Nanomaterials from Industrial, Biological Activities: Comparison
Please note this is a comparison between Version 2 by Conner Chen and Version 1 by Virendra Kumar Yadav.

Nanotechnology and nanoparticles are found to be very effective because of their unique chemical and physical properties and high surface area, but their high cost is one of the major hurdles to its wider application. So, the synthesis of nanomaterials, especially 2D nanomaterials from industrial, agricultural, and other biological activities, could provide a cost-effective technique. The nanomaterials synthesized from such waste not only minimize pollution, but also provide an eco-friendly approach towards the utilization of the waste.

  • nanomaterials
  • carbon nanotubes
  • rice husk
  • agriculture waste
  • carbon nanofibres
Please wait, diff process is still running!

References

  1. Mansoori, G.A.; Soelaiman, T.A.F. Nanotechnology—An Introduction for the Standards. J. ASTM Int. 2005, 2, 1–21.
  2. Yadav, V.K.; Ali, D.; Khan, S.H.; Gnanamoorthy, G.; Choudhary, N.; Yadav, K.K.; Thai, V.N.; Hussain, S.A.; Manhrdas, S. Synthesis and Characterization of Amorphous Iron Oxide Nanoparticles by the Sonochemical Method and Their Application for the Remediation of Heavy Metals from Wastewater. Nanomaterials 2020, 10, 1551.
  3. Malshe, A. Nanotechnology. In CIRP Encyclopedia of Production Engineering; The International Academy for Produ, Laperrière, L., Reinhart, G., Eds.; Springer: Berlin, Heidelberg, 2016.
  4. Lošdorfer Božič, A.; Šiber, A.; Podgornik, R. Statistical analysis of sizes and shapes of virus capsids and their resulting elastic properties. J. Biol. Phys. 2013, 39, 215–228.
  5. Mansoori, G.A. Advances in Atomic and Molecular Nanotechnology. Available online: (accessed on 30 May 2021).
  6. Ali, S.; Abbas, Y.; Zuhra, Z.; Butler, I.S. Synthesis of γ-alumina (Al2O3) nanoparticles and their potential for use as an adsorbent in the removal of methylene blue dye from industrial wastewater. Nanoscale Adv. 2019, 1, 213–218.
  7. Alam, J.; Yadav, V.K.; Yadav, K.K.; Cabral-Pinto, M.M.; Tavker, N.; Choudhary, N.; Shukla, A.K.; Ali, F.A.; Alhoshan, M.; Hamid, A.A. Recent Advances in Methods for the Recovery of Carbon Nanominerals and Polyaromatic Hydrocarbons from Coal Fly Ash and Their Emerging Applications. Crystals 2021, 11, 88.
  8. Pyun, J.; Matyjaszewski, K. Synthesis of Nanocomposite Organic/Inorganic Hybrid Materials Using Controlled/“Living” Radical Polymerization. Chem. Mater. 2001, 13, 3436–3448.
  9. Hanemann, T.; Szabó, D.V. Polymer-Nanoparticle Composites: From Synthesis to Modern Applications. Materials 2010, 3, 3468–3517.
  10. Tavker, N.; Yadav, V.K.; Yadav, K.K.; Cabral-Pinto, M.M.; Alam, J.; Shukla, A.K.; Ali, F.A.; Alhoshan, M. Removal of Cadmium and Chromium by Mixture of Silver Nanoparticles and Nano-Fibrillated Cellulose Isolated from Waste Peels of Citrus Sinensis. Polymers 2021, 13, 234.
  11. Marghussian, V. Nano-Glass Ceramics: Processing, Properties and Applications; Elsevier: Alpharetta, GA, USA, 2015; pp. 1–282.
  12. Yadav, V.K.; Fulekar, M.H. Advances in Methods for Recovery of Ferrous, Alumina, and Silica Nanoparticles from Fly Ash Waste. Ceramics 2020, 3, 34.
  13. Yoriya, S.; Intana, T.; Tepsri, P. Separation of Cenospheres from Lignite Fly Ash Using Acetone–Water Mixture. Appl. Sci. 2019, 9, 3792.
  14. Yadav, V.K.; Yadav, K.K.; Gnanamoorthy, G.; Choudhary, N.; Khan, S.H.; Gupta, N.; Kamyab, H.; Bach, Q.-V. A novel synthesis and characterization of polyhedral shaped amorphous iron oxide nanoparticles from incense sticks ash waste. Environ. Technol. Innov. 2020, 20, 101089.
  15. Rana, S.; Fangueiro, R.; Thakur, V.K.; Joshi, M.; Thomas, S.; Fiedler, B. Nanomaterials from Natural Products for Industrial Applications. Available online: (accessed on 30 May 2021).
  16. Dutta, T.; Kim, K.-H.; Deep, A.; Szulejko, J.; Vellingiri, K.; Kumar, S.; Kwon, E.; Yun, S.-T. Recovery of Nanomaterials from Battery and Electronic Wastes: A New Paradigm of Environmental Waste Management. Renew. Sustain. Energy Rev. 2017, 82, 3694–3704.
  17. Ali, H.; Hassaan, M. Applications of Bio-waste Materials as Green Synthesis of Nanoparticles and Water Purification. Adv. Mater. 2017, 6, 85–101.
  18. Yadav, V.K.; Fulekar, M.H. The current scenario of thermal power plants and fly ash production and utilization: With a focus in India. Int. J. Adv. Eng. Res. Dev. 2018, 5, 768–777.
  19. Sangeetha, J.; Thangadurai, D.; Hospet, R.; Purushotham, P.; Manowade, K.R.; Mujeeb, M.A.; Mundaragi, A.C.; Jogaiah, S.; David, M.; Thimmappa, S.C.; et al. Production of Bionanomaterials from Agricultural Wastes. In Nanotechnology: An Agricultural Paradigm; Springer: Singapore, 2017; pp. 33–58.
  20. Cabral-Pinto, M.M.S.; Inácio, M.; Neves, O.; Almeida, A.A.; Pinto, E.; Oliveiros, B.; Ferreira da Silva, E.A. Human Health Risk Assessment Due to Agricultural Activities and Crop Consumption in the Surroundings of an Industrial Area. Expo. Health 2020, 12, 629–640.
  21. Zheng, Y.; Zhang, H.; Ge, S.; Song, J.; Wang, J.; Zhang, S. Synthesis of Carbon Nanotube Arrays with High Aspect Ratio via Ni-Catalyzed Pyrolysis of Waste Polyethylene. Nanomaterials 2018, 8, 556.
  22. Cabral-Pinto, M.M.S.; Marinho-Reis, P.; Almeida, A.; Pinto, E.; Neves, O.; Inácio, M.; Gerardo, B.; Freitas, S.; Simões, M.R.; Dinis, P.A.; et al. Links between Cognitive Status and Trace Element Levels in Hair for an Environmentally Exposed Population: A Case Study in the Surroundings of the Estarreja Industrial Area. Int. J. Environ. Res. Public Health 2019, 16, 4560.
  23. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931.
  24. Yadav, V.K.; Fulekar, M.H. Biogenic synthesis of maghemite nanoparticles (γ-Fe2O3) using Tridax leaf extract and its application for removal of fly ash heavy metals (Pb, Cd). Mater. Today Proc. 2018, 5, 20704–20710.
  25. Nikalje, A. Nanotechnology and Its Applications in Medicine. Med. Chem. 2015, 5, 081–089.
  26. Jeevanandam, J.; Barhoum, A.; Chan, Y.S.S.; Dufresne, A.; Danquah, M. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity, and Regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074.
  27. Edvinsson, T. Optical quantum confinement and photocatalytic properties in two-, one- and zero-dimensional nanostructures. R. Soc. Open Sci. 2018, 5, 180387.
  28. Brehm, M.; Grydlik, M. Site-controlled and advanced epitaxial Ge/Si quantum dots: Fabrication, properties, and applications. Nanotechnology 2017, 28, 392001.
  29. Patel, K.D.; Singh, R.K.; Kim, H.-W. Carbon-based nanomaterials as an emerging platform for theranostics. Mater. Horiz. 2019, 6, 434–469.
  30. Singh, R.; Singh, K.R. A Review on Nano Materials of Carbon. J. Appl. Phys. 2017, 9, 42–57.
  31. Han, N.; Wang, F.; Ho, J. One-Dimensional Nanostructured Materials for Solar Energy Harvesting. Nanomater. Energy 2012, 1, 4–17.
  32. Om, K.; Manjit, K. Single Electron Transistor: Applications & Problems. Int. J. VLSI Des. Commun. Syst. (VLSICS) 2010, 1, 24–29.
  33. Cao, H. Synthesis, Characterization, and Applications of Zero-Dimensional (0D) Nanostructures. In Synthesis and Applications of Inorganic Nanostructures; Wiley: Hoboken, NJ, USA, 2017.
  34. Tiwari, J.N.; Tiwari, R.N.; Kim, K.S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803.
  35. Mostofizadeh, A.; Li, Y.; Song, B.; Huang, Y. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nanomaterials. J. Nanomater. 2011, 2011, 685081.
  36. Goyenola, C.; Stafström, S.; Hultman, L.; Gueorguiev, A.G. Structural Patterns Arising during Synthetic Growth of Fullerene-Like Sulfocarbide. J. Phys. Chem. C 2012, 116, 21124–21131.
  37. Edelstein, A.S. Nanomaterials. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Oxford, UK, 2001; pp. 5916–5927.
  38. Whitby, R.L.D.; Acquah, S.F.A.; Ma, R.; Zhu, Y. 1D Nanomaterials. J. Nanomater. 2010, 2010, 597851.
  39. Zhao, Y.; Hong, H.; Gong, Q.; Ji, L. 1D Nanomaterials: Synthesis, Properties, and Applications. Available online: (accessed on 30 May 2021).
  40. Fang, X.; Zhang, L. One-Dimensional (1D) ZnS Nanomaterials and Nanostructures. J. Mater. Sci. Technol. 2006, 22, 721–736.
  41. Zhang, C.; Yan, Y.; Zhao, Y.; Yao, J. Synthesis and Applications of Organic Nanorods, Nanowires and Nanotubes. Annu. Rep. Sect. C Phys.Chem. 2013, 109, 211–239.
  42. Guo, Z.; Tan, L. Fundamental and applications of Nanomaterials; Artech House: Norwood, MA, USA, 2009; pp. 1–241.
  43. Zhang, Z.; Zou, R.; Yu, L.; Hu, J. One-Dimensional Silicon-Based Semiconductor Nanomaterials: Synthesis, Structures, Properties and Applications. Crit. Rev. Solid State Mater. Sci. 2011, 36, 148–173.
  44. Gnanamoorthy, G.; Yadav, V.K.; Latha, D.; Karthikeyan, V.; Narayanan, V. Enhanced photocatalytic performance of ZnSnO3/rGO nanocomposite. Chem. Phys. Lett. 2020, 739, 137050.
  45. Gonsalves, K.E.; Rangarajan, S.P.; Wang, J. Chapter 1—Chemical synthesis of nanostructured metals, metal alloys, and semiconductors. In Handbook of Nanostructured Materials and Nanotechnology; Nalwa, H.S., Ed.; Academic Press: Burlington, NJ, USA, 2000; pp. 1–56.
  46. Klein, E.; Lesyuk, R.; Klinke, C. Insights into the formation mechanism of two-dimensional lead halide nanostructures. Nanoscale 2018, 10, 4442–4451.
  47. Sahoo, P.K.; Kim, K.; Powell, M.A.; Equeenuddin, S.M. Recovery of metals and other beneficial products from coal fly ash: A sustainable approach for fly ash management. Int. J. Coal Sci. Technol. 2016, 3, 267–283.
  48. Yin, P.T.; Shah, S.; Chhowalla, M.; Lee, K.-B. Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications. Chem. Rev. 2015, 115, 2483–2531.
  49. Lin, J.; Chen, X.; Huang, P. Graphene-based nanomaterials for bioimaging. Adv. Drug Deliv. Rev. 2016, 105, 242–254.
  50. Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.; Poinern, G. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials 2015, 8, 7278–7308.
  51. Koski, K.J.; Cui, Y. The New Skinny in Two-Dimensional Nanomaterials. ACS Nano 2013, 7, 3739–3743.
  52. Gnanamoorthy, G.; Ramar, K.; Padmanaban, A.; Yadav, V.K.; Suresh Babu, K.; Karthikeyan, V.; Narayanan, V. Implementation of ZnSnO3 nanosheets and their RE (Er, Eu, and Pr) materials: Enhanced photocatalytic activity. Adv. Powder Technol. 2020, 31, 1209–1219.
  53. Boroumand Moghaddam, A.; Namvar, F.; Moniri, M.; Md Tahir, P.; Azizi, S.; Mohamad, R. Nanoparticles Biosynthesized by Fungi and Yeast: A Review of Their Preparation, Properties, and Medical Applications. Molecules 2015, 20, 16540–16565.
  54. Miró, P.; Audiffred, M.; Heine, T. An Atlas of Two-Dimensional Materials. Chem. Soc. Rev. 2014, 43, 6537–6554.
  55. Van Gough, D.; Juhl, A.T.; Braun, P.V. Programming structure into 3D nanomaterials. Mater. Today 2009, 12, 28–35.
  56. Yaya, A. Layered Nanomaterials—A Review. Glob. J. Eng. Des. and Technol. 2012, 1, 32–41.
  57. Korotcenkov, G. Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations. Part 1: 1D and 2D Nanostructures. Nanomaterials 2020, 10, 1392.
  58. Sharma, S.; Jaiswal, S.; Duffy, B.; Jaiswal, A. Nanostructured Materials for Food Applications: Spectroscopy, Microscopy and Physical Properties. Bioengineering 2019, 6, 26.
  59. Wang, J.; Gu, H. Novel Metal Nanomaterials and Their Catalytic Applications. Molecules 2015, 20, 17070–17092.
  60. Julien, M.C.; Mauger, A. Nanostructured MnO2 as Electrode Materials for Energy Storage. Nanomaterials 2017, 7, 396.
  61. Singh, P.; Jain, S. Biosynthesis of Nanomaterials: Growth and Properties. Rev. Adv. Sci. Eng. 2014, 3, 231–238.
  62. Luther, W. Industrial Application of Nanomaterials—Chances and Risks. Technologiezentrum 2004, 54, 1–3.
  63. Gavagnin, M.; Wanzenboeck, H.D.; Wachter, S.; Shawrav, M.M.; Persson, A.; Gunnarsson, K.; Svedlindh, P.; Stöger-Pollach, M.; Bertagnolli, E. Free-Standing Magnetic Nanopillars for 3D Nanomagnet Logic. ACS Appl. Mater. Interfaces 2014, 6, 20254–20260.
  64. Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822.
  65. Semaltianos, N.G. Nanoparticles by Laser Ablation. Crit. Rev. Solid State Mater. Sci. 2010, 35, 105–124.
  66. Sarkar, J.K.; Wang, Q. Different Pyrolysis Process Conditions of South Asian Waste Coconut Shell and Characterization of Gas, Bio-Char, and Bio-Oil. Energies 2020, 13, 1970.
  67. Dhand, C.; Dwivedi, N.; Loh, X.J.; Ng, A.; Verma, N.; Beuerman, R.; Lakshminarayanan, R.; Ramakrishna, S. Methods and Strategies for the Synthesis of Diverse Nanoparticles and Their Applications: A Comprehensive Overview. RSC Adv. 2015, 5, 105003–105037.
  68. Umadevi, S.; Umamaheswari, R.; Ganesh, V. Lyotropic liquid crystal-assisted synthesis of micro- and nanoparticles of silver. Liq. Cryst. 2017, 44, 1409–1420.
  69. Tonelli, D.; Scavetta, E.; Gualandi, I. Electrochemical Deposition of Nanomaterials for Electrochemical Sensing. Sensors 2019, 19, 1186.
  70. Tierno, P.; Goedel, W.A. Using Electroless Deposition for the Preparation of Micron Sized Polymer/Metal Core/Shell Particles and Hollow Metal Spheres. J. Phys. Chem. B 2006, 110, 3043–3050.
  71. Hayashi, H.; Hakuta, Y. Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water. Materials 2010, 3, 3794–3817.
  72. Li, J.; Wu, Q.; Wu, J. Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods. In Handbook of Nanoparticles; Aliofkhazraei, M., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 295–328.
  73. Ramesh, S. Sol-Gel Synthesis and Characterization of Nanoparticles. J. Nanosci. 2013, 2013, 929321.
  74. Kumar Yadav, V.; Fulekar, M.H. Green synthesis and characterization of amorphous silica nanoparticles from fly ash. Mater. Today Proc. 2019, 18, 4351–4359.
  75. Essawy, H.; Fathy, N.; Tawfik, M.; El-Sabbagh, S.; Ismail, N.; Youssef, H. Fabrication of single-walled carbon nanotubes from vulcanized scrap rubber via thermal chemical vapor deposition. RSC Adv. 2017, 7, 12938–12944.
  76. Piriyawong, V.; Thongpool, V.; Asanithi, P.; Limsuwan, P. Preparation and Characterization of Alumina Nanoparticles in Deionized Water Using Laser Ablation Technique. J. Nanomater. 2012, 2012, 819403.
  77. Yadav, D.A. Synthesis of nanomaterials by physical and chemical methods. Int. Educ. Res. J. 2017, 3, 350–352.
  78. Fariq, A.; Khan, T.; Yasmin, A. Microbial synthesis of nanoparticles and their potential applications in biomedicine. J. Appl. Biomed. 2017, 15, 241–248.
  79. Peralta-Videa, J.R.; Huang, Y.; Parsons, J.G.; Zhao, L.; Lopez-Moreno, L.; Hernandez-Viezcas, J.A.; Gardea-Torresdey, J.L. Plant-based green synthesis of metallic nanoparticles: Scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol. Environ. Eng. 2016, 1, 4.
  80. Bansal, V.; Poddar, P.; Ahmad, A.; Sastry, M. Room-Temperature Biosynthesis of Ferroelectric Barium Titanate Nanoparticles. J. Am. Chem. Soc. 2006, 128, 11958–11963.
  81. Castro, L.; Blázquez, M.L.; Muñoz, J.; González, F.; Ballester, A. Biological Synthesis of Metallic Nanoparticles Using Algae. IET Nanobiotechnol. 2013, 7, 109–116.
  82. Iravani, S. Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects. Int. Sch. Res. Not. 2014, 2014, 59316.
  83. Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic synthesis of nanoparticles: A review. Arab. J. Chem. 2019, 12, 3576–3600.
  84. Kim, S.; Kim, K.H.; Bark, C.W. Two-Dimensional Nanomaterials: Their Structures, Synthesis, and Applications. Sci. Adv. Mater. 2017, 9, 1441–1457.
  85. Zavabeti, A.; Jannat, A.; Zhong, L.; Haidry, A.A.; Yao, Z.; Ou, J.Z. Two-Dimensional Materials in Large-Areas: Synthesis, Properties and Applications. Nano-Micro Lett. 2020, 12, 66.
  86. Colson, P.; Henrist, C.; Cloots, R. Nanosphere Lithography: A Powerful Method for the Controlled Manufacturing of Nanomaterials. J. Nanomater. 2013, 2013, 948510.
  87. Pingali, K.C.; Deng, S.; Rockstraw, D.A. Synthesis of Nanowires by Spray Pyrolysis. J. Sens. 2009, 2009, 683280.
  88. Suryanarayana, C.; Prabhu, B. Synthesis of Nanostructured Materials by Inert-Gas Condensation Methods; Nanostructured materials (second edition); William Andrew Publishing: Norwich, NY, USA, 2007; pp. 47–90.
  89. Habiba, K.; Makarov, V.; Weiner, B.; Morell, G. Fabrication of Nanomaterials by Pulsed Laser Synthesis; In book: Manufacturing Nanostructures, Chapter: 10. Available online: (accessed on 30 May 2021).
  90. Xu, H.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567.
  91. Ray, P.C.; Yu, H.; Fu, P.P. Toxicity and Environmental Risks of Nanomaterials: Challenges and Future Needs. J. Environ. Sci. Health Part C 2009, 27, 1–35.
  92. Gnanamoorthy, G.; Ali, D.; Yadav, V.K.; Dhinagaran, G.; Venkatachalam, K.; Narayanan, V. New construction of Fe3O4/rGO/ZnSnO3 nanocomposites enhanced photoelectro chemical properties. Opt. Mater. 2020, 109, 110353.
  93. Yang, J.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials 2019, 9, 424.
  94. Dai, Z.R.; Pan, Z.W.; Wang, Z.L. Growth and Structure Evolution of Novel Tin Oxide Diskettes. J. Am. Chem. Soc. 2002, 124, 8673–8680.
  95. Cha, C.; Shin, S.R.; Annabi, N.; Dokmeci, M.R.; Khademhosseini, A. Carbon-based nanomaterials: Multifunctional materials for biomedical engineering. ACS Nano 2013, 7, 2891–2897.
  96. Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm. 2012, 2012, 195727.
  97. Dubé, M.A.; Salehpour, S. Applying the Principles of Green Chemistry to Polymer Production Technology. Macromol. React. Eng. 2014, 8, 7–28.
  98. Giurlani, W.; Zangari, G.; Gambinossi, F.; Passaponti, M.; Salvietti, E.; Di Benedetto, F.; Caporali, S.; Innocenti, M. Electroplating for Decorative Applications: Recent Trends in Research and Development. Coatings 2018, 8, 260.
  99. Chen, Y.; Fan, Z.; Zhang, Z.; Niu, W.; Li, C.; Yang, N.; Chen, B.; Zhang, H. Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications. Chem. Rev. 2018, 118, 6409–6455.
  100. Yang, F.; Song, P.; Ruan, M.; Xu, W. Recent progress in two-dimensional nanomaterials: Synthesis, engineering, and applications. FlatChem 2019, 18, 100133.
  101. Paul, R.; Reifenberger, R.G.; Fisher, T.S.; Zemlyanov, D.Y. Atomic Layer Deposition of FeO on Pt(111) by Ferrocene Adsorption and Oxidation. Chem. Mater. 2015, 27, 5915–5924.
  102. Zhang, S.; Liu, H.; Yu, J.; Li, B.; Ding, B. Multi-functional flexible 2D carbon nanostructured networks. Nat. Commun. 2020, 11, 5134.
  103. Rai, M.; Ingle, A.; Birla, S.; Yadav, A.; Santos, C. Strategic Role of Selected Noble Metal Nanoparticles in Medicine. Crit. Rev. Microbiol. 2016, 42, 696–719.
  104. Khodashenas, B.; Ghorbani, H. Synthesis of Silver Nanoparticles with Different Shapes. Arab. J. Chem. 2015, 12, 1823–1838.
  105. Jiang, X.; Yu, A.B.; Yang, W.R.; Ding, Y.; Xu, C.X.; Lam, S. Synthesis and Growth of Hematite Nanodiscs through a Facile Hydrothermal Approach. J. Nanopart. Res. 2009, 12, 877–893.
  106. Fu, J.; Skrabalak, S.E. Aerosol synthesis of shape-controlled template particles: A route to Ta3N5 nanoplates and octahedra as photocatalysts. J. Mater. Chem. A 2016, 4, 8451–8457.
  107. Swarnavalli, G.C.J.; Joseph, V.; Kannappan, V.; Roopsingh, D. A Simple Approach to the Synthesis of Hexagonal-Shaped Silver Nanoplates. J. Nanomater. 2011, 2011, 825637.
  108. He, X.; Zhao, X.; Li, Y.; Sui, X. Shape-Controlled Synthesis for Silver: Triangular/Hexagonal Nanoplates, Chain-Like Nanoplate Assemblies, and Nanobelts. J. Mater. Res. 2009, 24, 2200–2209.
  109. Zeb Gul Sial, M.A.; Ud Din, M.A.; Wang, X. Multimetallic nanosheets: Synthesis and applications in fuel cells. Chem. Soc. Rev. 2018, 47, 6175–6200.
  110. Zhang, Z.; Chen, H.; Xing, C.; Guo, M.; Xu, F.; Wang, X.; Gruber, H.; Zhang, B.; Tang, J. Sodium Citrate: A Universal Reducing Agent for Reduction/Decoration of Graphene Oxide with Au Nanoparticles. Nano Res. 2011, 4, 599–611.
  111. Zhou, Y.; Chen, G.; Yu, Y.; Yan, C.; Sun, J.; He, F. Synthesis of Metal Oxide Nanosheets through a Novel Approach for Energy Applications. J. Mater. Chem. A 2015, 4, 781–784.
  112. Liu, J.; Yang, H.; Xue, X. Preparation of Different Shaped α-Fe2O3 Nanoparticles with Large Particle of Iron Oxide Red. CrystEngComm 2019, 21, 1097–1101.
  113. Dai, X.-C.; Hou, S.; Huang, M.-H.; Li, Y.-B.; Li, T.; Xiao, F.-X. Electrochemically anodized one-dimensional semiconductors: A fruitful platform for solar energy conversion. J. Phys. Energy 2019, 1, 022002.
  114. Kawde, A.-N.; Aziz, M.A.; El-Zohri, M.; Baig, N.; Odewunmi, N. Cathodized Gold Nanoparticle-Modified Graphite Pencil Electrode for Non-Enzymatic Sensitive Voltammetric Detection of Glucose. Electroanalysis 2017, 29, 1214–1221.
  115. Ghicov, A.; Schmuki, P. Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 2009, 2791–2808.
  116. Syrek, K.; Kapusta-Kołodziej, J.; Jarosz, M.; Sulka, G.D. Effect of electrolyte agitation on anodic titanium dioxide (ATO) growth and its photoelectrochemical properties. Electrochim. Acta 2015, 180, 801–810.
  117. Lawrence, M.J.; Celorrio, V.; Shi, X.; Wang, Q.; Yanson, A.; Adkins, N.J.E.; Gu, M.; Rodríguez-López, J.; Rodriguez, P. Electrochemical Synthesis of Nanostructured Metal-Doped Titanates and Investigation of Their Activity as Oxygen Evolution Photoanodes. ACS Appl. Energy Mater. 2018, 1, 5233–5244.
  118. Yadav, V.K.; Khan, S.H.; Malik, P.; Thappa, A.; Suriyaprabha, R.; Ravi, R.K.; Choudhary, N.; Kalasariya, H.; Gnanamoorthy, G. Microbial Synthesis of Nanoparticles and Their Applications for Wastewater Treatment. In Microbial Biotechnology: Basic Research and Applications; Singh, J., Vyas, A., Wang, S., Prasad, R., Eds.; Springer: Singapore, 2020; pp. 147–187.
  119. Tiwari, S.; Kumar, V.; Huczko, A.; Oraon, R.; De Adhikari, A.; Nayak, G. Magical Allotropes of Carbon: Prospects and Applications. Crit. Rev. Solid State Mater. Sci. 2015, 41, 257–317.
  120. Zaytseva, O.; Neumann, G. Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chem. Biol. Technol. Agric. 2016, 3, 17.
  121. Hower, J.; Groppo, J.; Graham, U.; Ward, C.; Kostova, I.; Maroto-Valer, M.; Dai, S. Coal-Derived Unburned Carbons in Fly Ash: A Review. Int. J. Coal Geol. 2017, 179, 11–27.
  122. Salah, N.; Al-Ghamdi, A.; Memic, A.; Habib, S.S.; Khan, Z.H. Formation of Carbon Nanotubes from Carbon Rich Fly Ash: Growth Parameters and Mechanism. Mater. Manuf. Process. 2016, 31, 146–156.
  123. Loh, Y.R.; Sujan, D.; Rahman, M.E.; Das, C.A. Sugarcane bagasse—The future composite material: A literature review. Resour. Conserv. Recycl. 2013, 75, 14–22.
  124. Xu, Q.; Ji, T.; Gao, S.J.; Yang, Z.; Wu, N. Characteristics and Applications of Sugar Cane Bagasse Ash Waste in Cementitious Materials. Materials 2018, 12, 39.
  125. Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. buckminsterfullerene. Nature 1985, 318, 162–163.
  126. Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58.
  127. Byrne, M.T.; Gun’ko, Y.K. Recent advances in research on carbon nanotube-polymer composites. Adv. Mater. 2010, 22, 1672–1688.
  128. Arora, N.; Sharma, N.N. Arc Discharge Synthesis of Carbon Nanotubes: Comprehensive Review. Diam. Relat. Mater. 2014, 50, 135–150.
  129. Vallejos, S.; Di Maggio, F.; Shujah, T.; Blackman, C. Chemical Vapour Deposition of Gas Sensitive Metal Oxides. Chemosensors 2016, 4, 4.
  130. Tripathi, P.K.; Durbach, S.; Coville, N.J. Synthesis of Multi-Walled Carbon Nanotubes from Plastic Waste Using a Stainless-Steel CVD Reactor as Catalyst. Nanomaterials 2017, 7, 284.
  131. Nguyen, H.; Jamali Moghadam, M.; Moayedi, H. Agricultural Wastes Preparation, Management, and Applications in Civil Engineering: A Review. J. Mater. Cycles Waste Manag. 2019, 21, 1039–1051.
  132. Zhang, Y.; Williams, P.T. Carbon nanotubes and hydrogen production from the pyrolysis catalysis or catalytic-steam reforming of waste tyres. J. Anal. Appl. Pyrolysis 2016, 122, 490–501.
  133. Gnanamoorthy, G.; Yadav, V.K.; Yadav, K.K. Fabrication of different SnO2 nanorods for enhanced photocatalytic degradation and antibacterial activity. Environ. Sci. Pollut. Res. 2021, 1, 1–11.
  134. Ramirez, A.; Royo, C.; Latorre, N.; Mallada, R.; Tiggelaar, R.; Monzon, A. Unraveling The Growth of Vertically Aligned Multi-Walled Carbon Nanotubes by Chemical Vapor Deposition. Mater. Res. Express 2014, 1, 045604.
  135. Nessim, G.D. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2010, 2, 1306–1323.
  136. MacKenzie, K.J.; Dunens, O.M.; Harris, A.T. An Updated Review of Synthesis Parameters and Growth Mechanisms for Carbon Nanotubes in Fluidized Beds. Ind. Eng. Chem. Res. 2010, 49, 5323–5338.
  137. Zhuo, C.; Wang, X.; Nowak, W.; Levendis, Y. Oxidative Heat Treatment of 316L Stainless Steel for Effective Catalytic Growth of Carbon Nanotubes. Appl. Surf. Sci. 2014, 313, 227–236.
  138. Azadi, M.; Bahrololoom, M.; Heidari, F. Enhancing the Mechanical Properties of an Epoxy Coating with Rice Husk Ash, a Green Product. J. Coat. Technol. Res. 2011, 8, 117–123.
  139. Yalçin, N.; Sevinç, V. Studies on Silica Obtained from Rice Husk. Ceram. Int. 2001, 27, 219–224.
  140. Yalçın, N.; Sevinç, V. Studies of the Surface Area and Porosity of Activated Carbons Prepared from Rice Husks. Carbon 2000, 38, 1943–1945.
  141. Dalling, T. FAO Statistical yearbook 2013: World food and agriculture. In Food and Agriculture Organization of the United Nations; FAO Fiat Fanis: Rome, Italy, 2010; p. 189.
  142. Osman, A.I.; Farrell, C.; Al-Muhtaseb, A.a.H.; Harrison, J.; Rooney, D.W. The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass. Sci. Rep. 2020, 10, 2563.
  143. Kumar, D.R.; Singh, D.R.; Singh, D. Natural and Waste Hydrocarbon Precursors for the Synthesis of Carbon Based Nanomaterials: Graphene and CNTs. Renew. Sustain. Energy Rev. 2016, 58, 976–1006.
  144. Chatterjee, A.K.; Sharon, M.; Banerjee, R.; Neumann-Spallart, M. CVD Synthesis of Carbon Nanotubes Using a Finely Dispersed Cobalt Catalyst and Their Use in Double Layer Electrochemical Capacitors. Electrochim. Acta 2003, 48, 3439–3446.
  145. Myint, D.; Gilani, S.A.; Kawase, M.; Watanabe, K.N. Sustainable Sesame (Sesamum indicum L.) Production through Improved Technology: An Overview of Production, Challenges, and Opportunities in Myanmar. Sustainability 2020, 12, 3515.
  146. Janas, D. From Bio to Nano: A Review of Sustainable Methods of Synthesis of Carbon Nanotubes. Sustainability 2020, 12, 4115.
  147. Titirici, M.; White, R.; Brun, N.; Budarin, V.; Su, D.; Monte, F.; Clark, J.; MacLachlan, M. Sustainable carbon materials. Chem. Soc. Rev. 2014, 44, 250–290.
  148. Wang, Q.; Liu, X.; Zhang, L.; Lv, Y. Microwave-Assisted Synthesis of Carbon Nanodots through an Eggshell Membrane and Their Fluorescent Application. Analyst 2012, 137, 5392–5397.
  149. Furlan, A.; Gueorguiev, G.K.; Högberg, H.; Stafström, S.; Hultman, L. Fullerene-like CPx: A first-principles study of the relative stability of precursors and defect energetics during synthetic growth. Thin Solid Film 2006, 515, 1028–1032.
  150. Shi, S.; Chen, F.; Ehlerding, E.B.; Cai, W. Surface Engineering of Graphene-Based Nanomaterials for Biomedical Applications. Bioconjug. Chem. 2014, 25, 1609–1619.
  151. Ali, I.; Basheer, A.A.; Mbianda, X.Y.; Burakov, A.; Galunin, E.; Burakova, I.; Mkrtchyan, E.; Tkachev, A.; Grachev, V. Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 2019, 127, 160–180.
  152. Ghosal, K.; Sarkar, K. Biomedical Applications of Graphene Nanomaterials and Beyond. ACS Biomater. Sci. Eng. 2018, 4, 2653–2703.
  153. Yadav, V.K.; Gnanamoorthy, G.; Cabral-Pinto, M.M.S.; Alam, J.; Ahamed, M.; Gupta, N.; Singh, B.; Choudhary, N.; Inwati, G.K.; Yadav, K.K. Variations and similarities in structural, chemical, and elemental properties on the ashes derived from the coal due to their combustion in open and controlled manner. Environ. Sci. Pollut. Res. 2021.
  154. Paul, R.; Etacheri, V.; Pol, V.G.; Hu, J.; Fisher, T.S. Highly porous three-dimensional carbon nanotube foam as a freestanding anode for a lithium-ion battery. RSC Adv. 2016, 6, 79734–79744.
  155. Paul, R.; Du, F.; Dai, L.; Ding, Y.; Wang, Z.L.; Wei, F.; Roy, A. 3D Heteroatom-Doped Carbon Nanomaterials as Multifunctional Metal-Free Catalysts for Integrated Energy Devices. Adv. Mater. 2019, 31.
  156. Paul, R.; Roy, A.K. BN-codoped CNT based nanoporous brushes for all-solid-state flexible supercapacitors at elevated temperatures. Electrochim. Acta 2021, 365, 1805598.
  157. Serrano, M.C.; Gutiérrez, M.C.; del Monte, F. Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications. Prog. Polym. Sci. 2014, 39, 1448–1471.
  158. Yadav, V.K.; Yadav, K.K.; Cabral-Pinto, M.M.S.; Choudhary, N.; Gnanamoorthy, G.; Tirth, V.; Prasad, S.; Khan, A.H.; Islam, S.; Khan, N.A. The Processing of Calcium Rich Agricultural and Industrial Waste for Recovery of Calcium Carbonate and Calcium Oxide and Their Application for Environmental Cleanup: A Review. Appl. Sci. 2021, 11, 4212.
  159. Mei, L.; Zhu, S.; Yin, W.; Chen, C.; Nie, G.; Gu, Z.; Zhao, Y. Two-dimensional nanomaterials beyond graphene for antibacterial applications: Current progress and future perspectives. Theranostics 2020, 10, 757–781.
  160. Alberto, N.; Domingues, M.F.; Marques, C.; Andre, P.; Antunes, P. Optical Fiber Magnetic Field Sensors Based on Magnetic Fluid: A Review. Sensors 2018, 18, 4325.
  161. Khan, K.; Tareen, A.K.; Aslam, M.; Sagar, R.U.R.; Zhang, B.; Huang, W.; Mahmood, A.; Mahmood, N.; Khan, K.; Zhang, H.; et al. Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation. Nano-Micro Lett. 2020, 12, 167.
  162. Hong, J.W.; Kim, Y.; Wi, D.H.; Lee, S.; Lee, S.-U.; Lee, Y.W.; Choi, S.-I.; Han, S.W. Ultrathin Free-Standing Ternary-Alloy Nanosheets. Angew. Chem. 2016, 128, 2803–2808.
  163. Ud Din, M.A.; Saleem, F.; Ni, B.; Yong, Y.; Wang, X. Porous Tetrametallic PtCuBiMn Nanosheets with a High Catalytic Activity and Methanol Tolerance Limit for Oxygen Reduction Reactions. Adv. Mater. 2017, 29, 1604994.
  164. Paul, R.; Zhu, L.; Chen, H.; Qu, J.; Dai, L. Recent Advances in Carbon-Based Metal-Free Electrocatalysts. Adv. Mater. 2019, 31, 1806403.
  165. Paul, R.; Roy, A.K.; Dai, L. Chapter 8—Nanoporous graphitic carbon for efficient supercapacitors and related energy applications. In Hybrid Atomic-Scale Interface Design for Materials Functionality; Roy, A.K., Ed.; Elsevier: Alpharetta, GA, USA, 2021; pp. 143–178.
  166. Zhu, C.; Liu, T.; Qian, F.; Chen, W.; Chandrasekaran, S.; Yao, B.; Song, Y.; Duoss, E.B.; Kuntz, J.D.; Spadaccini, C.M.; et al. 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 2017, 15, 107–120.
  167. Freitas, R.R.Q.; Rivelino, R.; de Brito Mota, F.; de Castilho, C.M.C.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. Topological Insulating Phases in Two-Dimensional Bismuth-Containing Single Layers Preserved by Hydrogenation. J. Phys. Chem. C 2015, 119, 23599–23606.
  168. Prasad, S.; Yadav, K.K.; Kumar, S.; Gupta, N.; Cabral-Pinto, M.M.S.; Rezania, S.; Radwan, N.; Alam, J. Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. J. Environ. Manag. 2021, 285, 112194.
  169. Zhao, F.; Slade Rc Fau-Varcoe, J.R.; Varcoe, J.R. Techniques for the study and development of microbial fuel cells: An electrochemical perspective. Chem. Soc. Rev. 2009, 38, 1926–1939.
  170. Kannan, R.; Kakade, B.A.; Pillai, V.K. Polymer Electrolyte Fuel Cells Using Nafion-Based Composite Membranes with Functionalized Carbon Nanotubes. Angew. Chem. Int. Ed. 2008, 47, 2653–2656.
  171. Huang, X.; Jain, P.; El-Sayed, I.; El-Sayed, M. Plasmonic PTT Therapy (PPTT) Using Gold Nanoparticles. Lasers Med. Sci. 2008, 23, 217–228.
  172. Luo, Z.; Wang, C.; Wei, W.; Xiao, G.; Ni, M. Performance Improvement of a Nanofluid Solar Collector Based on Direct Absorption Collection (DAC) Concepts. Int. J. Heat Mass Transf. 2014, 75, 262–271.
  173. Thaker, R.; Patel, J.R. Application of Nano fluids in Solar Energy. J. Altern. Energy Sources Technol. 2015, 6, 1–11.
  174. Elsheikh, A.H.; Sharshir, S.W.; Mostafa, M.; Essa, F.; Ahmed Ali, M. Applications of Nanofluids in Solar Energy: A Review of Recent Advances. Renew. Sustain. Energy Rev. 2017, 82, 3483–3502.
More