Dendrimer Nanodevices and Gallic Acid: Comparison
Please note this is a comparison between Version 4 by Silvana Alfei and Version 11 by Catherine Yang.

Human neuroblastoma (NB), a pediatric tumor inclined to relapse, after an initial response to therapy, usually develops resistance. Since several chemotherapeutics, including the weel known etoposide (ETO), exert anticancer effect by increasing reactive oxygen species (ROS), NB cells overproduce antioxidant compounds becoming drugs-resistant. Moreover, ETO, although widely used, suffers from fast metabolism, poor solubility and systemic toxicity, that limit its administration dosage and its therapeutic efficiency. An appealing strategy to sensitize NB cells to chemotherapy involves the use of less toxic natural compounds able to reduce antioxidant defenses of NB cells and to induce ROS overproduction. In this contest, although affected by several issues as instability and poor absorbability, antioxidant/pro-oxidant polyphenols, such as gallic acid (GA), showed pro-oxidant anti-cancer effects and low toxicity for healthy cells, in several kind of tumors, not including NB. Herein, for the first time, free GA, two GA-dendrimers, and the dendrimer adopted as GA reservoir were tested on both sensitive and chemoresistant NB cells. Furthermore, the dendrimer adopted as carrier for GA was exploited also for entrapping and protecting ETO and for enhancing its solubility and effectiveness.The dendrimer device induced ROS-mediated death both in sensitive NB cellsalso and also in chemoresistant ones. Free GA proved a dose-dependent ROS-mediated cytotoxicity on both cell populations. Intriguingly, when administered in dendrimer formulations at a dose not cytotoxic for NB cells, GA nullified any pro-oxidant activity of dendrimer. Unfortunately, due to GA, nanoformulations were inactive on NB cells, but GA resized in nanoparticles showed considerable ability in counteracting, at low dose, ROS production and oxidative stress, herein induced by the dendrimer. Interestingly, the ETO-dendrimer showed a synergistic action, controlled of ETO with dendrimer, slowly released the drug over time with aand significantly improved drugits bioactivity, representing a novel biodegradable and promising device for the delivery of ETO into NB cells.

  • Human neuroblastoma
  • gallic acid (GA)
  • polyester dendrimers
  • dendrimer nanoformulations
  • etoposide (ETO)
  • ETO loaded dendrimer
  • ROS-mediated anticancer effect
Please wait, diff process is still running!

References

  1. John M. Maris; Recent advances in neuroblastoma.. New England Journal of Medicine 2010, 362, 2202-11, 10.1056/NEJMra0804577.
  2. Nai-Kong V. Cheung; Michael Dyer; Neuroblastoma: developmental biology, cancer genomics and immunotherapy.. Nature Reviews Cancer 2013, 13, 397-411, 10.1038/nrc3526.
  3. Srishma Sridhar; Batool Al-Moallem; Hawra Kamal; Marta Terrile; Raymond L. Stallings; New Insights into the Genetics of Neuroblastoma. Molecular Diagnosis & Therapy 2013, 17, 63-69, 10.1007/s40291-013-0019-6.
  4. Maris, J.M.; Hogarty, M.D.; Bagatell, R.; Cohn, S.L.; Neuroblastoma. Lancet 2007, 369, 2106–2120, https://doi.org/10.1016/S0140-6736(07)60983-0.
  5. Alberto Garaventa; Roberto Luksch; Simona Biasotti; Gianluca Severi; Maria Rosa Pizzitola; Elisabetta Viscardi; Arcangelo Prete; Stefano Mastrangelo; Marta Podda; Riccardo Haupt; et al.Bruno De Bernardi A phase II study of topotecan with vincristine and doxorubicin in children with recurrent/refractory neuroblastoma. Cancer 2003, 98, 2488-2494, 10.1002/cncr.11797.
  6. T. Simon; Alfred Längler; Urs Harnischmacher; Michael C. Frühwald; Norbert Jorch; Alexander Claviez; Frank Berthold; Barbara Hero; Topotecan, cyclophosphamide, and etoposide (TCE) in the treatment of high-risk neuroblastoma. Results of a phase-II trial. Journal of Cancer Research and Clinical Oncology 2007, 133, 653-661, 10.1007/s00432-007-0216-y.
  7. T. Simon; Alfred Längler; Urs Harnischmacher; Michael C. Frühwald; Norbert Jorch; Alexander Claviez; Frank Berthold; Barbara Hero; Topotecan, cyclophosphamide, and etoposide (TCE) in the treatment of high-risk neuroblastoma. Results of a phase-II trial. Journal of Cancer Research and Clinical Oncology 2007, 133, 653-661, 10.1007/s00432-007-0216-y.
  8. Riccardo Haupt; Thomas R. Fears; Ansgar Heise; Helmut Gadner; Giuseppe LoIacono; Marino De Terlizzi; Margaret A. Tucker; Risk of secondary leukemia after treatment with etoposide (VP-16) for Langerhans' cell histiocytosis in Italian and Austrian-German populations.. International Journal of Cancer 1997, 71, 9-13, 10.1002/(sici)1097-0215(19970328)71:1<9::aid-ijc3>3.0.co;2-y.
  9. Haupt, R.; Fears, T.R.; Heise, A.; Gadner, H.; Loiacono, G.; De Terlizzi, M.; Tucker, M.A.; Risk of secondary leukemia after treatment with etoposide (VP-16) for Langerhans’cell histiocytosis in Italian and Austrian-German populations. Int. J. Cancer 1997, 71, 9-13, https://doi.org/10.1002/(SICI)1097-0215(19970328)71:1%3C9::AID-IJC3%3E3.0.CO;2-Y.
  10. Bernardini, S.; Bellincampi, L.; Ballerini, S.; Ranalli, M.; Pastore, A.; Cortese, C.; Federici, G.; Role of GST P1-1 in mediating the effect of etoposide on human neuroblastoma cell line Sh-Sy5y. J. Cell. Biochem. 2002, 86, 340–347, https://doi.org/10.1002/jcb.10219.
  11. Renata Colla; Alberto Izzotti; Chiara De Ciucis; Daniela Fenoglio; Silvia Ravera; Andrea Speciale; Roberta Ricciarelli; Anna Lisa Furfaro; Alessandra Pulliero; Mario Passalacqua; et al.Nicola TraversoMaria Adelaide PronzatoCinzia DomenicottiBarbara Marengo Glutathione-mediated antioxidant response and aerobic metabolism: two crucial factors involved in determining the multi-drug resistance of high-risk neuroblastoma. Oncotarget 2016, 7, 70715-70737, 10.18632/oncotarget.12209.
  12. Nicola Traverso; Roberta Ricciarelli; Mariapaola Nitti; Barbara Marengo; Anna Lisa Furfaro; Maria Adelaide Pronzato; Umberto Maria Marinari; Cinzia Domenicotti; Role of Glutathione in Cancer Progression and Chemoresistance. Oxidative Medicine and Cellular Longevity 2013, 2013, 1-10, 10.1155/2013/972913.
  13. João Pedro Silva; O P Coutinho; Free radicals in the regulation of damage and cell death - basic mechanisms and prevention.. Drug Discoveries & Therapeutics 2010, 4, 144–167, https://www.ddtjournal.com/article/317.
  14. Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L.; Role of ROS and Nutritional Antioxidants in Human Diseases. Front. Physiol. 2018, 9, 477, https://doi.org/10.3389/fphys.2018.00477.
  15. Stefania D'angelo; Elisa Martino; Concetta Paola Ilisso; Maria Libera Bagarolo; Marina Porcelli; Giovanna Cacciapuoti; Pro-oxidant and pro-apoptotic activity of polyphenol extract from Annurca apple and its underlying mechanisms in human breast cancer cells. International Journal of Oncology 2017, 51, 939-948, 10.3892/ijo.2017.4088.
  16. Aborehab, N.M.; Osama, N.; Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int. 2019, 19, 154, 10.1186/s12935-019-0868-0.
  17. Matija Strlic; Tanja Radovič; Jana Kolar; Boris Pihlar; Anti- and Prooxidative Properties of Gallic Acid in Fenton-Type Systems. Journal of Agricultural and Food Chemistry 2002, 50, 6313-6317, 10.1021/jf025636j.
  18. Dan Li; Zuojia Liu; Wenjing Zhao; Yanli Xi; Fenglan Niu; A straightforward method to determine the cytocidal and cytopathic effects of the functional groups of gallic acid. Process Biochemistry 2011, 46, 2210-2214, 10.1016/j.procbio.2011.08.011.
  19. Somayeh Hajipour; Alireza Sarkaki; Yaghoob Farbood; Akram Eidi; Pejman Mortazavi; Zohreh Valizadeh; Effect of Gallic Acid on Dementia Type of Alzheimer Disease in Rats: Electrophysiological and Histological Studies. Basic and Clinical Neuroscience Journal 2016, 7, 97-106, 10.15412/J.BCN.03070203.
  20. Jadel M. Kratz; Carla Regina Andrighetti-Fröhner; Paulo César Leal; Ricardo José Nunes; Rosendo Augusto Yunes; Edward Trybala; Tomas Bergström; Célia Regina Monte Barardi; Cláudia Maria Oliveira Simões; Evaluation of anti-HSV-2 activity of gallic acid and pentyl gallate.. Biological & Pharmaceutical Bulletin 2008, 31, 903-907, 10.1248/bpb.31.903.
  21. Salucci, M.; Stivala, L.A.; Maiani, G.; Bugianesi, R.; Vannini, V.; Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2).. Br. J. Cancer 2002, 86, Br. J. Cancer 2002, 86, 1645–1651, doi: 10.1038/sj.bjc.6600295..
  22. M. Inoue; R. Suzuki; T. Koide; N. Sakaguchi; Y. Ogihara; Y. Yabu; Antioxidant, Gallic Acid, Induces Apoptosis in HL-60RG Cells. Biochemical and Biophysical Research Communications 1994, 204, 898-904, 10.1006/bbrc.1994.2544.
  23. Kawada, M.; Ohno, Y.; Ri, Y.; Ikoma, T.; Yuugetu, H.; Asai, T.; Anti-tumor effect of gallic acid on LL-2 lung cancer cells transplanted in mice.. Anticancer Drugs 2001, 12, 847–852., doi: 10.1097/00001813-200111000-00009.
  24. Zahra Sourani; Batoul Pourgheysari; Pezhman Beshkar; Hedayatollah Shirzad; Moein Shirzad; Gallic Acid Inhibits Proliferation and Induces Apoptosis in Lymphoblastic Leukemia Cell Line (C121). Iranian Journal of Medical Sciences 1970, 41, 525-530.
  25. Makoto Inoue; Rie Suzuki; Nahoko Sakaguchi; Zong Li; T Takeda; Yukio Ogihara; Bao Yuan Jiang; Yingjie Chen; Selective Induction of Cell Death in Cancer Cells by Gallic Acid.. Biological & Pharmaceutical Bulletin 1995, 18, 1526-1530, 10.1248/bpb.18.1526.
  26. Aikebaier Maimaiti; Amier Aili; Hureshitanmu Kuerban; Xuejun Li; VDAC1 Mediated Anticancer Activity of Gallic Acid in Human Lung Adenocarcinoma A549 Cells. Anti-Cancer Agents in Medicinal Chemistry 2018, 18, 255-262, 10.2174/1871520617666170912115441.
  27. Sibylle Madlener; Christoph Illmer; Zsuzsanna Horvath; Philipp Saiko; Annemarie Losert; Irene Herbacek; Michael Grusch; Howard L. Elford; Georg Krupitza; Astrid Bernhaus; et al.Monika Fritzer-SzekeresThomas Szekeres Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyelocytic leukemia cells. Cancer Letters 2007, 245, 156-162, 10.1016/j.canlet.2006.01.001.
  28. Nowak, R.; Olech, M.; Nowacka, N. Polyphenols in Human Health and Disease; Elsevier, Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1289–1307.
  29. Bharti Badhani; Neha Sharma; Rita Kakkar; Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Advances 2015, 5, 27540-27557, 10.1039/c5ra01911g.
  30. L. Li; T.B. Ng; Wei Gao; W. Li; M. Fu; S.M. Niu; L. Zhao; R.R. Chen; F. Liu; Antioxidant activity of gallic acid from rose flowers in senescence accelerated mice. Life Sciences 2005, 77, 230-240, 10.1016/j.lfs.2004.12.024.
  31. Ruixuan Wang; Lijie Ma; Dan Weng; Jiahui Yao; Xueying Liu; Faguang Jin; Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Oncology Reports 2016, 35, 3075-3083, 10.3892/or.2016.4690.
  32. Hsieh-Hsun Ho; Chi-Sen Chang; Wei-Chi Ho; Sheng-You Liao; Cheng-Hsun Wu; Chau-Jong Wang; Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-κB activity and downregulation of PI3K/AKT/small GTPase signals. Food and Chemical Toxicology 2010, 48, 2508-2516, 10.1016/j.fct.2010.06.024.
  33. Jeng-Dong Hsu; Shao-Hsuan Kao; Ting-Tsz Ou; Yu-Jen Chen; Yi-Ju Li; Chau-Jong Wang; Gallic Acid Induces G2/M Phase Arrest of Breast Cancer Cell MCF-7 through Stabilization of p27Kip1Attributed to Disruption of p27Kip1/Skp2 Complex. Journal of Agricultural and Food Chemistry 2011, 59, 1996-2003, 10.1021/jf103656v.
  34. Li-Li Lu; Xiu-Yang Lu; Solubilities of Gallic Acid and Its Esters in Water. Journal of Chemical & Engineering Data 2007, 52, 37-39, 10.1021/je0601661.
  35. Padilla De Jesus, O.L.; Ihre, H.R.; Gagne, L.; Frechet, J.M.J.; Szoka, F.C.; Polyester dendritic systems for drug delivery applications: In vitro and in vivo evaluation.. Bioconjug. Chem. 2002, 13, 453–461, https://doi.org/10.1021/bc010103m.
  36. Silvana Alfei; Federica Turrini; Silvia Catena; Paola Zunin; Brunella Parodi; Guendalina Zuccari; Anna Pittaluga; Raffaella Boggia; Preparation of ellagic acid micro and nano formulations with amazingly increased water solubility by its entrapment in pectin or non-PAMAM dendrimers suitable for clinical applications. New Journal of Chemistry 2019, 43, 2438-2448, 10.1039/c8nj05657a.
  37. Cameron C Lee; John A Mackay; Jean M.J. Fréchet; Francis C Szoka; Designing dendrimers for biological applications. Nature Biotechnology 2005, 23, 1517-1526, 10.1038/nbt1171.
  38. Rami Hourani; Ashok Kakkar; Advances in the Elegance of Chemistry in Designing Dendrimers. Macromolecular Rapid Communications 2010, 31, 947-974, 10.1002/marc.200900712.
  39. Silvana Alfei; Gaby Brice Taptue; Silvia Catena; Angela Bisio; Synthesis of Water-soluble, Polyester-based Dendrimer Prodrugs for Exploiting Therapeutic Properties of Two Triterpenoid Acids. Chinese Journal of Polymer Science 2018, 36, 999-1010, 10.1007/s10118-018-2124-9.
  40. Silvana Alfei; Silvia Catena; Marco Ponassi; Camillo Rosano; Vittoria Zoppi; Andrea Spallarossa; Hydrophilic and amphiphilic water-soluble dendrimer prodrugs suitable for parenteral administration of a non-soluble non-nucleoside HIV-1 reverse transcriptase inhibitor thiocarbamate derivative. European Journal of Pharmaceutical Sciences 2018, 124, 153-164, 10.1016/j.ejps.2018.08.036.
  41. Keerti Jain; Prashant Kesharwani; Umesh Gupta; Narendra K. Jain; Dendrimer toxicity: Let's meet the challenge. International Journal of Pharmaceutics 2010, 394, 122-142, 10.1016/j.ijpharm.2010.04.027.
  42. Jin-Seong Lee; June Huh; Cheol-Hee Ahn; Minhyung Lee; Tae Gwan Park; Synthesis of Novel Biodegradable Cationic Dendrimers. Macromolecular Rapid Communications 2006, 27, 1608-1614, 10.1002/marc.200600393.
  43. Ma, X.; Tang, J.; Shen, Y.; Fan, M.; Tang, H.; Radosz, M; Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers.. J. Am. Chem. Soc. 2009, 131, 14795–14803. , doi: 10.1021/ja9037406..
  44. Sharma, A.; Gautam, S.P.; Gupta, A.K.; Surface modified dendrimers: Synthesis and characterization for cancer targeted drug delivery.. Bioorg. Med. Chem. 2011, 19, 3341–3346, https://doi.org/10.1016/j.bmc.2011.04.046.
  45. Barbara Klajnert‐Maculewicz; Maria Bryszewska; Interactions between PAMAM dendrimers and gallic acid molecules studied by spectrofluorimetric methods. Bioelectrochemistry 2007, 70, 50-52, 10.1016/j.bioelechem.2006.03.027.
  46. Liron Bitan-Cherbakovsky; Abraham Aserin; Nissim Garti; Structural characterization of lyotropic liquid crystals containing a dendrimer for solubilization and release of gallic acid. Colloids and Surfaces B: Biointerfaces 2013, 112, 87-95, 10.1016/j.colsurfb.2013.06.051.
  47. Sandra P. Amaral; Marcos Fernandez-Villamarin; Juan Correa; Ricardo Riguera; Eduardo Fernandez-Megia; Efficient Multigram Synthesis of the Repeating Unit of Gallic Acid-Triethylene Glycol Dendrimers. Organic Letters 2011, 13, 4522-4525, 10.1021/ol201677k.
  48. De la Fuente, M.; Raviña, M.; Sousa-Herves, A.; Correa, J.; Riguera, R.; Fernandez-Megia, E.; Sánchez, A.; Alonso, M.J.; Exploring the efficiency of gallic acid-based dendrimers and their block copolymers with PEG as gene carriers. Nanomedicine 2012, 7, 1667–1681, https://doi.org/10.2217/nnm.12.51.
  49. Renu Singh Dhanikula; Patrice Hildgen; Synthesis and Evaluation of Novel Dendrimers with a Hydrophilic Interior as Nanocarriers for Drug Delivery. Bioconjugate Chemistry 2006, 17, 29-41, 10.1021/bc050184c.
  50. Henrik Ihre; Anders Hult; Jean M.J. Fréchet; Ivan Gitsov; Double-Stage Convergent Approach for the Synthesis of Functionalized Dendritic Aliphatic Polyesters Based on 2,2-Bis(hydroxymethyl)propionic Acid. Macromolecules 1998, 31, 4061-4068, 10.1021/ma9718762.
  51. Ihre, H.; Hult, A.; Fréchet, J.M.J.; Gitsov, I. Double-Stage Convergent Approach for the Synthesis of Functionalized Dendritic Aliphatic Polyesters Based on 2,2-Bis(hydroxymethyl)propionic Acid. Macromolecules 1998, 31, 4061–4068. [Google Scholar] [CrossRef]Alfei, S.; Castellaro, S.; Taptue, G.B.; Synthesis and NMR characterization of dendrimers based on 2, 2-bis-(hydroxymethyl)-propanoic acid (bis-HMPA) containing peripheral amino acid residues for gene transfection.. Org. Commun. 2017, 10, 144–147, http://doi.org/10.25135/acg.oc.22.17.07.034.
  52. Alfei, S.; Castellaro, S.; Taptue, G.B. Synthesis and NMR characterization of dendrimers based on 2, 2-bis-(hydroxymethyl)-propanoic acid (bis-HMPA) containing peripheral amino acid residues for gene transfection. Org. Commun. 2017, 10, 144–147. [Google Scholar] [CrossRef]Silvana Alfei; Sara Castellaro; Synthesis and characterization of polyester-based dendrimers containing peripheral arginine or mixed amino acids as potential vectors for gene and drug delivery. Macromolecular Research 2017, 25, 1172–1186, 10.1007/s13233-017-5160-3.
  53. Alfei, S.; Castellaro, S. Synthesis and characterization of polyester-based dendrimers containing peripheral arginine or mixed amino acids as potential vectors for gene and drug delivery. Macromol. Res. 2017, 25, 1172–1186. [Google Scholar] [CrossRef]Silvana Alfei; Silvia Catena; Federica Turrini; Biodegradable and biocompatible spherical dendrimer nanoparticles with a gallic acid shell and a double-acting strong antioxidant activity as potential device to fight diseases from “oxidative stress”. Drug Delivery and Translational Research 2019, 10, 259-270, 10.1007/s13346-019-00681-8.
  54. Alfei, S.; Catena, S.; Turrini, F. Biodegradable and biocompatible spherical dendrimer nanoparticles with a gallic acid shell and a double-acting strong antioxidant activity as potential device to fight diseases from “oxidative stress”. Drug Deliv. Transl. Res. 2020, 10, 259–270. [Google Scholar] [CrossRef] [PubMed]Silvana Alfei; Paolo Oliveri; Cristina Malegori; Assessment of the Efficiency of a Nanospherical Gallic Acid Dendrimer for Long‐Term Preservation of Essential Oils: An Integrated Chemometric‐Assisted FTIR Study. ChemistrySelect 2019, 4, 8891-8901, 10.1002/slct.201902339.
  55. Alfei, S.; Oliveri, P.; Malegori, C. Assessment of the Efficiency of a Nanospherical Gallic Acid Dendrimer for Long-Term Preservation of Essential Oils: An Integrated Chemometric-Assisted FTIR Study. ChemistrySelect 2019, 4, 8891–8901. [Google Scholar] [CrossRef]Silvana Alfei; Maria Grazia Signorello; Anna Schito; Silvia Catena; Federica Turrini; Annamaria Schito; Reshaped as polyester-based nanoparticles, gallic acid inhibits platelet aggregation, reactive oxygen species production and multi-resistant Gram-positive bacteria with an efficiency never obtained. Nanoscale Advances 2019, 1, 4148-4157, 10.1039/c9na00441f.
  56. Alfei, S.; Signorello, M.G.; Schito, A.M.; Catena, S.; Turrini, F. Reshaped as polyester-based nanoparticles, gallic acid inhibits platelet aggregation, reactive oxygen species production and multi-resistant Gram-positive bacteria with an efficiency never obtained. Nanoscale Adv. 2019, 1, 4148–4157. [Google Scholar] [CrossRef]Silvana Alfei; Barbara Marengo; Cinzia Domenicotti; Polyester-Based Dendrimer Nanoparticles Combined with Etoposide Have an Improved Cytotoxic and Pro-Oxidant Effect on Human Neuroblastoma Cells. Antioxidants 2020, 9, 50, 10.3390/antiox9010050.
  57. Alfei, S.; Marengo, B.; Domenicotti, C. Polyester-Based Dendrimer Nanoparticles Combined with Etoposide Have an Improved Cytotoxic and Pro-Oxidant Effect on Human Neuroblastoma Cells. Antioxidants 2020, 9, 50. [Google Scholar] [CrossRef] [PubMed]Scott H. Medina; Mohamed E. H. El-Sayed; Dendrimers as Carriers for Delivery of Chemotherapeutic Agents. Chemical Reviews 2009, 109, 3141-3157, 10.1021/cr900174j.
  58. Medina, S.H.; El-Sayed, M.E.H. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem. Rev. 2009, 109, 3141–3157. [Google Scholar] [CrossRef] [PubMed]Silvana Alfei; Silvia Catena; Synthesis and characterization of fourth generation polyester-based dendrimers with cationic amino acids-modified crown as promising water soluble biomedical devices. Polymers for Advanced Technologies 2018, 29, 2735–2749, 10.1002/pat.4396.
  59. Alfei, S.; Catena, S. Synthesis and characterization of fourth generation polyester-based dendrimers with cationic amino acids-modified crown as promising water soluble biomedical devices. Polym. Adv. Technol. 2018, 29, 2735–2749. [Google Scholar] [CrossRef]Sonam Choudhary; Lokesh Gupta; Sarita Rani; Kaushalkumar Dave; Umesh Gupta; Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules. Frontiers in Pharmacology 2017, 16, e216, 10.3389/fphar.2017.00261.
  60. Choudhary, S.; Gupta, L.; Rani, S.; Dave, K.; Gupta, U. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules. Front. Pharmacol. 2017, 16, e261. [Google Scholar] [CrossRef] [PubMed]Lisa M. Kaminskas; Ben J. Boyd; Christopher J. H. Porter; Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine 2011, 6, 1063-1084, 10.2217/nnm.11.67.
  61. Kaminskas, L.M.; Boyd, B.J.; Porter, C.J.H. Dendrimer pharmacokinetics: The effect of size, structure and surface characteristics on ADME properties. Nanomedicine 2011, 6, 1063–1084. [Google Scholar] [CrossRef]Marengo, B.; Monti, P.; Miele, M.; Menichini, P.; Ottaggio, L.; Foggetti, G.; Pulliero, A.; Izzotti, A.; Speciale, A.; Garbarino, O.; et al.et al. Etoposide-resistance in a neuroblastoma model cell line is associated with 13q14.3 mono-allelic deletion and miRNA-15a/16-1 down-regulation.. Sci. Rep. 2018, 8, 13762, doi: 10.1038/s41598-018-32195-7..
  62. Marengo, B.; Monti, P.; Miele, M.; Menichini, P.; Ottaggio, L.; Foggetti, G.; Pulliero, A.; Izzotti, A.; Speciale, A.;Garbarino, O.; et al. Etoposide-resistance in a neuroblastoma model cell line is associated with 13q14.3 mono-allelic deletion and miRNA-15a/16-1 down-regulation. Sci. Rep. 2018, 8, 13762. [CrossRef] [PubMed]Brodeur, G.M.; Iyer, R.; Croucher, J.L.; Zhuang, T.; Higashi, M.; Kolla, V. Therapeutic targets for neuroblastomas. Expert Opin. Ther. Targets 2014, 18, 277–292. [Google Scholar] [CrossRef] [PubMed]
  63. Jancovivova, V.; Ceppan, M.; Havlinova, B.; Rehakova, M.; Jakubikova, Z. Interactions in iron gall inks. Chem. Pap. 2007, 61, 391–397. [Google Scholar] [CrossRef]Maris, J.M. Recent advances in neuroblastoma. N. Engl. J. Med. 2010, 362, 2202–2211. [Google Scholar] [CrossRef] [PubMed]
  64. Huang, X.; Brazel, C.S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control Release 2001, 73, 121–136. [Google Scholar] [CrossRef]Cheung, N.K.; Dyer, M.A. Neuroblastoma: Developmental biology, cancer genomics and immunotherapy. Nat. Rev. Cancer 2013, 13, 397–411. [Google Scholar] [CrossRef] [PubMed]
  65. Danhier, F.; Lecouturier, N.; Vroman, B.; Jerome, C.; Marchand-Brynaert, J.; Feron, O.; Preat, V. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. J. Control Release 2009, 133, 11–17. [Google Scholar] [CrossRef]Brodeur, G.M.; Iyer, R.; Croucher, J.L.; Zhuang, T.; Higashi, M.; Kolla, V.; Therapeutic targets for neuroblastomas. Expert Opin. Ther. Targets 2014, 18, 277–292, https://doi.org/10.1517/14728222.2014.867946.
  66. Ma, X.; Zhou, Z.; Jin, E.; Sun, Q.; Zhang, B.; Tang, J.; Shen, Y. Facile synthesis of polyester dendrimers as drug delivery carriers. Macromolecules 2013, 46, 37–42. [Google Scholar] [CrossRef]
  67. Feliu, N.; Walter, W.V.; Montañez, M.I.; Kunzmann, A.; Hult, A.; Nyström, A.; Malkoch, M.; Fadeelet, B. Stability and biocompatibility of a library of polyester dendrimers in comparison to polyamidoamine dendrimers. Biomaterials 2012, 33, 1970–1981. [Google Scholar] [CrossRef]
  68. Manjappa, K.; Narayanaswamy, J. Thiol-Disulfide Interchange Mediated Reversible Dendritic Megamer Formation and Dissociation. Macromolecules 2009, 42, 7353–7359. [Google Scholar] [CrossRef]
  69. Gao, J.; Hu, J.; Hu, D.; Yang, X. A Role of Gallic Acid in Oxidative Damage Diseases: A Comprehensive Review. Nat. Prod. Commun. 2019, 14, 1–9. [Google Scholar] [CrossRef]
More