovic (2016) [53] Chokeberry juice nr           =   = =          
Pokimica (2019) [54] Chokeberry juice 28.3 mg =/=         =   = =          
113.3 mg =/=         =   = =   =      
Riso (2013) [55] Freeze-dried blueberry powder 375 mg =/=         =   = = = =      
Rodriguez-Mateos (2013) [56] Freeze-dried blueberry powder 310 mg =/=       =                  
517 mg =/=       =                  
724 mg =/=       =                  
Stull (2010) [57] Freeze-dried blueberry powder 668 mg =/=         = = = = = =      
Stull (2015) [58] Freeze-dried blueberry powder 290.3 mg =/=         = = = = = =      
Whyte (2018) [28] Wild blueberry powder and extract 1.35 mg =/=                          
2.7 mg =/=                          
7 mg ↓/=                          
Xie (2017) [59] Chokeberry extract 45.1 mg =/=             = =  
Author (Year) Intervention Anthocyanin Dose Attention and Psychomotor Speed Executive Function Memory Other
      TMT-A MFT GPT FCRTT Miscellaneous TMT-B Stroop (M)ANT Go-No-Go Miscellaneous RAVLT - HVLT - CVLT VPAL and SPAL WRT n-back Miscellaneous  
Ahles (2020) [14] Chokeberry extract 16 mg       = (NCT)   =                  
27 mg     =   = (NCT)   =                  
Barfoot (2019) [15] Freeze-dried wild blueberry juice 253 mg                   ↑ (R)         = (TOWRE-2)
Boespflug (2018) [16] Freeze-dried blueberry powder 269 mg                           ↑?    
Bowtell (2017) [17] Blueberry extract 387 mg             =             = (ISLT) = (Groton Maze)
Cook (2020) [18] New Zealand blackcurrant extract 210 mg       = = (RVIP, SRT)         = (SWM)   = (S)        
Krikorian (2010) [19] Blueberry juice 428-598 mg 1                     ↑ (C) ↑ (V)        
Krikorian (2020) [20] Freeze-dried blueberry fruit powder 258 mg ↑?         =       ↑ (COWAT) = (H) ↑ (S)        
McNamara (2018) [21] Freeze-dried blueberry powder 269 mg =         =       = (COWAT) ↑ (H)          
Miller (2018) [22] Freeze-dried blueberry powder 230 mg # =         =   =   ↑ (TST) ↑ (C)       = (DST) = (VMWMT)
Traupe (2018) [23] Blueberry juice nr         ↑ (AMT)                 ↑ (Prose Memory)  
Watson (2019) [24] Blackcurrant juice 115.09 mg       = (DVT, SRTT)                      
Whyte (2015) [25] Blueberry juice 143 mg             =   =   =? (R)     = = (OLT)  
Whyte (2016) [26] Freeze-dried wild blueberry powder 127 mg   =             ↓? ↑? (PMT) ↑? (R)          
254 mg               = ↑? (PMT) ↑ (R)          
Whyte (2017) [27] Wild blueberry powder 253 mg                              
Whyte (2018) [28] Wild blueberry powder and extract 1.35 mg             = =     = (R)   =   = (CBT, SST, SMST)  
2.7 mg             = =     = (R)   =   = (CBT, SST, SMST)  
7 mg             = =     = (R)     ↑? (CBT); = (SST, SMST)  
Whyte (2020) [29] Wild blueberry powder 475 mg               =   ↑ (R)          
Whyte (2020) [30] Wild blueberry powder 253 mg                     = (R)       ↑ (VSGT); = (BPT, PRT)  
Wild blueberry powder 253 mg               ↑?   = Stop-Go, TST)        

↑ or ↓ or = indicates statistically significant higher or lower values or no significant change in the intervention group compared to control. ? indicates a trend. # indicates that the value was calculated; 1 indicates that the dosage was dependent on body weight. Abbreviations: ABP: ambulatory blood pressure; ApoA1: apolipoprotein A1; ApoB: apolipoprotein B; DBP: diastolic blood pressure; HDL-C: high-density lipoprotein cholesterol; HR; heart rate; LDL-C: low-density lipoprotein cholesterol; MAP: mean arterial pressure; nr: not reported; SBP: systolic blood pressure; TAG: triacylglycerol; TC: total cholesterol.

4. Discussion

[3]
[60]
[61]
[14]
[22]
[62]
[63]
[64]
[65]
[66]
[67]
[68][69]
[70]. Consequently, we recommend future studies to report information on the chemical composition and extraction methods of the study products. In conclusion, this systematic review provides evidence for the beneficial effects of berry anthocyanins on cognitive performance as memory was improved. Vascular endothelial function, as measured by FMD and BP were also affected, and these effects may underlie the observed effects on memory. Future studies should focus on exploring a potential causal link between the beneficial effects on cognitive performance and improvement in vascular function and cardiometabolic risk markers.

References

  1. Harvey, P.D. Domains of cognition and their assessment. Dialogues Clin. Neurosci. 2019, 21, 227–237.
  2. Craik, F.; Bialystok, E. Cognition through the lifespan: Mechanisms of change. Trends Cogn. Sci. 2006, 10, 131–138.
  3. Murman, D.L. The Impact of Age on Cognition. Semin. Hear. 2015, 36, 111–121.
  4. Fouda, A.Y.; Fagan, S.C.; Ergul, A. Brain Vasculature and Cognition. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 593–602.
  5. Pase, M.P.; Satizabal, C.L.; Seshadri, S. Role of Improved Vascular Health in the Declining Incidence of Dementia. Stroke 2017, 48, 2013–2020.
  6. Widmer, R.J.; Lerman, A. Endothelial dysfunction and cardiovascular disease. Glob. Cardiol. Sci. Pract. 2014, 291–308.
  7. Creager, M.A.; Lüscher, T.F.; Cosentino, F.; Beckman, J.A. Diabetes and Vascular Disease. Circulation 2003, 108, 1527–1532.
  8. Flammer, A.J.; Anderson, T.; Celermajer, D.S.; Creager, M.A.; Deanfield, J.; Ganz, P.; Hamburg, N.M.; Lüscher, T.F.; Shechter, M.; Taddei, S.; et al. The assessment of endothelial function: From research into clinical practice. Circulation 2012, 126, 753–767.
  9. Tsentidou, G.; Moraitou, D.; Tsolaki, M. Cognition in Vascular Aging and Mild Cognitive Impairment. J. Alzheimers Dis. 2019, 72, 55–70.
  10. Clare, L.; Wu, Y.-T.; Teale, J.C.; MacLeod, C.; Matthews, F.; Brayne, C.; Woods, B.; CFAS-Wales Study Team. Potentially modifiable lifestyle factors, cognitive reserve, and cognitive function in later life: A cross-sectional study. PLoS Med. 2017, 14, e1002259.
  11. Papageorgiou, N.; Tousoulis, D.; Androulakis, E.; Giotakis, A.; Siasos, G.; Latsios, G.; Stefanadis, C. Lifestyle factors and endothelial function. Curr. Vasc. Pharmacol. 2012, 10, 94–106.
  12. Shi, L.; Morrison, J.A.; Wiecha, J.; Horton, M.; Hayman, L.L. Healthy lifestyle factors associated with reduced cardiometabolic risk. Br. J. Nutr. 2011, 105, 747–754.
  13. Kent, K.; Charlton, K.E.; Netzel, M.; Fanning, K. Food-based anthocyanin intake and cognitive outcomes in human intervention trials: A systematic review. J. Hum. Nutr. Diet. 2017, 30, 260–274.
  14. Ahles, S.; Stevens, Y.R.; Joris, P.J.; Vauzour, D.; Adam, J.; de Groot, E.; Plat, J. The Effect of Long-Term Aronia melanocarpa Extract Supplementation on Cognitive Performance, Mood, and Vascular Function: A Randomized Controlled Trial in Healthy, Middle-Aged Individuals. Nutrients 2020, 12, 2475.
  15. Barfoot, K.L.; May, G.; Lamport, D.J.; Ricketts, J.; Riddell, P.M.; Williams, C.M. The effects of acute wild blueberry supplementation on the cognition of 7-10-year-old schoolchildren. Eur. J. Nutr. 2019, 58, 2911–2920.
  16. Boespflug, E.L.; Eliassen, J.C.; Dudley, J.A.; Shidler, M.D.; Kalt, W.; Summer, S.S.; Stein, A.L.; Stover, A.N.; Krikorian, R. Enhanced neural activation with blueberry supplementation in mild cognitive impairment. Nutr. Neurosci. 2018, 21, 297–305.
  17. Bowtell, J.L.; Aboo-Bakkar, Z.; Conway, M.E.; Adlam, A.R.; Fulford, J. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl. Physiol. Nutr. Metab. 2017, 42, 773–779.
  18. Cook, M.D.; Sandu, B.H.A.K.; Joyce Ph, D.J. Effect of New Zealand Blackcurrant on Blood Pressure, Cognitive Function and Functional Performance in Older Adults. J. Nutr. Gerontol. Geriatr. 2020, 39, 99–113.
  19. Krikorian, R.; Shidler, M.D.; Nash, T.A.; Kalt, W.; Vinqvist-Tymchuk, M.R.; Shukitt-Hale, B.; Joseph, J.A. Blueberry Supplementation Improves Memory in Older Adults. J. Agric. Food Chem. 2010, 58, 3996–4000.
  20. Krikorian, R.; Kalt, W.; McDonald, J.E.; Shidler, M.D.; Summer, S.S.; Stein, A.L. Cognitive performance in relation to urinary anthocyanins and their flavonoid-based products following blueberry supplementation in older adults at risk for dementia. J. Funct. Foods 2020, 64, 103667.
  21. McNamara, R.K.; Kalt, W.; Shidler, M.D.; McDonald, J.; Summer, S.S.; Stein, A.L.; Stover, A.N.; Krikorian, R. Cognitive response to fish oil, blueberry, and combined supplementation in older adults with subjective cognitive impairment. Neurobiol. Aging 2018, 64, 147–156.
  22. Miller, M.G.; Hamilton, D.A.; Joseph, J.A.; Shukitt-Hale, B. Dietary blueberry improves cognition among older adults in a randomized, double-blind, placebo-controlled trial. Eur. J. Nutr. 2018, 57, 1169–1180.
  23. Traupe, I.; Giacalone, M.; Agrimi, J.; Baroncini, M.; Pomé, A.; Fabiani, D.; Danti, S.; Timpano Sportiello, M.R.; Di Sacco, F.; Lionetti, V.; et al. Postoperative cognitive dysfunction and short-term neuroprotection from blueberries: A pilot study. Minerva Anestesiol. 2018, 84, 1352–1360.
  24. Watson, A.W.; Okello, E.J.; Brooker, H.J.; Lester, S.; McDougall, G.J.; Wesnes, K.A. The impact of blackcurrant juice on attention, mood and brain wave spectral activity in young healthy volunteers. Nutr. Neurosci. 2019, 22, 596–606.
  25. Whyte, A.R.; Williams, C.M. Effects of a single dose of a flavonoid-rich blueberry drink on memory in 8 to 10 y old children. Nutrition 2015, 31, 531–534.
  26. Whyte, A.R.; Schafer, G.; Williams, C.M. Cognitive effects following acute wild blueberry supplementation in 7- to 10-year-old children. Eur. J. Nutr. 2016, 55, 2151–2162.
  27. Whyte, A.R.; Schafer, G.; Williams, C.M. The effect of cognitive demand on performance of an executive function task following wild blueberry supplementation in 7 to 10 years old children. Food Funct. 2017, 8, 4129–4138.
  28. Whyte, A.R.; Cheng, N.; Fromentin, E.; Williams, C.M. A Randomized, Double-Blinded, Placebo-Controlled Study to Compare the Safety and Efficacy of Low Dose Enhanced Wild Blueberry Powder and Wild Blueberry Extract (ThinkBlue™) in Maintenance of Episodic and Working Memory in Older Adults. Nutrients 2018, 10, 660.
  29. Whyte, A.R.; Rahman, S.; Bell, L.; Edirisinghe, I.; Krikorian, R.; Williams, C.M.; Burton-Freeman, B. Improved metabolic function and cognitive performance in middle-aged adults following a single dose of wild blueberry. Eur. J. Nutr. 2020.
  30. Whyte, A.R.; Lamport, D.J.; Schafer, G.; Williams, C.M. The cognitive effects of an acute wild blueberry intervention on 7- to 10-year-olds using extended memory and executive function task batteries. Food Funct. 2020, 11, 4793–4801.
  31. Arevström, L.; Bergh, C.; Landberg, R.; Wu, H.; Rodriguez-Mateos, A.; Waldenborg, M.; Magnuson, A.; Blanc, S.; Fröbert, O. Freeze-dried bilberry (Vaccinium myrtillus) dietary supplement improves walking distance and lipids after myocardial infarction: An open-label randomized clinical trial. Nutr. Res. 2019, 62, 13–22.
  32. Basu, A.; Du, M.; Leyva, M.J.; Sanchez, K.; Betts, N.M.; Wu, M.; Aston, C.E.; Lyons, T.J. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J. Nutr. 2010, 140, 1582–1587.
  33. Castro-Acosta, M.L.; Smith, L.; Miller, R.J.; McCarthy, D.I.; Farrimond, J.A.; Hall, W.L. Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. J. Nutr. Biochem. 2016, 38, 154–161.
  34. Cho, J.M.; Chae, J.; Jeong, S.R.; Moon, M.J.; Ha, K.-C.; Kim, S.; Lee, J.H. The cholesterol-lowering effect of unripe Rubus coreanus is associated with decreased oxidized LDL and apolipoprotein B levels in subjects with borderline-high cholesterol levels: A randomized controlled trial. Lipids Health Dis. 2020, 19, 166.
  35. Cook, M.D.; Myers, S.D.; Gault, M.L.; Willems, M.E.T. Blackcurrant Alters Physiological Responses and Femoral Artery Diameter during Sustained Isometric Contraction. Nutrients 2017, 9, 556.
  36. Cook, M.D.; Myers, S.D.; Gault, M.L.; Edwards, V.C.; Willems, M.E. Cardiovascular function during supine rest in endurance-trained males with New Zealand blackcurrant: A dose-response study. Eur. J. Appl. Physiol. 2017, 117, 247–254.
  37. Curtis, P.J.; Kroon, P.A.; Hollands, W.J.; Walls, R.; Jenkins, G.; Kay, C.D.; Cassidy, A. Cardiovascular disease risk biomarkers and liver and kidney function are not altered in postmenopausal women after ingesting an elderberry extract rich in anthocyanins for 12 weeks. J. Nutr. 2009, 139, 2266–2271.
  38. Curtis, P.J.; van der Velpen, V.; Berends, L.; Jennings, A.; Feelisch, M.; Umpleby, A.M.; Evans, M.; Fernandez, B.O.; Meiss, M.S.; Minnion, M.; et al. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome-results from a 6-month, double-blind, randomized controlled trial. Am. J. Clin. Nutr. 2019, 109, 1535–1545.
  39. Del Bó, C.; Riso, P.; Campolo, J.; Møller, P.; Loft, S.; Klimis-Zacas, D.; Brambilla, A.; Rizzolo, A.; Porrini, M. A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers. Nutr. Res. 2013, 33, 220–227.
  40. Del Bo, C.; Deon, V.; Campolo, J.; Lanti, C.; Parolini, M.; Porrini, M.; Klimis-Zacas, D.; Riso, P. A serving of blueberry (V. corymbosum) acutely improves peripheral arterial dysfunction in young smokers and non-smokers: Two randomized, controlled, crossover pilot studies. Food Funct. 2017, 8, 4108–4117.
  41. Istas, G.; Wood, E.; Le Sayec, M.; Rawlings, C.; Yoon, J.; Dandavate, V.; Cera, D.; Rampelli, S.; Costabile, A.; Fromentin, E.; et al. Effects of aronia berry (poly)phenols on vascular function and gut microbiota: A double-blind randomized controlled trial in adult men. Am. J. Clin. Nutr. 2019, 110, 316–329.
  42. Jeong, H.S.; Hong, S.J.; Lee, T.B.; Kwon, J.W.; Jeong, J.T.; Joo, H.J.; Park, J.H.; Ahn, C.M.; Yu, C.W.; Lim, D.S. Effects of black raspberry on lipid profiles and vascular endothelial function in patients with metabolic syndrome. Phytother. Res. 2014, 28, 1492–1498.
  43. Jeong, H.S.; Hong, S.J.; Cho, J.Y.; Lee, T.B.; Kwon, J.W.; Joo, H.J.; Park, J.H.; Yu, C.W.; Lim, D.S. Effects of Rubus occidentalis extract on blood pressure in patients with prehypertension: Randomized, double-blinded, placebo-controlled clinical trial. Nutrition 2016, 32, 461–467.
  44. Jeong, H.S.; Kim, S.; Hong, S.J.; Choi, S.C.; Choi, J.H.; Kim, J.H.; Park, C.Y.; Cho, J.Y.; Lee, T.B.; Kwon, J.W.; et al. Black Raspberry Extract Increased Circulating Endothelial Progenitor Cells and Improved Arterial Stiffness in Patients with Metabolic Syndrome: A Randomized Controlled Trial. J. Med. Food 2016, 19, 346–352.
  45. Johnson, S.A.; Figueroa, A.; Navaei, N.; Wong, A.; Kalfon, R.; Ormsbee, L.T.; Feresin, R.G.; Elam, M.L.; Hooshmand, S.; Payton, M.E.; et al. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: A randomized, double-blind, placebo-controlled clinical trial. J. Acad. Nutr. Diet. 2015, 115, 369–377.
  46. Khan, F.; Ray, S.; Craigie, A.M.; Kennedy, G.; Hill, A.; Barton, K.L.; Broughton, J.; Belch, J.J. Lowering of oxidative stress improves endothelial function in healthy subjects with habitually low intake of fruit and vegetables: A randomized controlled trial of antioxidant- and polyphenol-rich blackcurrant juice. Free Radic. Biol. Med. 2014, 72, 232–237.
  47. Loo, B.M.; Erlund, I.; Koli, R.; Puukka, P.; Hellström, J.; Wähälä, K.; Mattila, P.; Jula, A. Consumption of chokeberry (Aronia mitschurinii) products modestly lowered blood pressure and reduced low-grade inflammation in patients with mildly elevated blood pressure. Nutr. Res. 2016, 36, 1222–1230.
  48. McAnulty, L.S.; Collier, S.R.; Landram, M.J.; Whittaker, D.S.; Isaacs, S.E.; Klemka, J.M.; Cheek, S.L.; Arms, J.C.; McAnulty, S.R. Six weeks daily ingestion of whole blueberry powder increases natural killer cell counts and reduces arterial stiffness in sedentary males and females. Nutr. Res. 2014, 34, 577–584.
  49. McAnulty, L.; Collier, S.; Pike, J.; Thompsonand, K.; McAnulty, S. Time course of blueberry ingestion on measures of arterial stiffness and blood pressure. J. Berry Res. 2019, 9, 1–10.
  50. Murkovic, M.; Abuja, P.M.; Bergmann, A.R.; Zirngast, A.; Adam, U.; Winklhofer-Roob, B.M.; Toplak, H. Effects of elderberry juice on fasting and postprandial serum lipids and low-density lipoprotein oxidation in healthy volunteers: A randomized, double-blind, placebo-controlled study. Eur. J. Clin. Nutr. 2004, 58, 244–249.
  51. Naruszewicz, M.; Laniewska, I.; Millo, B.; Dłuzniewski, M. Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI). Atherosclerosis 2007, 194, e179–e184.
  52. Okamoto, T.; Hashimoto, Y.; Kobayashi, R.; Nakazato, K.; Willems, M.E.T. Effects of blackcurrant extract on arterial functions in older adults: A randomized, double-blind, placebo-controlled, crossover trial. Clin. Exp. Hypertens. 2020, 42, 640–647.
  53. Petrovic, S.; Arsic, A.; Glibetic, M.; Cikiriz, N.; Jakovljevic, V.; Vucic, V. The effects of polyphenol-rich chokeberry juice on fatty acid profiles and lipid peroxidation of active handball players: Results from a randomized, double-blind, placebo-controlled study. Can. J. Physiol. Pharmacol. 2016, 94, 1058–1063.
  54. Pokimica, B.; García-Conesa, M.T.; Zec, M.; Debeljak-Martačić, J.; Ranković, S.; Vidović, N.; Petrović-Oggiano, G.; Konić-Ristić, A.; Glibetić, M. Chokeberry Juice Containing Polyphenols Does Not Affect Cholesterol or Blood Pressure but Modifies the Composition of Plasma Phospholipids Fatty Acids in Individuals at Cardiovascular Risk. Nutrients 2019, 11, 850.
  55. Riso, P.; Klimis-Zacas, D.; Del Bo, C.; Martini, D.; Campolo, J.; Vendrame, S.; Møller, P.; Loft, S.; De Maria, R.; Porrini, M. Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur. J. Nutr. 2013, 52, 949–961.
  56. Rodriguez-Mateos, A.; Rendeiro, C.; Bergillos-Meca, T.; Tabatabaee, S.; George, T.W.; Heiss, C.; Spencer, J.P. Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: A randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. Am. J. Clin. Nutr. 2013, 98, 1179–1191.
  57. Stull, A.J.; Cash, K.C.; Johnson, W.D.; Champagne, C.M.; Cefalu, W.T. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J. Nutr. 2010, 140, 1764–1768.
  58. Stull, A.J.; Cash, K.C.; Champagne, C.M.; Gupta, A.K.; Boston, R.; Beyl, R.A.; Johnson, W.D.; Cefalu, W.T. Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: A randomized, double-blind, placebo-controlled clinical trial. Nutrients 2015, 7, 4107–4123.
  59. Xie, L.; Vance, T.; Kim, B.; Lee, S.G.; Caceres, C.; Wang, Y.; Hubert, P.A.; Lee, J.Y.; Chun, O.K.; Bolling, B.W. Aronia berry polyphenol consumption reduces plasma total and low-density lipoprotein cholesterol in former smokers without lowering biomarkers of inflammation and oxidative stress: A randomized controlled trial. Nutr. Res. 2017, 37, 67–77.
  60. Root-Bernstein, R. Brain Aging: Models, Methods, and Mechanisms. JAMA 2007, 298, 2798–2799.
  61. Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Bloodgood, B.; Conroy, D.E.; Macko, R.; Marquez, D.X.; Petruzzello, S.J.; Powell, K.E.; et al. Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Med. Sci. Sports Exerc. 2019, 51, 1242–1251.
  62. Tousoulis, D.; Antoniades, C.; Stefanadis, C. Evaluating endothelial function in humans: A guide to invasive and non-invasive techniques. Heart 2005, 91, 553–558.
  63. Vendemiale, G.; Romano, A.D.; Dagostino, M.; de Matthaeis, A.; Serviddio, G. Endothelial dysfunction associated with mild cognitive impairment in elderly population. Aging Clin. Exp. Res. 2013, 25, 247–255.
  64. Csipo, T.; Lipecz, A.; Fulop, G.A.; Hand, R.A.; Ngo, B.N.; Dzialendzik, M.; Tarantini, S.; Balasubramanian, P.; Kiss, T.; Yabluchanska, V.; et al. Age-related decline in peripheral vascular health predicts cognitive impairment. Geroscience 2019, 41, 125–136.
  65. Naiberg, M.R.; Newton, D.F.; Goldstein, B.I. Flow-Mediated Dilation and Neurocognition: Systematic Review and Future Directions. Psychosom. Med. 2016, 78, 192–207.
  66. Nabeel, P.M.; Kiran, V.R.; Joseph, J.; Abhidev, V.V.; Sivaprakasam, M. Local Pulse Wave Velocity: Theory, Methods, Advancements, and Clinical Applications. IEEE Rev. Biomed. Eng. 2020, 13, 74–112.
  67. Nassour, R.; Ayash, A.; Al-tameemi, K. Anthocyanin pigments: Structure and biological importance. J. Chem. Pharm. Sci. 2020, 13, 45–57.
  68. Kay, C.D.; Mazza, G.; Holub, B.J.; Wang, J. Anthocyanin metabolites in human urine and serum. Br. J. Nutr. 2004, 91, 933–942.
  69. Kalt, W.; Liu, Y.; McDonald, J.E.; Vinqvist-Tymchuk, M.R.; Fillmore, S.A.E. Anthocyanin Metabolites Are Abundant and Persistent in Human Urine. J. Agric. Food Chem. 2014, 62, 3926–3934.
  70. Recharla, N.; Riaz, M.; Ko, S.; Park, S. Novel technologies to enhance solubility of food-derived bioactive compounds: A review. J. Funct. Foods 2017, 39, 63–73.
More
ScholarVision Creations