Please note this is a comparison between Version 2 by Conner Chen and Version 1 by Rajesh Mishra.
Recent advancement in controlling noise through sound absorption provides an opportunity to investigate various porous materials including fiber-based composites. Natural-fiber-based composites exhibit relatively good sound absorption capability due to their porous structure. Surface modification by alkali treatment can enhance the sound absorption performance. These materials can be used in buildings and interiors for efficient sound insulation. Natural-fiber-based composites have advantages such as high abrasive resistance, low emission of toxic fumes with heat, high specific strength, light weight, low cost, and eco-friendliness. Very rapid growth has been observed in the innovations and use of natural-fiber-based materials and composites for acoustic applications.
acoustic
natural fibers
composites
sound absorption coefficient
noise attenuation
Please wait, diff process is still running!
References
Erden, S.; Kingsley, H. Fiber reinforced composites. In Fiber Technology for Fiber-Reinforced Composites; Woodhead Publishing: Cambridge, UK, 2017; pp. 51–79.
Vallittu, P.; Akikazu, S. Structural Properties of Dental FRC Structures. A Clinical Guide to Fiber Reinforced Composites (FRCs) in Dentistry; Woodhead Publishing: Cambridge, UK, 2017; pp. 35–56.
Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A review of recent developments in natural fiber composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112.
Cao, Y.; Wu, Y. Evaluation of statistical strength of bamboo fiber and mechanical properties of fiber reinforced green composites. J. Central South Univ. Technol. 2008, 15, 564–567.
N. C. United States Department of Health and Human Services. Report on Carcinogens, 12th ed.; National Toxicology Program: Raleigh, NC, USA, 2012.
Kogel, J.E.; Trivedi, N.C.; Barker, J.M.; Krukowski, S.T. Industrial Minerals & Rocks: Commodities, Markets, and Uses, 7th ed.; SME: Englewood, CO, USA, 2006; Available online: (accessed on 29 May 2021).
Hubaux, R.; Becker-Santos, D.D.; Enfield, K.S.S.; Lam, S.; Lam, W.L.; Martinez, V.D. Arsenic, asbestos and radon: Emerging players in lung tumorigenesis. Environ. Health 2012, 11, 89.
Rouette, H.K.; Schwager, B. Encyclopedia of Textile Finishing, 1st ed.; Springer: Berlin, Germany, 2001; Volume 23.
Su, W.C.; Cheng, Y.S. Deposition of man-made fibers in human respiratory airway casts. J. Aeros. Sci. 2009, 40, 270–284.
Fragomeni, S.; Venkatesan, S. Incorporating Sustainable Practice in Mechanics and Structures of Materials; CRC Press: Boca Raton, FL, USA, 2010.
Mamtaz, H.; Fouladi, M.; Al-Atabi, H.M.; Namasivayam, S.N. Acoustic absorption of natural fiber composites. J. Eng. 2016, 2016, 5836107.
Kadam, V.V.; Nayak, R. Basics of Acoustic Science; Springer Science & Business Media: Singapore, 2016.
ASTM. ASTM C423—17. Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method; 1850 M Street, NW, Suite 1030; ASTM: Washington, DC, USA, 2017.
Kang, Z.; Song, R.; Zhang, H.; Liu, Q. Study on sound insulation performance of double-layer perforated panelunder normal incidence waves. Appl. Acoust. 2021, 174, 107785.
Yiyao, L.; Wana, B.; Chuanren, D.; Sakanishi, A. The non-linear model of sound wave diffusion in Chrysanthemum callus. Colloid Surf. B Biointerfaces 2002, 24, 333–337.
Nowoswiat, A.; Bochen, J.; Dulak, L.; Zuchowski, R. Investigation studies involving sound absorbing parameters of roadsidescreen panels subjected to aging in simulated conditions. Appl. Acoust. 2016, 111, 8–15.
Zhang, Y.; Li, H.; Abdelhady, A.; Yang, J. Effect of different factors on sound absorption property of porous concrete. Transp. Res. Part D Trans. Environ. 2020, 87, 102532.
Rey, R.D.; Alba, J.; Arenas, J.P.; Sanchis, V.J. An empirical modelling of porous sound absorbing materials made of recycled foam. Appl. Acoust. 2012, 73, 604–609.
Cox, T.J.; Antonio, P.D. Acoustic Absorbers and Diffusers: Theory, Design and Application, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2009.
Bratu, M.; Vasile, O.; Dumitrescu, O. Sound-absorbing properties of composite materials reinforced with various wastes. Environ. Eng. Manag. 2011, 10, 1046–1051.
Yang, W.; Li, Y. Sound absorption performance of natural fibers and their composites. Sci. China Technol. Sci. 2012, 55, 2278–2283.
Jayamani, E.; Hamdan, S.; Rahman, M.R.; Bakri, M.K.B.; Kakar, A. An investigation of sound absorption coefficient on sisal fiber poly lactic acid bio-composites. J. Appl. Polym. Sci. 2015, 132.
Zhang, J.; Shen, Y.; Jiang, B.; Li, Y. Sound absorption characterization of natural materials and sandwich structure composites. Aerospace 2018, 5, 75.
Zhang, S.; Li, Y.; Zheng, Z. Effect of physiochemical structure on energy absorption properties of plant fibers reinforced composites: Dielectric, thermal insulation, and sound absorption properties. Comp. Comm. 2018, 10, 163–167.
Yang, H.S.; Kim, D.J.; Kim, H.J. Rice straw–wood particle composite for sound absorbing wooden construction materials. Bioresour. Technol. 2003, 86, 117–121.
Maderuelo-Sanz, R.; Nadal-Gisbert, A.; Crespo-Amoros, J.; Parres-García, F. A novel sound absorber with recycled fibers coming from end of life tires (ELTs). Appl. Acoust. 2012, 73, 402–408.
Maderuelo-Sanz, R.; Morillas, J.; Martin-Castizo, M.; Escobar, V.G.; Gozalo, G.R. Acoustical performance of porous absorber made from recycled rubber and polyurethane resin. Lat. Am. J. Solids Struct. 2013, 10, 585–600.
Prabhu, L.; Krishnaraj, V.; Gokulkumar, S.; Sathish, S.; Ramesh, M. Mechanical, chemical and acoustical behavior of sisal—Tea waste—Glass fiber reinforced epoxy reinforced hybrid polymer composites. Mater. Today Proc. 2019, 16, 653–660.
Tiuc, A.E.; Vermesan, H.; Gabor, T.; Vasile, O. Improved sound absorption properties of polyurethane foam mixed with textile waste. Energy Proc. 2016, 85, 559–565.
Chen, D.; Li, J.; Ren, J. Study on sound absorption property of ramie fiber reinforced poly (L-lactic acid) composites: Morphology and properties. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1012–1018.
Lee, Y.; Joo, C. Sound absorption properties of recycled polyester fibrous assembly absorbers. Autex Res. J. 2003, 3, 78–84.
Koizumi, T.; Tsujiuchi, N.; Adachi, A. The development of sound absorbing materials using natural bamboo fibers. WIT Trans. Built Environ. 2002, 59, 157–166.
Ren, Y.H.; Sun, X.N.; Song, H. Study on the sound absorption properties of several kinds of fibers. Adv. Mater. Res. 2011, 332, 959–962.
Bakri, M.K.B.; Jayamani, E.; Heng, S.K.; Hamdan, S.; Kakar, A. An experimental and simulation studies on sound absorption coefficients of banana fibers and their reinforced composites. Nano Hyb. Compos. 2017, 12, 9–20.
Mamtaz, H.; Hosseini, M.; Zaki, M.; Narayana, S.; Ghassem, M.; Al-atabi, M. Acoustic absorption of fibro-granular composite with cylindrical grains. Appl. Acoust. 2017, 126, 58–67.
Luu, H.T.; Panneton, R. Effective fiber diameter for modeling the acoustic properties of polydisperse fiber networks. J. Acoustl. Soc. Am. 2017, 141, EL96–EL101.
Xiang, H.; Wang, D.; Liua, H.; Zhao, N.; Xu, J. Investigation on sound absorption properties of kapok fibers. Chin. J. Polym. Sci. 2013, 31, 521–529.
Arumugam, V.; Kumar, B.; Santulli, C. Effect of fiber orientation in unidirectional glass epoxy laminate using acoustic emission monitoring. Acta Metall. Sin. 2011, 24, 351–364.
Srivastava, R.K.; Dhabal, R.L.; Suman, B.M.; Saini, A.; Panchal, P. An estimation of correlation on thermo-acoustic properties of mineral wool. J. Sci. Ind. Res. 2006, 65, 232–236.
Reixach, R.; Rey, R.D.; Alba, J.; Arbat, G.; Espinach, F.; Mutjé, P. Acoustic properties of agroforestry waste orange pruning fibers reinforced polypropylene composites as an alternative to laminated gypsum boards. Const. Build. Mater. 2015, 77, 124–129.
Jayamani, E.; Heng, S.K.; Bakri, M.K.; Hamdan, S. Comparative study of sound absorption coefficients of coir/kenaf/sugarcane bagasse fiber reinforced epoxy composites. Key Eng. Mater. 2017, 730, 48–53.
Harris, C.M. Absorption of sound in air versus humidity and temperature. J. Acoust. Soc. Am. 1966, 40, 148–159.
Knudsen, V.O. The absorption of sound in air, in oxygen, and in nitrogen—Effects of humidity and temperature. J. Acoust. Soc. Am. 1933, 5, 112–121.
Knapen, E.; Lanoye, R.; Vermeir, G.; Lauriks, W.; Gemert, D.V. Acoustic properties of sound absorbing, polymer-modified porous cement mortars. In Proceedings of the 6th Internatioanl conference on Material Science and Restoration, MSR VI, Karlsruhe, Germany, 16–18 September 2003; Aedificatio Publishers: Freiburg, Germany, 2003; Volume 1, pp. 347–358.
Sakagami, K.; Kiyama, M.; Morimoto, M.; Takahashi, D. Sound absorption of a cavity-backed membrane: A step towards design method for membrane-type absorbers. Appl. Acoust. 1996, 49, 237–247.
Dupont, T.; Leclaire, P.; Sicot, O.; Gong, X.L.; Panneton, R. Acoustic properties of air-saturated porous materials containing dead-end porosity. J. Appl. Phy. 2011, 110, 094903.
Bies, D.H.; Hansen, C.H. Engineering Noise Control, 1st ed.; Spon Press, Taylor and Francis Group: London, UK, 1996.
Crocker, M.J. Handbook of Noise and Vibration Control, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007.
Qiu, X. Acoustic testing and evaluation of textiles for buildings and office environments. In Performance Testing of Textiles; Woodhead Publishing: Cambridge, UK, 2016; pp. 103–128.
Coates, M.; Kierzkowski, M. Thermoformable Acoustic Sheet. Acoust. Soc. Am. J. 2007, 122, 2509.
Fatima, S.; Mohanty, A.R. Acoustical and fire-retardant properties of jute composite materials. Appl. Acoust. 2011, 72, 108–114.
Hirabayashi, T.; McCaa, D.; Rebandt, R.; Rusch, P.; Saha, P. Application of noise control and heat insulation materials and devices in the automotive industry. SAE Tech. Paper 1995.
Hakamada, M.; Kuromura, T.; Chen, Y.; Kusuda, H.; Mabuchi, M. High sound absorption of porous aluminum fabricated by spacer method. Appl. Phy. Lett. 2006, 88, 106–254.
Jiang, W.; Zhang, Q.; Zhang, Y.; Guo, Z.; Tu, S.T. Flexural behavior and damage evolution of pultruded fibre-reinforced composite by acoustic emission test and a new progressive damage model. Int. J. Mech. Sci. 2020, 188, 105955.
Taban, E.; Khavanin, A.; Ohadi, A.; Putra, A.; Jafari, A.J.; Faridan, M.; Soleimanian, A. Study on the acoustic characteristics of natural date palm fibers: Experimental and theoretical approaches. Build. Environ. 2019, 161, 106274.
Shiney, A.; Premlet, B. Acoustic properties of composite coir mats. IOSR J. Appl. Phy. 2014, 6, 18–23.
Su, J.; Zheng, L.; Deng, Z. Study on acoustic properties at normal incidence of three-multilayer composite made of glass wool, glue and polyurethane foam. Appl. Acoust. 2019, 156, 319–326.
Yuvaraj, L.; Jeyanthi, S.; Yogananda, A. An acoustical investigation of partial perforation in jute fiber composite panel. Mater. Today Proc. 2020, 1–6.
Prabhakaran, S.; Krishnaraj, V.; Senthilkumar, M.; Zitoune, R. Sound and vibration damping properties of flax fiber reinforced composites. Procedia Eng. 2014, 97, 573–581.
Jayamani, E.; Hamdan, S.; Rahman, R.; Bin Bakri, M.K. Investigation of fiber surface treatment on mechanical, acoustical and thermal properties of betelnut fiber polyester composites. Proceedia Eng. 2014, 97, 545–554.
Gao, G.; Hu, Y.; Jia, H.; Liu, P.; Du, P.; Xu, D. Acoustic and dielectric properties of epoxy resin/hollow glass microspherecomposite acoustic materials. J. Phy. Chem. Solid 2019, 135, 109105.
Mi, Y.; Zhu, C.; Li, X.; Wu, D. Acoustic emission study of effect of fiber weaving on properties of fiber-resin composite materials. Compos. Struct. 2020, 237, 111906.
Zhang, Z.; Ren, F.; Liu, B.; Zhou, S. Acoustic fatigue properties investigation of plain weave C/SiC composite plate. J. Mater. Res. Technol. 2020, 9, 331–339.
Jayamani, E.; Hamdan, S.; Bakri, M.K.; Heng, S.K.; Rahman, M.R.; Kakar, A. Analysis of natural fiber polymer composites: Effects of alkaline treatment on sound absorption. J. Reinf. Plast. Compos. 2016, 35, 703–711.
Thierry, V.; Brown, L.; Chronopoulos, D. Multi-scale wave propagation modelling for two-dimensional periodic textile composites. Compos. Part B Eng. 2018, 150, 144–156.
Tamas-Gavrea, D.R.; Denes, T.O. Mechanical, thermal and acoustical properties of an innovative lime-wool composite. Proceedia Manuf. 2019, 46, 402–409.
Atiénzar-Navarro, R.; Bonet-Aracil, M.; Gisbert-Payá, J.; Rey, R.D.; Picó, R. Sound absorption of textile fabrics doped with microcapsules. Appl. Acoust. 2020, 164, 107285.
Olcay, H.; Kocak, E.D. Rice plant waste reinforced polyurethane composites for use as the acoustic absorption material. Appl. Acoust. 2021, 173, 107733.
Zhou, W.; Qin, R.; Han, K.; Wei, Z.; Ma, L.H. Progressive damage visualization and tensile failure analysis of three-dimensional braided composites by acoustic emission and micro-CT. Polym. Test. 2021, 93, 106881.
Aggelis, D.G.; El Kadi, M.; Tysmans, T.; Blom, J. Effect of propagation distance on acoustic emission fracture mode classification in textile reinforced cement. Const. Build. Mater. 2017, 152, 872–879.
Koruk, H.; Gen, G. Investigationoftheacousticpropertiesofbioluffa fiber andcomposite materials. Mater. Lett. 2015, 157, 166–168.
Witczak, E.; Jasinska, I.; Lao, M.; Krawczynska, I.; Kaminska, I. The influence of structural parameters of acoustic panels textile fronts on their sound absorption properties. Appl. Acoust. 2021, 178, 107964.
Tsangouri, E.; Michels, L.; El Kadi, M.; Tysmans, T.; Aggelis, D.G. A fundamental investigation of textile reinforced cementitious composites tensile response by acoustic eEmission. Cement Conc. Res. 2019, 123, 105776.
Islam, S.; Bhat, G. Environmentally-friendly thermal and acoustic insulation materials from recycled textiles. J. Environ. Manag. 2019, 251, 109536.
Kamble, Z.; Behera, B.K. Sustainable hybrid composites reinforced with textile waste for construction and building applications. Const. Build. Mater. 2021, 284, 122800.
Echeverria, C.A.; Handoko, W.; Pahlevani, F.; Sahajwalla, V. Cascading use of textile waste for the advancement of fibre reinforced composites for building applications. J. Clean. Prod. 2019, 208, 1524–1536.
Li, H.; Zhang, N.; Fan, X.; Gong, J.; Zhang, J.; Zhao, X. Investigation of effective factors of woven structure fabrics for acoustic absorption. Appl. Acoust. 2020, 161, 107081.
Haggui, M.; Mahi, A.E.; Jendli, Z.; Akrout, A.; Haddar, M. Static and fatigue characterization of flax fiber reinforced thermoplastic composites by acoustic emission. Appl. Acoust. 2019, 147, 100–110.
Hariprasad, K.; Ravichandran, K.; Jayaseelan, V.; Muthuramalingam, T. Acoustic and mechanical characterisation of polypropylene composites reinforced by natural fibres for automotive applications. J. Mater. Res.Technol. 2020, 9, 14029–14035.
Czigany, T. Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: Mechanical properties and acoustic emission study. Compos. Sci. Technol. 2006, 66, 3210–3220.
Cherradi, Y.; Rosca, I.C.; Cerbu, C.; Kebir, H.; Guendouz, A.; Benyoucef, M. Acoustic properties for composite materials reinforced on alfa and wood fibers. Appl. Acoust. 2021, 174, 107759.
Castagnede, B.; Aknine, A.; Brouard, B.; Tarnow, V. Effects of compression on the sound absorption of fibrous materials. Appl. Acoust. 2000, 61, 173–182.
Wang, C.N.; Kuo, Y.M.; Chen, S.K. Effects of compression on the sound absorption of porous materials with an elastic frame. Appl. Acoust. 2008, 69, 31–39.
Nor, M.; Ayub, M.; Zulkifli, R.; Amin, N.; Fouladi, M.H. Effect of compression on the acoustic absorption of coir fiber. Am. J. Appl. Sci. 2010, 7, 1285–1290.
Keshavarz, R.; Ohadi, A. Effects of compression on sound absorption of transversely isotropic fibrous materials at oblique incidence. Appl. Acoustics 2013, 74, 383–395.
Everest, F.A. Master Handbook of Acoustics, 4th ed.; McGraw-Hill: New York, NY, USA, 2001.
Aso, S.; Kinoshita, R. Maximum sound absorption coefficient of a fiber assembly. J. Text. Mach. Soc. Jpn. 1965, 11, 81–87.
Lu, T.J.; Chen, F.; He, D. Sound absorption of cellular metals with semiopen cells. J. Acoust. Soc. Am. 2000, 108, 1697–1709.