The Foundation of Classical Mechanics: Comparison
Please note this is a comparison between Version 2 by Vicky Zhou and Version 1 by Danilo Capecchi.

Mechanics is the science of the equilibrium and motion of bodies subject to forces. The adjective classical, hence Classical Mechanics , was added in the 20th century to distinguish it from relativistic mechanics which studies motion with speed close to light speed and quantum mechanics which studies motion at a subatomic level.

  • classical mechanics
  • fundaments
  • history
  • epistemology
  • analytical mechanics
Please wait, diff process is still running!

References

  1. Allen, D.H. How Mechanics Shaped the Modern World; Springer: Dordrecht, The Netherlands, 2014.
  2. Painlevé, P. Les axiomes de la mécanique, examen critique; note sur la propagation de la lumière; Gauthier-Villars: Paris, France, 1922.
  3. Nagel, E. The Structure of Science; Harcourt: New York, NY, USA, 1961.
  4. Simon, H. The axioms of Newtonian mechanics. Philos. Mag. 1947, 38, 888–905.
  5. Simon, H. The axiomatization of classical mechanics. Philos. Sci. 1954, 21, 340–343.
  6. McKinsey, J.; Sugar, A.; Suppes, P. Axiomatic foundation of classical mechanics. J. Ration. Mech. Anal. 1953, 2, 253–272.
  7. Truesdell, C.A. A First Course in Rational Continuum Mechanics; Academic Press: New York, NY, USA, 1971.
  8. Aristotle. Mechanical problems. In Aristotle Minor Works; Hett, W., Ed.; Harward University Press: Cambridge, UK, 1963; pp. 327–411.
  9. Aristotle. Problemi Meccanici; Bottecchia Dehò, M.E., Ed.; Rubbettino: Catanzaro, Italy, 2000.
  10. Clagett, M. The Science of Mechanics in the Middle Ages; The University of Wisconsin Press: Madison, WI, USA, 1959.
  11. Archimedes. On the equilibrium of planes. In The Works of Archimedes; Heath, T., Ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 189–220.
  12. Capecchi, D. History of Virtual Work Laws; Birchäuser: Milan, Italy, 2012.
  13. Copernicus, N. De Revolutionibus Orbium Coelestium; Petreius: Nuremberg, Germany, 1543.
  14. Galilei, G. Dialogo sopra i due massimi sistemi del mondo. In Le opere di Galileo Galilei; Favaro, A., Ed.; Barbera: Florence, KY, USA, 1632; Volume 7.
  15. Galilei, G. Opere di Galileo Galilei Linceo; Eredi del Dozza: Bologna, Italy, 1890; Volume 4.
  16. Galilei, G. Discorsi e dimostrazioni matematiche sopra due nuove scienze. In Le opere di Galileo Galilei; Favaro, A., Ed.; Barbera: Florence, Italy, 1638; Volume 8.
  17. Koyré, A. Études Galiléennes; Hermann: Paris, France, 1966.
  18. Dijksterhuis, E. The Mechanization of the World Picture (De Mechanisering van het Wereldbeeld, 1950); Dikshoorn, C., Ed.; Oxford University Press: New York, NY, USA, 1961.
  19. Cavalieri, B. Lo Specchio Ustorio, Overo Trattato Delle Settioni Coniche; Ferroni: Bologna, Italy, 1632.
  20. Evangelista, T. De motu proiectorum. In Opera Geometrica; Evangelista, T., Ed.; Masse & de Landis: Florence, Italy, 1644; pp. 154–243.
  21. Kuhn, T. The Structure of Scientific Revolution; The University of Chicago Press: Chicago, IL, USA, 1962.
  22. Capecchi, D. The Problem of Motion of Bodies; Springer: Dordrecht, The Netherlands, 2014.
  23. Capecchi, D. The Path to Post-Galilean Epistemology; Springer: Dordrecht, The Netherlands, 2018.
  24. Wallis, J. Mechanica, Sive De Motu, Tractatus Geometricus; Godbid: London, UK, 1670.
  25. Newton, I. Philosophiae Naturalis Principia Mathematica; Jussu Societatis Regiae ac Typis Josephi Streater: London, UK, 1687.
  26. Newton, I. Philosophia Naturalis Principia Mathematica, 3rd ed.; Innys: London, UK, 1726.
  27. Newton, I. The Principia. Mathematical Principles of Natural Philosophy; Cohen, I.B., Withman, A., Budenz, J., Eds.; University of California Press: Oakland, CA, USA, 1999.
  28. Capecchi, D. Epistemology and Natural Philosophy in the 18th Century; Springer: Dordrecht, The Netherlands, 2021.
  29. Euler, L. Mechanica Sive Motus Scientia Analytice Exposita (2 Vols); Academiae Scientiarum: Saint Petersburg, FL, USA, 1736.
  30. Maltese, G. Da “F=ma” alle Leggi Cardinali del Moto: Sviluppo della Tradizione Newtoniana nella Meccanica del 700; Hoepli: Milan, Italy, 2001.
  31. Maltese, G. On the changing fortune of the Newtonian tradition in mechanics. In Two Cultures; Williams, K., Ed.; Birkhäuser: Basel, Switzerland, 2006; pp. 199–222.
  32. Lagrange, J.L. Méchanique Analitique; Desaint: Paris, France, 1788.
  33. Panza, M. Mathematization of the science of motion and the birth of analytical mechanics: A historiographical note. In The Application of Mathematics to the Sciences of Nature; Cerrai, C., Freguglia, P., Pellegrini, P., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 253–272.
  34. Lagrange, J.L. Analytical Mechanics; Boissonnade, A., Vagliente, V.N., Eds.; Springer: Dordrecht, The Netherlands, 1997.
  35. Capecchi, D.; Drago, A. On Lagrange’s history of mechanics. Meccanica 2005, 40, 19–33.
  36. Carnot, L. Essai sur les Machines en Général; de Defay: Dijon, France, 1786.
  37. Dugas, R. Histoire de la Mécanique; Griffon: Neuchatel, Switzerland, 1950.
  38. Mach, E. Die Mechanik in Ihrer Entwicklung Historisch-Kritisch Dargestellt; Brockhaus: Leipzig, Germany, 1883.
  39. Poincaré, H. La Science et L’hypotèse; Flammarion: Paris, France, 1902.
  40. Duhem, P. Traité D’énergétique ou de Thermodynamique Générale; Gauthier-Villars: Paris, France, 1911.
  41. Hamilton, W. On a general method in dynamics; by which the study of the motions of all free systems of attracting or repelling points is reduced to the search and differentiation of one central relation, or characteristic function. Philos. Trans. R. Soc. Lond. 1834, 124, 247–308.
  42. Jacobi, C. Gesammelte Werke; Reimer: Berlin, Germany, 1882–1891; Volume 8.
  43. Truesdell, C.A. Essays in the History of Mechanics; Springer: New York, NY, USA, 1968.
  44. Disalle, R. Carl Gottfried Neumann. Sci. Context 1993, 6, 345–353.
  45. Schlote, K. The emergence of mathematical physics at the university of Leipzig. In The Dialectic Relation between Physics and Mathematics in the XIXth Century; Barbin, E., Pisano, R., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 121–137.
  46. Barbin, E.; Guitart, R. Mathematical physics in the style of Gabriel Lamé and the treatise of Emile Mathieu. In The Dialectic Relation between Physics and Mathematics in the XIXth Century; Barbin, E., Pisano, R., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 97–119.
  47. Frege, G. Die Grundlagen der Arithmetik. Eine Logisch-Mathematische Untersuchung ueber den Begriff der Zahl Breslau; Koebner: Wroclaw, Poland, 1884.
  48. Kline, M. Mathematical Thought from Ancient to Modern Times; Oxford University Press: Oxford, UK, 1972.
  49. Houzel, C. The birth of non-Euclidean geometry. In 1830–1930: A century of Geometry; Boi, L., Flament, D., Salanskis, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 1–21.
More
Video Production Service