Dendrimer Nanodevices and Gallic Acid: Comparison
Please note this is a comparison between Version 3 by Guendalina Zuccari and Version 11 by Catherine Yang.

Human neuroblastoma (NB), a pediatric tumor inclined to relapse, after an initial response to therapy, usually develops resistance. Since several chemotherapeutics, including the weel known etoposide (ETO), eexert anticancer effect by increasing reactive oxygen species (ROS), NB cells overproduce antioxidant compounds becoming drugs-resistant. Moreover, ETO, although widely used, suffers from fast metabolism, poor solubility and systemic toxicity, that limit its administration dosage and its therapeutic efficiency. An appealing A strategy to sensitize NB cells to chemotherapy involves the use of less toxic natural compounds able to reducereducing their antioxidant defenses of NB cells and to induceand inducing ROS overproduction. In this contestConcerning this, although affected by several issues as instability and poor absorbabilitythat limit their clinical application, antioxidant/pro-oxidant polyphenols, such as gallic acid (GA), showed pro-oxidant anti-cancer effects and low toxicity for healthy cells, in several kind of tumors, not including NB. Herein, for the first time, free GA, two GA-dendrimers, and the dendrimer adopted as GA reservoir were tested on both sensitive and chemoresistant NB cells. Furthermore, the The dendrimer adopted as carrier for GA was exploited also for entrapping and protecting ETO and for enhancing its solubility and effectiveness.The dendrimer devicedevice, administered at the dose previously found active versus sensitive NB cells, induced ROS-mediated death both in sensitive NB cells and also in chemoresistant onecells. Free GA proved a dose-dependent ROS-mediated cytotoxicity on both cell populations. Intriguingly, when administered in dendrimer formulations at a dose not cytotoxic for NB cells, GA nullified any pro-oxidant activity of dendrimer. Unfortunately, due to GA, nanoformulations were inactive on NB cells, but GA resized in nanoparticles showed considerable ability in counteracting, at low dose, ROS production and oxidative stress, herein induced by the dendrimer. Interestingly, the ETO-dendrimer showed a synergistic action, controlled released over time with a significantly improved drug bioactivity, representing a novel biodegradable and promising device for the delivery of ETO into NB cells.

  • Human neuroblastoma
  • gallic acid (GA)
  • polyester dendrimers
  • dendrimer nanoformulations
  • etoposide (ETO)
  • ETO loaded dendrimer
  • ROS-mediated anticancer effect
Please wait, diff process is still running!

References

  1. John M. Maris; Recent advances in neuroblastoma.. NBrodeur, G.M.; Iyer, R.; Croucher, J.L.; Zhuang, T.; Higashi, M.; Kolla, V.; Therapeutic targets for neuroblastomas. Expewrt England JournalOpin. Ther. Targets of Medicine 2010, 362, 2202-11, 10.1056/NEJMra0804577.4, 18, 277–292, https://doi.org/10.1517/14728222.2014.867946.
  2. Nai-Kong V. Cheung; Michael Dyer; Neuroblastoma: developmental biology, cancer genomics and immunotherapy.. John M. Maris; Recent advances in neuroblastoma.. New Englature Reviews Cancnd Journal of Mediciner 2013, 10, 3, 397-411, 10.1038/nrc3526.62, 2202-11, 10.1056/NEJMra0804577.
  3. Srishma Sridhar; Batool Al-Moallem; Hawra Kamal; Marta Terrile; Raymond L. Stallings; New Insights into the Genetics of Neuroblastoma. MolecNai-Kong V. Cheung; Michael Dyer; Neuroblastoma: developmental biology, cancer genomics and immunotherapy.. Natular Diagnosis & The Reviews Cancerapy 2013, 17, 63-69, 10.1007/s40291-013-0019-6.3, 397-411, 10.1038/nrc3526.
  4. Maris, J.M.; Hogarty, M.D.; Bagatell, R.; Cohn, S.L.; Neuroblastoma. Srishma Sridhar; Batool Al-Moallem; Hawra Kamal; Marta Terrile; Raymond L. Stallings; New Insights into the Genetics of Neuroblastoma. Molecular LDiancet gnosis & Therapy 2007, 369, 2106–2120, https://doi.org/10.1016/S0140-6736(07)60983-0.13, 17, 63-69, 10.1007/s40291-013-0019-6.
  5. Alberto Garaventa; Roberto Luksch; Simona Biasotti; Gianluca Severi; Maria Rosa Pizzitola; Elisabetta Viscardi; Arcangelo Prete; Stefano Mastrangelo; Marta Podda; Riccardo Haupt; et al.Bruno De Bernardi A phase II study of topotecan with vincristine and doxorubicin in children with recurrent/refractory neuroblastoma. CMaris, J.M.; Hogarty, M.D.; Bagatell, R.; Cohn, S.L.; Neuroblastoma. Lancer t 2003, 7, 3698, 2488-2494, 10.1002/cncr.11797., 2106–2120, https://doi.org/10.1016/S0140-6736(07)60983-0.
  6. T. Simon; Alfred Längler; Urs Harnischmacher; Michael C. Frühwald; Norbert Jorch; Alexander Claviez; Frank Berthold; Barbara Hero; Topotecan, cyclophosphamide, and etoposide (TCE) in the treatment of high-risk neuroblastoma. Results of a phase-II trial. Journal of Alberto Garaventa; Roberto Luksch; Simona Biasotti; Gianluca Severi; Maria Rosa Pizzitola; Elisabetta Viscardi; Arcangelo Prete; Stefano Mastrangelo; Marta Podda; Riccardo Haupt; et al.Bruno De Bernardi A phase II study of topotecan with vincristine and doxorubicin in children with recurrent/refractory neuroblastoma. Cancer Research and Clinical Oncology 2007, 133, 653-661, 10.1007/s00432-007-0216-y.3, 98, 2488-2494, 10.1002/cncr.11797.
  7. T. Simon; Alfred Längler; Urs Harnischmacher; Michael C. Frühwald; Norbert Jorch; Alexander Claviez; Frank Berthold; Barbara Hero; Topotecan, cyclophosphamide, and etoposide (TCE) in the treatment of high-risk neuroblastoma. Results of a phase-II trial. Journal of Cancer Research and Clinical Oncology 2007, 133, 653-661, 10.1007/s00432-007-0216-y.
  8. Riccardo Haupt; Thomas R. Fears; Ansgar Heise; Helmut Gadner; Giuseppe LoIacono; Marino De Terlizzi; Margaret A. Tucker; Risk of secondary leukemia after treatment with etoposide (VP-16) for Langerhans' cell histiocytosis in Italian and Austrian-German populations.. International T. Simon; Alfred Längler; Urs Harnischmacher; Michael C. Frühwald; Norbert Jorch; Alexander Claviez; Frank Berthold; Barbara Hero; Topotecan, cyclophosphamide, and etoposide (TCE) in the treatment of high-risk neuroblastoma. Results of a phase-II trial. Journal of Cancer 199 Research and Clinical Oncology 2007, 7, 1, 9-13, 10.1002/(sici)1097-0215(19970328)71:1<9::aid-ijc3>3.0.co;2-y.33, 653-661, 10.1007/s00432-007-0216-y.
  9. Haupt, R.; Fears, T.R.; Heise, A.; Gadner, H.; Loiacono, G.; De Terlizzi, M.; Tucker, M.A.; Risk of secondary leukemia after treatment with etoposide (VP-16) for Langerhans’cell histiocytosis in Italian and Austrian-German populations. Riccardo Haupt; Thomas R. Fears; Ansgar Heise; Helmut Gadner; Giuseppe LoIacono; Marino De Terlizzi; Margaret A. Tucker; Risk of secondary leukemia after treatment with etoposide (VP-16) for Langerhans' cell histiocytosis in Italian and Austrian-German populations.. Int.ernational J.ournal of Cancer 1997, 71, 9-13, https://doi.org/10.1002/(SICI)1097-0215(19970328)71:1%3C9::AID-IJC3%3E3.0.CO;2-Y., 9-13, 10.1002/(sici)1097-0215(19970328)71:1<9::aid-ijc3>3.0.co;2-y.
  10. Bernardini, S.; Bellincampi, L.; Ballerini, S.; Ranalli, M.; Pastore, A.; Cortese, C.; Federici, G.; Role of GST P1-1 in mediating the effect of etoposide on human neuroblastoma cell line Sh-Sy5y. Haupt, R.; Fears, T.R.; Heise, A.; Gadner, H.; Loiacono, G.; De Terlizzi, M.; Tucker, M.A.; Risk of secondary leukemia after treatment with etoposide (VP-16) for Langerhans’cell histiocytosis in Italian and Austrian-German populations. Int. J. Cell. Bioanchem. 2002, 86, 340–347, https://doi.org/10.1002/jcb.10219.er 1997, 71, 9-13, https://doi.org/10.1002/(SICI)1097-0215(19970328)71:1%3C9::AID-IJC3%3E3.0.CO;2-Y.
  11. Renata Colla; Alberto Izzotti; Chiara De Ciucis; Daniela Fenoglio; Silvia Ravera; Andrea Speciale; Roberta Ricciarelli; Anna Lisa Furfaro; Alessandra Pulliero; Mario Passalacqua; et al.Nicola TraversoMaria Adelaide PronzatoCinzia DomenicottiBarbara Marengo Glutathione-mediated antioxidant response and aerobic metabolism: two crucial factors involved in determining the multi-drug resistance of high-risk neuroblastoma. OnBernardini, S.; Bellincampi, L.; Ballerini, S.; Ranalli, M.; Pastore, A.; Cortese, C.; Federici, G.; Role of GST P1-1 in mediating the effect of etoposide on human neuroblastoma cell line Sh-Sy5y. J. Cell. Biocotarghet m. 2016, 7, 70715-70737, 10.18632/oncotarget.12209.02, 86, 340–347, https://doi.org/10.1002/jcb.10219.
  12. Nicola Traverso; Roberta Ricciarelli; Mariapaola Nitti; Barbara Marengo; Anna Lisa Furfaro; Maria Adelaide Pronzato; Umberto Maria Marinari; Cinzia Domenicotti; Role of Glutathione in Cancer Progression and Chemoresistance. Renata Colla; Alberto Izzotti; Chiara De Ciucis; Daniela Fenoglio; Silvia Ravera; Andrea Speciale; Roberta Ricciarelli; Anna Lisa Furfaro; Alessandra Pulliero; Mario Passalacqua; et al.Nicola TraversoMaria Adelaide PronzatoCinzia DomenicottiBarbara Marengo Glutathione-mediated antioxidant response and aerobic metabolism: two crucial factors involved in determining the multi-drug resistance of high-risk neuroblastoma. Oxidancotive Medicine and Cellular Longeviargety 2013, 2013, 1-10, 10.1155/2013/972913.6, 7, 70715-70737, 10.18632/oncotarget.12209.
  13. João Pedro Silva; O P Coutinho; Free radicals in the regulation of damage and cell death - basic mechanisms and prevention.. DrugNicola Traverso; Roberta Ricciarelli; Mariapaola Nitti; Barbara Marengo; Anna Lisa Furfaro; Maria Adelaide Pronzato; Umberto Maria Marinari; Cinzia Domenicotti; Role of Glutathione in Cancer Progression and Chemoresistance. Oxidative DMediscoveries & Therapeutics cine and Cellular Longevity 2010, 4, 144–167, https://www.ddtjournal.com/article/317.3, 2013, 1-10, 10.1155/2013/972913.
  14. Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L.; Role of ROS and Nutritional Antioxidants in Human Diseases. João Pedro Silva; O P Coutinho; Free radicals in the regulation of damage and cell death - basic mechanisms and prevention.. Drug FDiscoveront. Phyies & Therapeuticsiol. 2018, 9, 477, https://doi.org/10.3389/fphys.2018.00477.0, 4, 144–167, https://www.ddtjournal.com/article/317.
  15. Stefania D'angelo; Elisa Martino; Concetta Paola Ilisso; Maria Libera Bagarolo; Marina Porcelli; Giovanna Cacciapuoti; Pro-oxidant and pro-apoptotic activity of polyphenol extract from Annurca apple and its underlying mechanisms in human breast cancer cells. InteLiu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L.; Role of ROS and Nutritional Antioxidants in Human Diseases. Fronationalt. Physiol. Journal of Oncology 2017, 51, 939-948, 10.3892/ijo.2017.4088.8, 9, 477, https://doi.org/10.3389/fphys.2018.00477.
  16. Aborehab, N.M.; Osama, N.; Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. CaStefania D'angelo; Elisa Martino; Concetta Paola Ilisso; Maria Libera Bagarolo; Marina Porcelli; Giovanna Cacciapuoti; Pro-oxidant and pro-apoptotic activity of polyphenol extract from Annurca apple and its underlying mechanisms in human breast cancer cells. Incter Cell Int. national Journal of Oncology 2019, 7, 519, 154, 10.1186/s12935-019-0868-0., 939-948, 10.3892/ijo.2017.4088.
  17. Matija Strlic; Tanja Radovič; Jana Kolar; Boris Pihlar; Anti- and Prooxidative Properties of Gallic Acid in Fenton-Type Systems. JouAborehab, N.M.; Osama, N.; Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancernal of Agricultural and Food Chemistry Cell Int. 2002, 50, 6313-6317, 10.1021/jf025636j.19, 19, 154, 10.1186/s12935-019-0868-0.
  18. Dan Li; Zuojia Liu; Wenjing Zhao; Yanli Xi; Fenglan Niu; A straightforward method to determine the cytocidal and cytopathic effects of the functional groups of gallic acid. PMatija Strlic; Tanja Radovič; Jana Kolar; Boris Pihlar; Anti- and Prooxidative Properties of Gallic Acid in Fenton-Type Systems. Journal ocess Biocf Agricultural and Food Chemistry 2011, 46, 2210-2214, 10.1016/j.procbio.2011.08.011.02, 50, 6313-6317, 10.1021/jf025636j.
  19. Somayeh Hajipour; Alireza Sarkaki; Yaghoob Farbood; Akram Eidi; Pejman Mortazavi; Zohreh Valizadeh; Effect of Gallic Acid on Dementia Type of Alzheimer Disease in Rats: Electrophysiological and Histological Studies. BaDan Li; Zuojia Liu; Wenjing Zhao; Yanli Xi; Fenglan Niu; A straightforward method to determine the cytocidal and cytopathic effects of the functional groups of gallic acid. Processic and Clinical Neuroscience Journal Biochemistry 20116, 7, 97-106, 10.15412/J.BCN.03070203., 46, 2210-2214, 10.1016/j.procbio.2011.08.011.
  20. Jadel M. Kratz; Carla Regina Andrighetti-Fröhner; Paulo César Leal; Ricardo José Nunes; Rosendo Augusto Yunes; Edward Trybala; Tomas Bergström; Célia Regina Monte Barardi; Cláudia Maria Oliveira Simões; Evaluation of anti-HSV-2 activity of gallic acid and pentyl gallate.. Somayeh Hajipour; Alireza Sarkaki; Yaghoob Farbood; Akram Eidi; Pejman Mortazavi; Zohreh Valizadeh; Effect of Gallic Acid on Dementia Type of Alzheimer Disease in Rats: Electrophysiological and Histological Studies. Basiological & Pharmaceutical Buc and Clinical Neuroscience Journalletin 2008, 31, 903-907, 10.1248/bpb.31.903.16, 7, 97-106, 10.15412/J.BCN.03070203.
  21. Salucci, M.; Stivala, L.A.; Maiani, G.; Bugianesi, R.; Vannini, V.; Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2).. Jadel M. Kratz; Carla Regina Andrighetti-Fröhner; Paulo César Leal; Ricardo José Nunes; Rosendo Augusto Yunes; Edward Trybala; Tomas Bergström; Célia Regina Monte Barardi; Cláudia Maria Oliveira Simões; Evaluation of anti-HSV-2 activity of gallic acid and pentyl gallate.. Br.iological J. Cancer & Pharmaceutical Bulletin 2002, 86, Br. J. Cancer 2002, 86, 1645–1651, doi: 10.1038/sj.bjc.6600295..8, 31, 903-907, 10.1248/bpb.31.903.
  22. M. Inoue; R. Suzuki; T. Koide; N. Sakaguchi; Y. Ogihara; Y. Yabu; Antioxidant, Gallic Acid, Induces Apoptosis in HL-60RG Cells. Salucci, M.; Stivala, L.A.; Maiani, G.; Bugianesi, R.; Vannini, V.; Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2).. Biochemicalr. J. and Biophysical ReseaCancerch Communications 1994, 204, 898-904, 10.1006/bbrc.1994.2544. 2002, 86, Br. J. Cancer 2002, 86, 1645–1651, doi: 10.1038/sj.bjc.6600295..
  23. Kawada, M.; Ohno, Y.; Ri, Y.; Ikoma, T.; Yuugetu, H.; Asai, T.; Anti-tumor effect of gallic acid on LL-2 lung cancer cells transplanted in mice.. AntM. Inoue; R. Suzuki; T. Koide; N. Sakaguchi; Y. Ogihara; Y. Yabu; Antioxidant, Gallic Acid, Induces Apoptosis in HL-60RG Cells. Biochemical ancer Drugd Biophysical Research Communications 200 1, 1994, 2, 847–852., doi: 10.1097/00001813-200111000-00009.04, 898-904, 10.1006/bbrc.1994.2544.
  24. Zahra Sourani; Batoul Pourgheysari; Pezhman Beshkar; Hedayatollah Shirzad; Moein Shirzad; Gallic Acid Inhibits Proliferation and Induces Apoptosis in Lymphoblastic Leukemia Cell Line (C121). IraKawada, M.; Ohno, Y.; Ri, Y.; Ikoma, T.; Yuugetu, H.; Asai, T.; Anti-tumor effect of gallic acid on LL-2 lung cancer cells transplanted in mice.. Antian Journal of Medical Sciencecancer Drugs 2001970, 4, 1, 525-530.2, 847–852., doi: 10.1097/00001813-200111000-00009.
  25. Makoto Inoue; Rie Suzuki; Nahoko Sakaguchi; Zong Li; T Takeda; Yukio Ogihara; Bao Yuan Jiang; Yingjie Chen; Selective Induction of Cell Death in Cancer Cells by Gallic Acid.. BZahra Sourani; Batoul Pourgheysari; Pezhman Beshkar; Hedayatollah Shirzad; Moein Shirzad; Gallic Acid Inhibits Proliferation and Induces Apoptosis in Lymphoblastic Leukemia Cell Line (C121). Iranian Jological & Pharmaceutical Bulletiurnal of Medical Scien ces 1995, 70, 418, 1526-1530, 10.1248/bpb.18.1526., 525-530.
  26. Aikebaier Maimaiti; Amier Aili; Hureshitanmu Kuerban; Xuejun Li; VDAC1 Mediated Anticancer Activity of Gallic Acid in Human Lung Adenocarcinoma A549 Cells. AntMakoto Inoue; Rie Suzuki; Nahoko Sakaguchi; Zong Li; T Takeda; Yukio Ogihara; Bao Yuan Jiang; Yingjie Chen; Selective Induction of Cell Death in Cancer Cells by Gallic Acid.. Biologi-Ccal & Pharmancer Agents in Medicinal Chemistry 20ceutical Bulletin 18, 995, 18, 255-262, 10.2174/1871520617666170912115441., 1526-1530, 10.1248/bpb.18.1526.
  27. Sibylle Madlener; Christoph Illmer; Zsuzsanna Horvath; Philipp Saiko; Annemarie Losert; Irene Herbacek; Michael Grusch; Howard L. Elford; Georg Krupitza; Astrid Bernhaus; et al.Monika Fritzer-SzekeresThomas Szekeres Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyelocytic leukemia cells. Aikebaier Maimaiti; Amier Aili; Hureshitanmu Kuerban; Xuejun Li; VDAC1 Mediated Anticancer Activity of Gallic Acid in Human Lung Adenocarcinoma A549 Cells. Anti-Cancer LAgetters nts in Medicinal Chemistry 2007, 245, 156-162, 10.1016/j.canlet.2006.01.001.18, 18, 255-262, 10.2174/1871520617666170912115441.
  28. Nowak, R.; Olech, M.; Nowacka, N. Polyphenols in Human Health and Disease; Elsevier, Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1289–1307.Sibylle Madlener; Christoph Illmer; Zsuzsanna Horvath; Philipp Saiko; Annemarie Losert; Irene Herbacek; Michael Grusch; Howard L. Elford; Georg Krupitza; Astrid Bernhaus; et al.Monika Fritzer-SzekeresThomas Szekeres Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyelocytic leukemia cells. Cancer Letters 2007, 245, 156-162, 10.1016/j.canlet.2006.01.001.
  29. Bharti Badhani; Neha Sharma; Rita Kakkar; Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Advances 2015, 5, 27540-27557, 10.1039/c5ra01911g.Nowak, R.; Olech, M.; Nowacka, N. Polyphenols in Human Health and Disease; Elsevier, Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1289–1307.
  30. L. Li; T.B. Ng; Wei Gao; W. Li; M. Fu; S.M. Niu; L. Zhao; R.R. Chen; F. Liu; Antioxidant activity of gallic acid from rose flowers in senescence accelerated mice. LifeBharti Badhani; Neha Sharma; Rita Kakkar; Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC ScieAdvances 20015, 77, 230-240, 10.1016/j.lfs.2004.12.024., 5, 27540-27557, 10.1039/c5ra01911g.
  31. Ruixuan Wang; Lijie Ma; Dan Weng; Jiahui Yao; Xueying Liu; Faguang Jin; Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. OL. Li; T.B. Ng; Wei Gao; W. Li; M. Fu; S.M. Niu; L. Zhao; R.R. Chen; F. Liu; Antioxidant activity of gallic acid from rose flowers in senescence accelerated mice. Life Sciencology Reports 2016, 35, 3075-3083, 10.3892/or.2016.4690.05, 77, 230-240, 10.1016/j.lfs.2004.12.024.
  32. Hsieh-Hsun Ho; Chi-Sen Chang; Wei-Chi Ho; Sheng-You Liao; Cheng-Hsun Wu; Chau-Jong Wang; Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-κB activity and downregulation of PI3K/AKT/small GTPase signals. Food aRuixuan Wang; Lijie Ma; Dan Weng; Jiahui Yao; Xueying Liu; Faguang Jin; Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Ond Chemical Toxicoology Reports 2010, 48, 2508-2516, 10.1016/j.fct.2010.06.024.6, 35, 3075-3083, 10.3892/or.2016.4690.
  33. Jeng-Dong Hsu; Shao-Hsuan Kao; Ting-Tsz Ou; Yu-Jen Chen; Yi-Ju Li; Chau-Jong Wang; Gallic Acid Induces G2/M Phase Arrest of Breast Cancer Cell MCF-7 through Stabilization of p27Kip1Attributed to Disruption of p27Kip1/Skp2 Complex. JHsieh-Hsun Ho; Chi-Sen Chang; Wei-Chi Ho; Sheng-You Liao; Cheng-Hsun Wu; Chau-Jong Wang; Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-κB activity and downregulation of PI3K/AKT/small GTPase signals. Fournal of Agricultural and Food Chemistrd and Chemical Toxicology 2011, 59, 1996-2003, 10.1021/jf103656v.0, 48, 2508-2516, 10.1016/j.fct.2010.06.024.
  34. Li-Li Lu; Xiu-Yang Lu; Solubilities of Gallic Acid and Its Esters in Water. Jeng-Dong Hsu; Shao-Hsuan Kao; Ting-Tsz Ou; Yu-Jen Chen; Yi-Ju Li; Chau-Jong Wang; Gallic Acid Induces G2/M Phase Arrest of Breast Cancer Cell MCF-7 through Stabilization of p27Kip1Attributed to Disruption of p27Kip1/Skp2 Complex. Journal of ChemAgrical & Engineering Data ultural and Food Chemistry 2007, 11, 52, 37-39, 10.1021/je0601661.9, 1996-2003, 10.1021/jf103656v.
  35. Padilla De Jesus, O.L.; Ihre, H.R.; Gagne, L.; Frechet, J.M.J.; Szoka, F.C.; Polyester dendritic systems for drug delivery applications: In vitro and in vivo evaluation.. BiLi-Li Lu; Xiu-Yang Lu; Solubilities of Gallic Acid and Its Esters in Water. Jocurnal onjug. Chem.f Chemical & Engineering Data 2002, 13, 453–461, https://doi.org/10.1021/bc010103m.7, 52, 37-39, 10.1021/je0601661.
  36. Silvana Alfei; Federica Turrini; Silvia Catena; Paola Zunin; Brunella Parodi; Guendalina Zuccari; Anna Pittaluga; Raffaella Boggia; Preparation of ellagic acid micro and nano formulations with amazingly increased water solubility by its entrapment in pectin or non-PAMAM dendrimers suitable for clinical applications. New JPadilla De Jesus, O.L.; Ihre, H.R.; Gagne, L.; Frechet, J.M.J.; Szoka, F.C.; Polyester dendritic systems for drug delivery applications: In vitro and in vivo evaluation.. Bioconjurnal of Chemistry g. Chem. 2019, 402, 13, 2438-2448, 10.1039/c8nj05657a., 453–461, https://doi.org/10.1021/bc010103m.
  37. Cameron C Lee; John A Mackay; Jean M.J. Fréchet; Francis C Szoka; Designing dendrimers for biological applications. Silvana Alfei; Federica Turrini; Silvia Catena; Paola Zunin; Brunella Parodi; Guendalina Zuccari; Anna Pittaluga; Raffaella Boggia; Preparation of ellagic acid micro and nano formulations with amazingly increased water solubility by its entrapment in pectin or non-PAMAM dendrimers suitable for clinical applications. Nature Biotechnologw Journal of Chemistry 2005, 219, 43, 1517-1526, 10.1038/nbt1171., 2438-2448, 10.1039/c8nj05657a.
  38. Rami Hourani; Ashok Kakkar; Advances in the Elegance of Chemistry in Designing Dendrimers. MCameron C Lee; John A Mackay; Jean M.J. Fréchet; Francis C Szoka; Designing dendrimers for biological applications. Nacturomolecular Rapid Communications e Biotechnology 2010, 5, 231, 947-974, 10.1002/marc.200900712., 1517-1526, 10.1038/nbt1171.
  39. Silvana Alfei; Gaby Brice Taptue; Silvia Catena; Angela Bisio; Synthesis of Water-soluble, Polyester-based Dendrimer Prodrugs for Exploiting Therapeutic Properties of Two Triterpenoid Acids. ChinRami Hourani; Ashok Kakkar; Advances in the Elegance of Chemistry in Designing Dendrimers. Macromolese Jocurnal of Polymer Science lar Rapid Communications 2018, 0, 36, 999-1010, 10.1007/s10118-018-2124-9.1, 947-974, 10.1002/marc.200900712.
  40. Silvana Alfei; Silvia Catena; Marco Ponassi; Camillo Rosano; Vittoria Zoppi; Andrea Spallarossa; Hydrophilic and amphiphilic water-soluble dendrimer prodrugs suitable for parenteral administration of a non-soluble non-nucleoside HIV-1 reverse transcriptase inhibitor thiocarbamate derivative. EuropSilvana Alfei; Gaby Brice Taptue; Silvia Catena; Angela Bisio; Synthesis of Water-soluble, Polyester-based Dendrimer Prodrugs for Exploiting Therapeutic Properties of Two Triterpenoid Acids. Chinesean Journal of Pharmaceuticalolymer Sciences 2018, 124, 153-164, 10.1016/j.ejps.2018.08.036., 36, 999-1010, 10.1007/s10118-018-2124-9.
  41. Keerti Jain; Prashant Kesharwani; Umesh Gupta; Narendra K. Jain; Dendrimer toxicity: Let's meet the challenge. IntSilvana Alfei; Silvia Catena; Marco Ponassi; Camillo Rosano; Vittoria Zoppi; Andrea Spallarossa; Hydrophilic and amphiphilic water-soluble dendrimer prodrugs suitable for parenteral administration of a non-soluble non-nucleoside HIV-1 reverse transcriptase inhibitor thiocarbamate derivative. Europernationaln Journal of Pharmaceutical Sciences 2010, 398, 124, 122-142, 10.1016/j.ijpharm.2010.04.027., 153-164, 10.1016/j.ejps.2018.08.036.
  42. Jin-Seong Lee; June Huh; Cheol-Hee Ahn; Minhyung Lee; Tae Gwan Park; Synthesis of Novel Biodegradable Cationic Dendrimers. MKeerti Jain; Prashant Kesharwani; Umesh Gupta; Narendra K. Jain; Dendrimer toxicity: Let's meet the challenge. Internacrtiomolecular Rapid Communicationnal Journal of Pharmaceutics 20106, 27, 1608-1614, 10.1002/marc.200600393., 394, 122-142, 10.1016/j.ijpharm.2010.04.027.
  43. Ma, X.; Tang, J.; Shen, Y.; Fan, M.; Tang, H.; Radosz, M; Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers.. J.Jin-Seong Lee; June Huh; Cheol-Hee Ahn; Minhyung Lee; Tae Gwan Park; Synthesis of Novel Biodegradable Cationic Dendrimers. Macromolecular Am.Rapid Chem. Soc. ommunications 2009, 131, 14795–14803. , doi: 10.1021/ja9037406..6, 27, 1608-1614, 10.1002/marc.200600393.
  44. Sharma, A.; Gautam, S.P.; Gupta, A.K.; Surface modified dendrimers: Synthesis and characterization for cancer targeted drug delivery.. BioorgMa, X.; Tang, J.; Shen, Y.; Fan, M.; Tang, H.; Radosz, M; Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers.. J. MedAm. Chem. Soc. 20011, 9, 1319, 3341–3346, https://doi.org/10.1016/j.bmc.2011.04.046., 14795–14803. , doi: 10.1021/ja9037406..
  45. Barbara Klajnert‐Maculewicz; Maria Bryszewska; Interactions between PAMAM dendrimers and gallic acid molecules studied by spectrofluorimetric methods. Sharma, A.; Gautam, S.P.; Gupta, A.K.; Surface modified dendrimers: Synthesis and characterization for cancer targeted drug delivery.. Bioorg. Melectrochemistry d. Chem. 2007, 70, 50-52, 10.1016/j.bioelechem.2006.03.027.11, 19, 3341–3346, https://doi.org/10.1016/j.bmc.2011.04.046.
  46. Liron Bitan-Cherbakovsky; Abraham Aserin; Nissim Garti; Structural characterization of lyotropic liquid crystals containing a dendrimer for solubilization and release of gallic acid. CBarbara Klajnert‐Maculewicz; Maria Bryszewska; Interactions between PAMAM dendrimers and gallic acid molecules studied by spectrofluorimetric methods. Bioelloids and Surfaces B: Biointerfaces ectrochemistry 2013, 112, 87-95, 10.1016/j.colsurfb.2013.06.051.07, 70, 50-52, 10.1016/j.bioelechem.2006.03.027.
  47. Sandra P. Amaral; Marcos Fernandez-Villamarin; Juan Correa; Ricardo Riguera; Eduardo Fernandez-Megia; Efficient Multigram Synthesis of the Repeating Unit of Gallic Acid-Triethylene Glycol Dendrimers. OLiron Bitan-Cherbakovsky; Abraham Aserin; Nissim Garti; Structural characterization of lyotropic liquid crystals containing a dendrimer for solubilization and release of gallic acid. Colloids and Surgfanic Letterces B: Biointerfaces 2011, 3, 113, 4522-4525, 10.1021/ol201677k.2, 87-95, 10.1016/j.colsurfb.2013.06.051.
  48. De la Fuente, M.; Raviña, M.; Sousa-Herves, A.; Correa, J.; Riguera, R.; Fernandez-Megia, E.; Sánchez, A.; Alonso, M.J.; Exploring the efficiency of gallic acid-based dendrimers and their block copolymers with PEG as gene carriers. NSandra P. Amaral; Marcos Fernandez-Villamarin; Juan Correa; Ricardo Riguera; Eduardo Fernandez-Megia; Efficient Multigram Synthesis of the Repeating Unit of Gallic Acid-Triethylene Glycol Dendrimers. Organomedicine Letters 20112, 7, 1667–1681, https://doi.org/10.2217/nnm.12.51., 13, 4522-4525, 10.1021/ol201677k.
  49. Renu Singh Dhanikula; Patrice Hildgen; Synthesis and Evaluation of Novel Dendrimers with a Hydrophilic Interior as Nanocarriers for Drug Delivery. BDe la Fuente, M.; Raviña, M.; Sousa-Herves, A.; Correa, J.; Riguera, R.; Fernandez-Megia, E.; Sánchez, A.; Alonso, M.J.; Exploring the efficiency of gallic acid-based dendrimers and their block copolymers with PEG as gene carriers. Nanomedioconjugatine Chemistry 2006, 112, 7, 29-41, 10.1021/bc050184c., 1667–1681, https://doi.org/10.2217/nnm.12.51.
  50. Henrik Ihre; Anders Hult; Jean M.J. Fréchet; Ivan Gitsov; Double-Stage Convergent Approach for the Synthesis of Functionalized Dendritic Aliphatic Polyesters Based on 2,2-Bis(hydroxymethyl)propionic Acid. MaRenu Singh Dhanikula; Patrice Hildgen; Synthesis and Evaluation of Novel Dendrimers with a Hydrophilic Interior as Nanocarriers for Drug Delivery. Biocromoleculenjugate Chemis 1998, 3try 2006, 1, 4061-4068, 10.1021/ma9718762.7, 29-41, 10.1021/bc050184c.
  51. Ihre, H.; Hult, A.; Fréchet, J.M.J.; Gitsov, I. Double-Stage Convergent Approach for the Synthesis of Functionalized Dendritic Aliphatic Polyesters Based on 2,2-Bis(hydroxymethyl)propionic Acid. Macromolecules 1998, 31, 4061–4068. [Google Scholar] [CrossRef]Henrik Ihre; Anders Hult; Jean M.J. Fréchet; Ivan Gitsov; Double-Stage Convergent Approach for the Synthesis of Functionalized Dendritic Aliphatic Polyesters Based on 2,2-Bis(hydroxymethyl)propionic Acid. Macromolecules 1998, 31, 4061-4068, 10.1021/ma9718762.
  52. Alfei, S.; Castellaro, S.; Taptue, G.B. Synthesis and NMR characterization of dendrimers based on 2, 2-bis-(hydroxymethyl)-propanoic acid (bis-HMPA) containing peripheral amino acid residues for gene transfection. Org. Commun. 2017, 10, 144–147. [Google Scholar] [CrossRef]Alfei, S.; Castellaro, S.; Taptue, G.B.; Synthesis and NMR characterization of dendrimers based on 2, 2-bis-(hydroxymethyl)-propanoic acid (bis-HMPA) containing peripheral amino acid residues for gene transfection.. Org. Commun. 2017, 10, 144–147, http://doi.org/10.25135/acg.oc.22.17.07.034.
  53. Alfei, S.; Castellaro, S. Synthesis and characterization of polyester-based dendrimers containing peripheral arginine or mixed amino acids as potential vectors for gene and drug delivery. Macromol. Res. 2017, 25, 1172–1186. [Google Scholar] [CrossRef]Silvana Alfei; Sara Castellaro; Synthesis and characterization of polyester-based dendrimers containing peripheral arginine or mixed amino acids as potential vectors for gene and drug delivery. Macromolecular Research 2017, 25, 1172–1186, 10.1007/s13233-017-5160-3.
  54. Alfei, S.; Catena, S.; Turrini, F. Biodegradable and biocompatible spherical dendrimer nanoparticles with a gallic acid shell and a double-acting strong antioxidant activity as potential device to fight diseases from “oxidative stress”. Drug Deliv. Transl. Res. 2020, 10, 259–270. [Google Scholar] [CrossRef] [PubMed]Silvana Alfei; Silvia Catena; Federica Turrini; Biodegradable and biocompatible spherical dendrimer nanoparticles with a gallic acid shell and a double-acting strong antioxidant activity as potential device to fight diseases from “oxidative stress”. Drug Delivery and Translational Research 2019, 10, 259-270, 10.1007/s13346-019-00681-8.
  55. Alfei, S.; Oliveri, P.; Malegori, C. Assessment of the Efficiency of a Nanospherical Gallic Acid Dendrimer for Long-Term Preservation of Essential Oils: An Integrated Chemometric-Assisted FTIR Study. ChemistrySelect 2019, 4, 8891–8901. [Google Scholar] [CrossRef]Silvana Alfei; Paolo Oliveri; Cristina Malegori; Assessment of the Efficiency of a Nanospherical Gallic Acid Dendrimer for Long‐Term Preservation of Essential Oils: An Integrated Chemometric‐Assisted FTIR Study. ChemistrySelect 2019, 4, 8891-8901, 10.1002/slct.201902339.
  56. Alfei, S.; Signorello, M.G.; Schito, A.M.; Catena, S.; Turrini, F. Reshaped as polyester-based nanoparticles, gallic acid inhibits platelet aggregation, reactive oxygen species production and multi-resistant Gram-positive bacteria with an efficiency never obtained. Nanoscale Adv. 2019, 1, 4148–4157. [Google Scholar] [CrossRef]Silvana Alfei; Maria Grazia Signorello; Anna Schito; Silvia Catena; Federica Turrini; Annamaria Schito; Reshaped as polyester-based nanoparticles, gallic acid inhibits platelet aggregation, reactive oxygen species production and multi-resistant Gram-positive bacteria with an efficiency never obtained. Nanoscale Advances 2019, 1, 4148-4157, 10.1039/c9na00441f.
  57. Alfei, S.; Marengo, B.; Domenicotti, C. Polyester-Based Dendrimer Nanoparticles Combined with Etoposide Have an Improved Cytotoxic and Pro-Oxidant Effect on Human Neuroblastoma Cells. Antioxidants 2020, 9, 50. [Google Scholar] [CrossRef] [PubMed]Silvana Alfei; Barbara Marengo; Cinzia Domenicotti; Polyester-Based Dendrimer Nanoparticles Combined with Etoposide Have an Improved Cytotoxic and Pro-Oxidant Effect on Human Neuroblastoma Cells. Antioxidants 2020, 9, 50, 10.3390/antiox9010050.
  58. Medina, S.H.; El-Sayed, M.E.H. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem. Rev. 2009, 109, 3141–3157. [Google Scholar] [CrossRef] [PubMed]Scott H. Medina; Mohamed E. H. El-Sayed; Dendrimers as Carriers for Delivery of Chemotherapeutic Agents. Chemical Reviews 2009, 109, 3141-3157, 10.1021/cr900174j.
  59. Alfei, S.; Catena, S. Synthesis and characterization of fourth generation polyester-based dendrimers with cationic amino acids-modified crown as promising water soluble biomedical devices. Polym. Adv. Technol. 2018, 29, 2735–2749. [Google Scholar] [CrossRef]Silvana Alfei; Silvia Catena; Synthesis and characterization of fourth generation polyester-based dendrimers with cationic amino acids-modified crown as promising water soluble biomedical devices. Polymers for Advanced Technologies 2018, 29, 2735–2749, 10.1002/pat.4396.
  60. Choudhary, S.; Gupta, L.; Rani, S.; Dave, K.; Gupta, U. Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules. Front. Pharmacol. 2017, 16, e261. [Google Scholar] [CrossRef] [PubMed]Sonam Choudhary; Lokesh Gupta; Sarita Rani; Kaushalkumar Dave; Umesh Gupta; Impact of Dendrimers on Solubility of Hydrophobic Drug Molecules. Frontiers in Pharmacology 2017, 16, e216, 10.3389/fphar.2017.00261.
  61. Kaminskas, L.M.; Boyd, B.J.; Porter, C.J.H. Dendrimer pharmacokinetics: The effect of size, structure and surface characteristics on ADME properties. Nanomedicine 2011, 6, 1063–1084. [Google Scholar] [CrossRef]Lisa M. Kaminskas; Ben J. Boyd; Christopher J. H. Porter; Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine 2011, 6, 1063-1084, 10.2217/nnm.11.67.
  62. Marengo, B.; Monti, P.; Miele, M.; Menichini, P.; Ottaggio, L.; Foggetti, G.; Pulliero, A.; Izzotti, A.; Speciale, A.;Garbarino, O.; et al. Etoposide-resistance in a neuroblastoma model cell line is associated with 13q14.3 mono-allelic deletion and miRNA-15a/16-1 down-regulation. Sci. Rep. 2018, 8, 13762. [CrossRef] [PubMed]Marengo, B.; Monti, P.; Miele, M.; Menichini, P.; Ottaggio, L.; Foggetti, G.; Pulliero, A.; Izzotti, A.; Speciale, A.; Garbarino, O.; et al.et al. Etoposide-resistance in a neuroblastoma model cell line is associated with 13q14.3 mono-allelic deletion and miRNA-15a/16-1 down-regulation.. Sci. Rep. 2018, 8, 13762, doi: 10.1038/s41598-018-32195-7..
  63. Jancovivova, V.; Ceppan, M.; Havlinova, B.; Rehakova, M.; Jakubikova, Z. Interactions in iron gall inks. Chem. Pap. 2007, 61, 391–397. [Google Scholar] [CrossRef]
  64. Huang, X.; Brazel, C.S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control Release 2001, 73, 121–136. [Google Scholar] [CrossRef]
  65. Danhier, F.; Lecouturier, N.; Vroman, B.; Jerome, C.; Marchand-Brynaert, J.; Feron, O.; Preat, V. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. J. Control Release 2009, 133, 11–17. [Google Scholar] [CrossRef]
  66. Ma, X.; Zhou, Z.; Jin, E.; Sun, Q.; Zhang, B.; Tang, J.; Shen, Y. Facile synthesis of polyester dendrimers as drug delivery carriers. Macromolecules 2013, 46, 37–42. [Google Scholar] [CrossRef]
  67. Feliu, N.; Walter, W.V.; Montañez, M.I.; Kunzmann, A.; Hult, A.; Nyström, A.; Malkoch, M.; Fadeelet, B. Stability and biocompatibility of a library of polyester dendrimers in comparison to polyamidoamine dendrimers. Biomaterials 2012, 33, 1970–1981. [Google Scholar] [CrossRef]
  68. Manjappa, K.; Narayanaswamy, J. Thiol-Disulfide Interchange Mediated Reversible Dendritic Megamer Formation and Dissociation. Macromolecules 2009, 42, 7353–7359. [Google Scholar] [CrossRef]
  69. Gao, J.; Hu, J.; Hu, D.; Yang, X. A Role of Gallic Acid in Oxidative Damage Diseases: A Comprehensive Review. Nat. Prod. Commun. 2019, 14, 1–9. [Google Scholar] [CrossRef]
More