Extremophilic Actinobacteria: Microbes to Medicine: Comparison
Please note this is a comparison between Version 2 by Nora Tang and Version 1 by Learn-Han Lee.

Actinobacteria constitute prolific sources of novel and vital bioactive metabolites for pharmaceutical utilization. In recent years, research has focused on exploring actinobacteria that thrive in extreme conditions to unearth their beneficial bioactive compounds for natural product drug discovery. Natural products have a significant role in resolving public health issues such as antibiotic resistance and cancer. The breakthrough of new technologies has overcome the difficulties in sampling and culturing extremophiles, leading to the outpouring of more studies on actinobacteria from extreme environments. This review focuses on the diversity and bioactive potentials/medically relevant biomolecules of extremophilic actinobacteria found from various unique and extreme niches. Actinobacteria possess an excellent capability to produce various enzymes and secondary metabolites to combat harsh conditions. In particular, a few strains have displayed substantial antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), shedding light on the development of MRSA-sensitive antibiotics. Several strains exhibited other prominent bioactivities such as antifungal, anti-HIV, anticancer, and anti-inflammation. By providing an overview of the recently found extremophilic actinobacteria and their important metabolites, we hope to enhance the understanding of their potential for the medical world.

  • extremophile
  • actinobacteria
  • environment
  • bioactivity
  • metabolites
Please wait, diff process is still running!

References

  1. Law, J.W.F.; Letchumanan, V.; Tan, L.T.H.; Ser, H.L.; Goh, B.H.; Lee, L.H. Editorial: The rising of “Modern Actinobacteria” era. Prog. Microbes Mol. Biol. 2020, 3, a0000064.
  2. Verma, M.; Lal, D.; Kaur, J.; Saxena, A.; Kaur, J.; Anand, S.; Lal, R. Phylogenetic analyses of phylum Actinobacteria based on whole genome sequences. Res. Microbiol. 2013, 164, 718–728.
  3. Law, J.W.-F.; Tan, K.-X.; Wong, S.H.; Ab Mutalib, N.-S.; Lee, L.-H. Taxonomic and characterization methods of Streptomyces: A review. Prog. Microbes Mol. Biol. 2018, 1, a0000009.
  4. Lee, L.-H.; Cheah, Y.-K.; Sidik, S.M.; Ab Mutalib, N.-S.; Tang, Y.-L.; Lin, H.-P.; Hong, K. Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production. World J. Microbiol. Biotechnol. 2012, 28, 2125–2137.
  5. Qin, S.; Li, W.-J.; Dastager, S.G.; Hozzein, W.N. Actinobacteria in special and extreme habitats: Diversity, function roles, and environmental adaptations. Front. Microbiol. 2016, 7, 1415.
  6. Rangseekaew, P.; Pathom-Aree, W. Cave actinobacteria as producers of bioactive metabolites. Front. Microbiol. 2019, 10, 387.
  7. Law, J.W.-F.; Ser, H.-L.; Duangjai, A.; Saokaew, S.; Bukhari, S.I.; Khan, T.M.; Ab Mutalib, N.-S.; Chan, K.-G.; Goh, B.-H.; Lee, L.-H. Streptomyces colonosanans sp. nov., a novel actinobacterium isolated from Malaysia mangrove soil exhibiting antioxidative activity and cytotoxic potential against human colon cancer cell lines. Front. Microbiol. 2017, 8, 877.
  8. Lee, L.-H.; Zainal, N.; Azman, A.-S.; Eng, S.-K.; Goh, B.-H.; Yin, W.-F.; Ab Mutalib, N.-S.; Chan, K.-G. Diversity and antimicrobial activities of actinobacteria isolated from tropical mangrove sediments in Malaysia. Sci. World J. 2014, 2014, 698178.
  9. Lee, L.-H.; Chan, K.-G.; Stach, J.; Wellington, E.M.; Goh, B.-H. The search for biological active agent (s) from actinobacteria. Front. Microbiol. 2018, 9, 824.
  10. Stennett, H.L.; Tiwari, K.; Williams, S.E.; Curnow, P.; Race, P.R. The extremophilic pharmacy: Drug discovery at the limits of life. In Biotechnological Applications of Extremophilic Microorganisms; De Gruyter: Berlin, Germany, 2020; pp. 43–72.
  11. Giddings, L.-A.; Newman, D.J. Bioactive Compounds from Extremophiles. In Bioactive Compounds from Extremophiles: Genomic Studies, Biosynthetic Gene Clusters, and New Dereplication Methods; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–47.
  12. Chadlia, H.; Fatma, A.; Atef, J. Actinobacteria: A promising source of enzymes involved in lignocellulosic biomass conversion. Adv. Biotech. Microbiol. 2019, 13, 555874.
  13. Madrova, P.; Vetrovsky, T.; Omelka, M.; Grunt, M.; Smutna, Y.; Rapoport, D.; Vach, M.; Baldrian, P.; Kopecky, J.; Sagova-Mareckova, M. A short-term response of soil microbial communities to cadmium and organic substrate amendment in long-term contaminated soil by toxic elements. Front. Microbiol. 2018, 9, 2807.
  14. Olajuyigbe, F.M.; Ehiosun, K.I. Assessment of crude oil degradation efficiency of newly isolated actinobacteria reveals untapped bioremediation potentials. Bioremediation J. 2016, 20, 133–143.
  15. Polti, M.A.; Aparicio, J.D.; Benimeli, C.S.; Amoroso, M.J. Simultaneous bioremediation of Cr (VI) and lindane in soil by actinobacteria. Int. Biodeterior. Biodegrad. 2014, 88, 48–55.
  16. Rathore, D.S.; Sheikh, M.; Singh, S.P. Marine Actinobacteria: New Horizons in Bioremediation. In Recent Developments in Microbial Technologies; Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P., Eds.; Springer: Singapore, 2021; pp. 425–449.
  17. Anwar, S.; Ali, B.; Sajid, I. Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds. Front. Microbiol. 2016, 7, 1334.
  18. Anilkumar, R.R.; Edison, L.K.; Pradeep, N. Exploitation of fungi and actinobacteria for sustainable agriculture. In Microbial Biotechnology; Patra, J.K., Vishnuprasad, C.N., Das, G., Eds.; Springer: Singapore, 2017; pp. 135–162.
  19. Law, J.W.-F.; Ser, H.-L.; Khan, T.M.; Chuah, L.-H.; Pusparajah, P.; Chan, K.-G.; Goh, B.-H.; Lee, L.-H. The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front. Microbiol. 2017, 8, 3.
  20. Zamoum, M.; Goudjal, Y.; Sabaou, N.; Barakate, M.; Mathieu, F.; Zitouni, A. Biocontrol capacities and plant growth-promoting traits of endophytic actinobacteria isolated from native plants of Algerian Sahara. J. Plant Dis. Prot. 2015, 122, 215–223.
  21. Jayakumar, J. Streptomyces avermitilis as a biopesticide for the management of root knot nematode, Meloidogyne incognita in tomato. Karnataka J. Agric. Sci. 2009, 22, 564–566.
  22. Xiong, Y.-W.; Gong, Y.; Li, X.-W.; Chen, P.; Ju, X.-Y.; Zhang, C.-M.; Yuan, B.; Lv, Z.-P.; Xing, K.; Qin, S. Enhancement of growth and salt tolerance of tomato seedlings by a natural halotolerant actinobacterium Glutamicibacter halophytocola KLBMP 5180 isolated from a coastal halophyte. Plant Soil 2019, 445, 307–322.
  23. Hu, D.; Sun, C.; Jin, T.; Fan, G.; Mok, K.M.; Li, K.; Lee, S.M.-Y. Exploring the potential of antibiotic production from rare actinobacteria by whole-genome sequencing and guided MS/MS analysis. Front. Microbiol. 2020, 11, 1540.
  24. Anandan, R.; Dharumadurai, D.; Manogaran, G.P. Anandan, R.; Dharumadurai, D.; Manogaran, G.P. An introduction to actinobacteria. In Actinobacteria-Basics and Biotechnological Applications; IntechOpen: Rijeka, Croatia, 2016.
  25. Law, J.W.-F.; Pusparajah, P.; Ab Mutalib, N.-S.; Wong, S.H.; Goh, B.-H.; Lee, L.-H. A review on mangrove actinobacterial diversity: The roles of streptomyces and novel species discovery. Prog. Microbes Mol. Biol. 2019, 2, a0000024.
  26. Lee, L.-H.; Law, J.W.-F.; Khan, T.M.; Chan, K.-G.; Ab Mutalib, N.-S.; Goh, B.-H. IDDF2019-ABS-0323 Unveiling the Anti-Colon Cancer Potential of Sarawak Mangrove-Derived Novel Streptomycetes. Gut 2019, 68, A42–A43.
  27. Kemung, H.M.; Tan, L.T.-H.; Chan, K.-G.; Ser, H.-L.; Law, J.W.-F.; Lee, L.-H.; Goh, B.-H. Antioxidant activities of Streptomyces sp. strain MUSC 14 from mangrove forest soil in Malaysia. BioMed Res. Int. 2020, 2020, 6402607.
  28. Ser, H.-L.; Tan, L.T.-H.; Law, J.W.-F.; Chan, K.-G.; Duangjai, A.; Saokaew, S.; Pusparajah, P.; Ab Mutalib, N.-S.; Khan, T.M.; Goh, B.-H. Focused review: Cytotoxic and antioxidant potentials of mangrove-derived Streptomyces. Front. Microbiol. 2017, 8, 2065.
  29. Ser, H.-L.; Law, J.W.-F.; Chaiyakunapruk, N.; Jacob, S.A.; Palanisamy, U.D.; Chan, K.-G.; Goh, B.-H.; Lee, L.-H. Fermentation conditions that affect clavulanic acid production in Streptomyces clavuligerus: A systematic review. Front. Microbiol. 2016, 7, 522.
  30. Tan, L.T.-H.; Chan, K.-G.; Chan, C.K.; Khan, T.M.; Lee, L.-H.; Goh, B.-H. Antioxidative potential of a Streptomyces sp. MUM292 isolated from mangrove soil. BioMed Res. Int. 2018, 2018, 4823126.
  31. Law, J.W.-F.; Ser, H.-L.; Ab Mutalib, N.-S.; Saokaew, S.; Duangjai, A.; Khan, T.M.; Chan, K.-G.; Goh, B.-H.; Lee, L.-H. Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Sci. Rep. 2019, 9, 1–18.
  32. Lee, L.-H.; Zainal, N.; Azman, A.-S.; Eng, S.-K.; Ab Mutalib, N.-S.; Yin, W.-F.; Chan, K.-G. Streptomyces pluripotens sp. nov., a bacteriocin-producing streptomycete that inhibits meticillin-resistant Staphylococcus aureus. Int. J. Syst. Evol. Microbiol. 2014, 64, 3297–3306.
  33. Hopwood, D.A. Streptomyces in Nature and Medicine: The Antibiotic Makers; Oxford University Press: New York, NY, USA, 2007.
  34. Karpiński, T.M. Marine macrolides with antibacterial and/or antifungal activity. Mar. Drugs 2019, 17, 241.
  35. Cheah, Y.-K.; Lee, L.-H.; Chieng, C.; Catherine, C.-Y.C.; Wong, V.-L.C.M. Isolation, identification and screening of actinobacteria in volcanic soil of deception island (the Antarctic) for antimicrobial metabolites. Pol. Polar Res. 2015, 36, 67–78.
  36. Harir, M.; Bendif, H.; Bellahcene, M.; Fortas, Z.; Pogni, R. Streptomyces Secondary Metabolites; IntechOpen: London, UK, 2018; pp. 99–122.
  37. Kemung, H.M.; Tan, L.T.-H.; Chan, K.-G.; Ser, H.-L.; Law, J.W.-F.; Lee, L.-H.; Goh, B.-H. Investigating the antioxidant potential of Streptomyces sp. MUSC 11 from mangrove soil in Malaysia. Prog. Drug Discov. Biomed. Sci. 2019, 2, a0000033.
  38. Tan, L.T.-H.; Chan, K.-G.; Khan, T.M.; Bukhari, S.I.; Saokaew, S.; Duangjai, A.; Pusparajah, P.; Lee, L.-H.; Goh, B.-H. Streptomyces sp. MUM212 as a source of antioxidants with radical scavenging and metal chelating properties. Front. Pharmacol. 2017, 8, 276.
  39. Lee, L.-H.; Goh, B.-H.; Chan, K.-G. Actinobacteria: Prolific producers of bioactive metabolites. Front. Microbiol. 2020, 11, 1612.
  40. Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir. Res. 2020, 104787.
  41. Fox, L.M. Ivermectin: Uses and impact 20 years on. Curr. Opin. Infect. Dis. 2006, 19, 588–593.
  42. Tan, L.T.-H.; Lee, L.-H.; Goh, B.-H. The bioprospecting of anti-Vibrio Streptomyces species: Prevalence and applications. Prog. Microbes Mol. Biol. 2019, 2, a0000034.
  43. Sacramento, D.R.; Coelho, R.R.R.; Wigg, M.D.; Linhares, L.F.d.T.L.; dos Santos, M.G.M.; Semêdo, L.T.d.A.S.; da Silva, A.J.R. Antimicrobial and antiviral activities of an actinomycete (Streptomyces sp.) isolated from a Brazilian tropical forest soil. World J. Microbiol. Biotechnol. 2004, 20, 225–229.
  44. Ser, H.-L.; Yin, W.-F.; Chan, K.-G.; Khan, T.M.; Goh, B.-H.; Lee, L.-H. Antioxidant and cytotoxic potentials of Streptomyces gilvigriseus MUSC 26T isolated from mangrove soil in Malaysia. Prog. Microbes Mol. Biol. 2018, 1, a0000002.
  45. Azman, A.-S.; Othman, I.; Velu, S.S.; Chan, K.-G.; Lee, L.-H. Mangrove rare actinobacteria: Taxonomy, natural compound, and discovery of bioactivity. Front. Microbiol. 2015, 6, 856.
  46. Azman, A.-S.; Othman, I.; Fang, C.-M.; Chan, K.-G.; Goh, B.-H.; Lee, L.-H. Antibacterial, anticancer and neuroprotective activities of rare Actinobacteria from mangrove forest soils. Indian J. Microbiol. 2017, 57, 177–187.
  47. Lee, L.-H.; Azman, A.-S.; Zainal, N.; Yin, W.-F.; Ab Mutalib, N.-S.; Chan, K.-G. Sinomonas humi sp. nov., an amylolytic actinobacterium isolated from mangrove forest soil. Int. J. Syst. Evol. Microbiol. 2015, 65, 996–1002.
  48. Lee, L.-H.; Azman, A.-S.; Zainal, N.; Eng, S.-K.; Ab Mutalib, N.-S.; Yin, W.-F.; Chan, K.-G. Microbacterium mangrovi sp. nov., an amylolytic actinobacterium isolated from mangrove forest soil. Int. J. Syst. Evol. Microbiol. 2014, 64, 3513–3519.
  49. Xie, Q.-Y.; Wang, C.; Wang, R.; Qu, Z.; Lin, H.-P.; Goodfellow, M.; Hong, K. Jishengella endophytica gen. nov., sp. nov., a new member of the family Micromonosporaceae. Int. J. Syst. Evol. Microbiol. 2011, 61, 1153–1159.
  50. Kohli, I.; Joshi, N.C.; Mohapatra, S.; Varma, A. Extremophile–an adaptive strategy for extreme conditions and applications. Curr. Genom. 2020, 21, 96–110.
  51. Merino, N.; Aronson, H.S.; Bojanova, D.P.; Feyhl-Buska, J.; Wong, M.L.; Zhang, S.; Giovannelli, D. Living at the extremes: Extremophiles and the limits of life in a planetary context. Front. Microbiol. 2019, 10, 780.
  52. Rampelotto, P.H. Extremophiles and Extreme Environments. Life 2013, 3, 482–485.
  53. Rothschild, L.J.; Mancinelli, R.L. Life in extreme environments. Nature 2001, 409, 1092–1101.
  54. Prieur, D. Extremophiles. In Encyclopedia of Astrobiology; Gargaud, M., Amils, R., Quintanilla, J.C., Cleaves, H.J., Irvine, W.M., Pinti, D.L., Viso, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 572–575.
  55. Pikuta, E.V.; Hoover, R.B.; Tang, J. Microbial extremophiles at the limits of life. Crit. Rev. Microbiol. 2007, 33, 183–209.
  56. Gholami, M.; Etemadifar, Z.; Bouzari, M. Isolation a new strain of Kocuria rosea capable of tolerating extreme conditions. J. Environ. Radioact. 2015, 144, 113–119.
  57. Des Marais, D.J.; Walter, M.R. Terrestrial hot spring systems: Introduction. Astrobiology 2019, 19, 1419–1432.
  58. Schmidt, T.M. Encyclopedia of Microbiology; Academic Press: San Diego, CA, USA, 2019.
  59. Kristjansson, J.K. Thermophilic Bacteria; CRC Press: Boca Raton, FL, USA, 1991.
  60. Singh, S.P.; Shukla, R.J.; Kikani, B.A. Molecular diversity and biotechnological relevance of thermophilic actinobacteria. In Thermophilic Microbes in Environmental and Industrial Biotechnology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 459–479.
  61. Liu, L.; Salam, N.; Jiao, J.-Y.; Jiang, H.-C.; Zhou, E.-M.; Yin, Y.-R.; Ming, H.; Li, W.-J. Diversity of culturable thermophilic actinobacteria in hot springs in Tengchong, China and studies of their biosynthetic gene profiles. Microb. Ecol. 2016, 72, 150–162.
  62. Hedlund, B.P.; Cole, J.K.; Williams, A.J.; Hou, W.; Zhou, E.; Li, W.; Dong, H. A review of the microbiology of the Rehai geothermal field in Tengchong, Yunnan Province, China. Geosci. Front. 2012, 3, 273–288.
  63. Dabbagh, R.; Ghafourian, H.; Baghvand, A.; Nabi, G.; Riahi, H.; Nakhli, A. Discovery of the second highest level of radioactive mineral spring in Iran. J. Radioanal. Nucl. Chem. 2006, 269, 91–94.
  64. Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Asp. Med. 2003, 24, 345–351.
  65. Varma, S.; Shah, V.; Banerjee, B.; Buddhiraju, K.M. Change detection of desert sand dunes: A remote sensing approach. Adv. Remote Sens. 2014, 3, 10.
  66. Australian Bureau of Statistics. Year Book Australia, 1992 No. 75; Australian Bureau of Statistics: Canberra, Australia, 2003. Available online: (accessed on 3 March 2021).
  67. Makhalanyane, T.P.; Valverde, A.; Gunnigle, E.; Frossard, A.; Ramond, J.-B.; Cowan, D.A. Microbial ecology of hot desert edaphic systems. FEMS Microbiol. Rev. 2015, 39, 203–221.
  68. Logan, R.F. Causes, climates, and distribution of deserts. In Desert Biology: Special Topics on the Physical and Biological Aspects of Arid Regions; Academic Press: New York, NY, USA, 1968; Volume 1, pp. 21–50.
  69. Schulz, D.; Beese, P.; Ohlendorf, B.; Erhard, A.; Zinecker, H.; Dorador, C.; Imhoff, J.F. Abenquines A–D: Aminoquinone derivatives produced by Streptomyces sp. strain DB634. J. Antibiot. 2011, 64, 763–768.
  70. Doran, P.T.; McKay, C.P.; Clow, G.D.; Dana, G.L.; Fountain, A.G.; Nylen, T.; Lyons, W.B. Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. J. Geophys. Res. Atmos. 2002, 107, ACL 13-11–ACL 13-12.
  71. Navarro-González, R.; Rainey, F.A.; Molina, P.; Bagaley, D.R.; Hollen, B.J.; de la Rosa, J.; Small, A.M.; Quinn, R.C.; Grunthaner, F.J.; Cáceres, L. Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 2003, 302, 1018–1021.
  72. Dandawate, P.; Vyas, A.; Padhye, S.; Singh, M.; Baruah, J. Perspectives on medicinal properties of benzoquinone compounds. Mini Rev. Med. Chem. 2010, 10, 436–454.
  73. Komatsu, K.; Lee, J.; Miyata, M.; Lim, J.H.; Jono, H.; Koga, T.; Xu, H.; Yan, C.; Kai, H.; Li, J. Inhibition of PDE4B suppresses inflammation by increasing expression of the deubiquitinase CYLD. Nat. Commun. 2013, 4, 1684.
  74. Bielekova, B.; Lincoln, A.; McFarland, H.; Martin, R. Therapeutic potential of phosphodiesterase-4 and-3 inhibitors in Th1-mediated autoimmune diseases. J. Immunol. 2000, 164, 1117–1124.
  75. Kumar, N.; Goldminz, A.M.; Kim, N.; Gottlieb, A.B. Phosphodiesterase 4-targeted treatments for autoimmune diseases. BMC Med. 2013, 11, 96.
  76. Rateb, M.E.; Houssen, W.E.; Arnold, M.; Abdelrahman, M.H.; Deng, H.; Harrison, W.T.; Okoro, C.K.; Asenjo, J.A.; Andrews, B.A.; Ferguson, G. Chaxamycins A–D, bioactive ansamycins from a hyper-arid desert Streptomyces sp. J. Nat. Prod. 2011, 74, 1491–1499.
  77. Hostein, I.; Robertson, D.; DiStefano, F.; Workman, P.; Clarke, P.A. Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res. 2001, 61, 4003–4009.
  78. Wichner, D.; Idris, H.; Houssen, W.E.; McEwan, A.R.; Bull, A.T.; Asenjo, J.A.; Goodfellow, M.; Jaspars, M.; Ebel, R.; Rateb, M.E. Isolation and anti-HIV-1 integrase activity of lentzeosides A–F from extremotolerant Lentzea sp. H45, a strain isolated from a high-altitude Atacama Desert soil. J. Antibiot. 2017, 70, 448–453.
  79. Nithya, K.; Muthukumar, C.; Biswas, B.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Dhanasekaran, D. Desert actinobacteria as a source of bioactive compounds production with a special emphases on Pyridine-2, 5-diacetamide a new pyridine alkaloid produced by Streptomyces sp. DA3-7. Microbiol. Res. 2018, 207, 116–133.
  80. Smith, S.J.; Zhao, X.Z.; Burke, T.R.; Hughes, S.H. HIV-1 integrase inhibitors that are broadly effective against drug-resistant mutants. Antimicrob. Agents Chemother. 2018, 62, e00611-20.
  81. Noreen, N.; Ramzan, N.; Perveen, Z.; Shahzad, S. A comparative study of cow dung compost, goat pellets, poultry waste manure and plant debris for thermophilic, thermotolerant and mesophilic microflora with some new reports from Pakistan. Pak. J. Bot. 2019, 51, 1155–1159.
  82. Ahmed, Z.; Sedik, Z.; Alharery, M.; Khalaf, M.; Nasr, S.A.; Abdelrahman, H. Microbial ecology of composting dead poultry and their wastes. Glob. Vet. 2012, 9, 683–690.
  83. Wölfl, A.-C.; Snaith, H.; Amirebrahimi, S.; Devey, C.W.; Dorschel, B.; Ferrini, V.; Huvenne, V.A.; Jakobsson, M.; Jencks, J.; Johnston, G. Seafloor Mapping–the challenge of a truly global ocean bathymetry. Front. Mar. Sci. 2019, 6, 283.
  84. Mestre, N.C.; Calado, R.; Soares, A.M. Exploitation of deep-sea resources: The urgent need to understand the role of high pressure in the toxicity of chemical pollutants to deep-sea organisms. Environ. Pollut. 2014, 185, 369–371.
  85. Dalmaso, G.Z.L.; Ferreira, D.; Vermelho, A.B. Marine extremophiles: A source of hydrolases for biotechnological applications. Mar. Drugs 2015, 13, 1925–1965.
  86. Sarmiento-Vizcaíno, A.; González, V.; Braña, A.F.; Palacios, J.J.; Otero, L.; Fernández, J.; Molina, A.; Kulik, A.; Vázquez, F.; Acuña, J.L. Pharmacological potential of phylogenetically diverse Actinobacteria isolated from deep-sea coral ecosystems of the submarine Avilés Canyon in the Cantabrian Sea. Microb. Ecol. 2017, 73, 338–352.
  87. Li, Q.Q.; Lee, R.X.; Liang, H.; Zhong, Y. Anticancer activity of β-elemene and its synthetic analogs in human malignant brain tumor cells. Anticancer Res. 2013, 33, 65–76.
  88. Zhang, G.-N.; Ashby, C.R.; Zhang, Y.-K.; Chen, Z.-S.; Guo, H. The reversal of antineoplastic drug resistance in cancer cells by β-elemene. Chin. J. Cancer 2015, 34, 45.
  89. Xu, D.; Han, L.; Li, C.; Cao, Q.; Zhu, D.; Barrett, N.H.; Harmody, D.; Chen, J.; Zhu, H.; McCarthy, P.J. Bioprospecting deep-sea actinobacteria for novel anti-infective natural products. Front. Microbiol. 2018, 9, 787.
  90. Naik, P.M.; Al-Khayri, J.M. Abiotic and biotic elicitors–role in secondary metabolites production through in vitro culture of medicinal plants. In Abiotic and Biotic Stress in Plants-Recent Advances and Future Perspectives; InTech: Rijeka, Croatia, 2016; pp. 247–277.
  91. Cohen, S.H.; Gerding, D.N.; Johnson, S.; Kelly, C.P.; Loo, V.G.; McDonald, L.C.; Pepin, J.; Wilcox, M.H. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect. Control Hosp. Epidemiol. 2010, 31, 431–455.
  92. Northup, D.E.; Lavoie, K.H. Geomicrobiology of caves: A review. Geomicrobiol. J. 2001, 18, 199–222.
  93. Gillieson, D. Caves: Processes, Development and Management; John Wiley & Sons: Hoboken, NJ, USA, 2009.
  94. Howard, A.D. Processes of limestone cave development. Int. J. Speleol. 1964, 1, 8.
  95. Pelletier, B. Empire Biota: Taxonomy and Evolution, 2nd ed.; Lulu.com: Morrisville, CA, USA, 2012; Available online: (accessed on 3 March 2021).
  96. Maciejewska, M.; Adam, D.; Naômé, A.; Martinet, L.; Tenconi, E.; Całusińska, M.; Delfosse, P.; Hanikenne, M.; Baurain, D.; Compère, P. Assessment of the potential role of Streptomyces in cave moonmilk formation. Front. Microbiol. 2017, 8, 1181.
  97. Adam, D.; Maciejewska, M.; Naômé, A.; Martinet, L.; Coppieters, W.; Karim, L.; Baurain, D.; Rigali, S. Isolation, characterization, and antibacterial activity of hard-to-culture actinobacteria from cave moonmilk deposits. Antibiotics 2018, 7, 28.
  98. Long, Y.; Jiang, J.; Hu, X.; Zhou, J.; Hu, J.; Zhou, S. Actinobacterial community in Shuanghe Cave using culture-dependent and-independent approaches. World J. Microbiol. Biotechnol. 2019, 35, 153.
  99. Pardo-Igúzquiza, E.; Dowd, P.A.; Xu, C.; Durán-Valsero, J.J. Stochastic simulation of karst conduit networks. Adv. Water Resour. 2012, 35, 141–150.
  100. Ford, D.; Williams, P.D. Karst Hydrogeology and Geomorphology; John Wiley & Sons: Hoboken, NJ, USA, 2013.
  101. Vertesy, L.; Ehlers, E.; Kogler, H.; Kurz, M.; Meiwes, J.; Seibert, G.; Vogel, M.; Hammann, P. Friulimicins: Novel Lipopeptide Antibiotics with Peptidoglycan Synthesis Inhibiting Activity from Actinoplanes friuliensis sp. nov. J. Antibiot. 2000, 53, 816–827.
  102. Baxter, B.K. Great Salt Lake microbiology: A historical perspective. Int. Microbiol. 2018, 21, 79–95.
  103. Last, W.M. Geolimnology of salt lakes. Geosci. J. 2002, 6, 347–369.
  104. Albarracín, V.H.; Pathak, G.P.; Douki, T.; Cadet, J.; Borsarelli, C.D.; Gärtner, W.; Farias, M.E. Extremophilic Acinetobacter strains from high-altitude lakes in Argentinean Puna: Remarkable UV-B resistance and efficient DNA damage repair. Orig. Life Evol. Biosph. 2012, 42, 201–221.
  105. Rasuk, M.C.; Ferrer, G.M.; Kurth, D.; Portero, L.R.; Farías, M.E.; Albarracín, V.H. UV-resistant actinobacteria from high-altitude Andean Lakes: Isolation, characterization and antagonistic activities. Photochem. Photobiol. 2017, 93, 865–880.
  106. Zhang, M.; Wang, L.; Zhong, D. Photolyase: Dynamics and mechanisms of repair of sun-induced DNA damage. Photochem. Photobiol. 2017, 93, 78–92.
  107. Wu, J.; Peng, Z.; Guan, T.-W.; Yang, H.; Tian, X. Diversity of actinobacteria in sediments of Qaidam Lake and Qinghai Lake, China. Arch. Microbiol. 2021, 1–11.
  108. Mohammadipanah, F.; Wink, J. Actinobacteria from arid and desert habitats: Diversity and biological activity. Front. Microbiol. 2016, 6, 1541.
  109. Crits-Christoph, A.; Robinson, C.K.; Barnum, T.; Fricke, W.F.; Davila, A.F.; Jedynak, B.; McKay, C.P.; DiRuggiero, J. Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome 2013, 1, 28.
  110. Grossart, H.-P.; Schlingloff, A.; Bernhard, M.; Simon, M.; Brinkhoff, T. Antagonistic activity of bacteria isolated from organic aggregates of the German Wadden Sea. FEMS Microbiol. Ecol. 2004, 47, 387–396.
  111. Zeng, Q.; Huang, H.; Zhu, J.; Fang, Z.; Sun, Q.; Bao, S. A new nematicidal compound produced by Streptomyces albogriseolus HA10002. Antonie Van Leeuwenhoek 2013, 103, 1107–1111.
  112. Zhang, W.; Wei, S.; Zhang, J.; Wu, W. Antibacterial activity composition of the fermentation broth of Streptomyces djakartensis NW35. Molecules 2013, 18, 2763–2768.
  113. Kumar, P.S.; Yuvaraj, P.; Paulraj, M.G.; Ignacimuthu, S.; Al-Dhabi, N.A. Bio-Prospecting of soil Streptomyces and its bioassay-guided isolation of microbial derived auxin with antifungal properties. J. Mycol. Med. 2018, 28, 462–468.
  114. Mbah, J.A.; Ngemenya, M.N.; Abawah, A.L.; Babiaka, S.B.; Nubed, L.N.; Nyongbela, K.D.; Lemuh, N.D.; Efange, S.M. Bioassay-guided discovery of antibacterial agents: In vitro screening of Peperomia vulcanica, Peperomia fernandopoioana and Scleria striatinux. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 10.
  115. Steinbeck, C.; Kuhn, S. NMRShiftDB–compound identification and structure elucidation support through a free community-built web database. Phytochemistry 2004, 65, 2711–2717.
  116. Law, J.W.-F.; Chan, K.-G.; He, Y.-W.; Khan, T.M.; Ab Mutalib, N.-S.; Goh, B.-H.; Lee, L.-H. Diversity of Streptomyces spp. from mangrove forest of Sarawak (Malaysia) and screening of their antioxidant and cytotoxic activities. Sci. Rep. 2019, 9, 1–15.
  117. Gosse, J.T.; Ghosh, S.; Sproule, A.; Overy, D.; Cheeptham, N.; Boddy, C.N. Whole genome sequencing and metabolomic study of cave Streptomyces isolates ICC1 and ICC4. Front. Microbiol. 2019, 10, 1020.
  118. Ser, H.-L.; Ab Mutalib, N.-S.; Yin, W.-F.; Goh, B.-H.; Lee, L.-H.; Chan, K.-G. Genome sequence of Streptomyces antioxidans MUSC 164T isolated from mangrove forest. Prog. Microbes Mol. Biol. 2018, 1, a0000001.
  119. Ōmura, S.; Ikeda, H.; Ishikawa, J.; Hanamoto, A.; Takahashi, C.; Shinose, M.; Takahashi, Y.; Horikawa, H.; Nakazawa, H.; Osonoe, T. Genome sequence of an industrial microorganism Streptomyces avermitilis: Deducing the ability of producing secondary metabolites. Proc. Natl. Acad. Sci. USA 2001, 98, 12215–12220.
  120. Lee, N.; Kim, W.; Hwang, S.; Lee, Y.; Cho, S.; Palsson, B.; Cho, B.-K. Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Sci. Data 2020, 7, 1–9.
  121. Ser, H.-L.; Chan, K.-G.; Tan, W.-S.; Yin, W.-F.; Goh, B.-H.; Ab Mutalib, N.-S.; Lee, L.-H. Complete genome of mangrove-derived anti-MRSA streptomycete, Streptomyces pluripotens MUSC 135T. Prog. Microbes Mol. Biol. 2018, 1, a0000004.
  122. Ser, H.-L.; Law, J.W.-F.; Tan, W.-S.; Yin, W.-F.; Chan, K.-G.; Lee, L.-H. Genome sequence of bioactive streptomycete isolated from mangrove forest in East Malaysia, Streptomyces monashensis MUSC 1JT. Prog. Drug Discov. Biomed. Sci. 2019, 2, a0000045.
  123. Ser, H.-L.; Law, J.W.-F.; Tan, W.-S.; Yin, W.-F.; Chan, K.-G. Whole genome sequence of Streptomyces colonosanans strain MUSC 93JT isolated from mangrove forest in Malaysia. Prog. Microbes Mol. Biol. 2020, 3, a0000061.
  124. Ser, H.-L.; Tan, W.-S.; Ab Mutalib, N.-S.; Cheng, H.-J.; Yin, W.-F.; Chan, K.-G.; Lee, L.-H. Genome sequence of Streptomyces pluripotens MUSC 135T exhibiting antibacterial and antioxidant activity. Mar. Genom. 2015, 24, 281–283.
  125. Ser, H.-L.; Tan, W.-S.; Cheng, H.-J.; Yin, W.-F.; Chan, K.-G.; Ab Mutalib, N.-S.; Goh, B.-H.; Lee, L.-H. Draft genome of starch-degrading actinobacterium, Microbacterium mangrovi MUSC 115T isolated from intertidal sediments. Prog. Drug Discov. Biomed. Sci. 2018, 1, a0000005.
  126. Li, S.; Li, Y.; Lu, C.; Zhang, J.; Zhu, J.; Wang, H.; Shen, Y. Activating a cryptic ansamycin biosynthetic gene cluster to produce three new naphthalenic octaketide ansamycins with n-pentyl and n-butyl side chains. Org. Lett. 2015, 17, 3706–3709.
More