Non-Mechanical Hybrid Hydrogen Compression: Comparison
Please note this is a comparison between Version 2 by Rita Xu and Version 1 by Vanessa Fierro.

Non-mechanical hybrid hydrogen compressors consists of a first electrochemical compression stage followed by a second one based on the adsorption-desorption of hydrogen on microporous materials. They allow compressing hydrogen up to 70 MPa. Non-mechanical hybrid hydrogen compressors can be a valid alternative to the mechanical compressors. 

  • Hydrogen storage
  • Hydrogen compression
  • Electrochemical compressors
  • Hydrogen adsorption
  • Activated carbons
Please wait, diff process is still running!

References

  1. International Energy Agency. CO2 Emissions Statistics—Data Services. Available online: https://www.iea.org/subscribe-to-data-services/co2-emissions-statistics (accessed on 2 May 2020).
  2. NASA. Global Climate World of Change: Global Temperatures. Available online: https://earthobservatory.nasa.gov/world-of-change/global-temperatures (accessed on 2 May 2020).
  3. M. Thema; F. Bauer; M. Sterner; Power-to-Gas: Electrolysis and methanation status review. Renewable and Sustainable Energy Reviews 2019, 112, 775-787, 10.1016/j.rser.2019.06.030.
  4. Andrea Mazza; Ettore Bompard; Gianfranco Chicco; Applications of power to gas technologies in emerging electrical systems. Renewable and Sustainable Energy Reviews 2018, 92, 794-806, 10.1016/j.rser.2018.04.072.
  5. Irfan Ahmad Gondal; Hydrogen integration in power-to-gas networks. International Journal of Hydrogen Energy 2019, 44, 1803-1815, 10.1016/j.ijhydene.2018.11.164.
  6. F. Laurencelle; Z. Dehouche; J. Goyette; T.K. Bose; Integrated electrolyser—metal hydride compression system. International Journal of Hydrogen Energy 2006, 31, 762-768, 10.1016/j.ijhydene.2005.06.019.
  7. Mykhaylo V Lototskyy; V.A. Yartys; Bruno G. Pollet; Robert Bowman; Metal hydride hydrogen compressors: A review. International Journal of Hydrogen Energy 2014, 39, 5818-5851, 10.1016/j.ijhydene.2014.01.158.
  8. Xinhua Wang; Haizhen Liu; Hui Li; A 70 MPa hydrogen-compression system using metal hydrides. International Journal of Hydrogen Energy 2011, 36, 9079-9085, 10.1016/j.ijhydene.2011.04.193.
  9. Stamatakis, E.; Zoulias, E.; Tzamalis, G.; Massina, Z.; Analytis, V.; Christodoulou, C.; Stubos, A; Metal hydride hydrogen compressors: Current developments & early markets. Renew. Energy 2018, 127, 850–862.
  10. Moton, J.M.; James, B.D.; Colella, W.G. Advances in Electrochemical Compression of Hydrogen. In Proceedings of the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology, Boston, MA, USA, 30 June–2 July 2014.
  11. Marine Trégaro; Maha Rhandi; Florence Druart; Jonathan Deseure; Marian Chatenet; Electrochemical hydrogen compression and purification versus competing technologies: Part II. Challenges in electrocatalysis. Chinese Journal of Catalysis 2020, 41, 770-782, 10.1016/s1872-2067(19)63438-8.
  12. R. Ströbel; M. Oszcipok; M. Fasil; B. Rohland; L. Jörissen; J. Garche; The compression of hydrogen in an electrochemical cell based on a PE fuel cell design. Journal of Power Sources 2002, 105, 208-215, 10.1016/s0378-7753(01)00941-7.
  13. Yun Wang; Daniela Fernanda Ruiz Diaz; Ken S. Chen; Zhe Wang; Xavier Cordobes Adroher; Materials, technological status, and fundamentals of PEM fuel cells – A review. Materials Today 2020, 32, 178-203, 10.1016/j.mattod.2019.06.005.
  14. Pawel Pasierb; M. Rękas; High-Temperature Electrochemical Hydrogen Pumps and Separators. International Journal of Electrochemistry 2011, 2011, 1-10, 10.4061/2011/905901.
  15. Michel Suermann; Thomas Kiupel; Thomas J. Schmidt; Felix N. Büchi; Electrochemical Hydrogen Compression: Efficient Pressurization Concept Derived from an Energetic Evaluation. Journal of the Electrochemical Society 2017, 164, F1187-F1195, 10.1149/2.1361712jes.
  16. G. Sdanghi; J. Dillet; S. Didierjean; V. Fierro; G. Maranzana; Feasibility of Hydrogen Compression in an Electrochemical System: Focus on Water Transport Mechanisms. Fuel Cells 2019, 20, 370-380, 10.1002/fuce.201900068.
  17. HyET. Hydrogen Efficiency Technologies. Available online: http://www.hyet.nl/newsite/technology/working-principle (accessed on 15 March 2017).
  18. B. Rohland; K. Eberle; R. Ströbel; J. Scholta; J. Garche; Electrochemical hydrogen compressor. Electrochimica Acta 1998, 43, 3841-3846, 10.1016/s0013-4686(98)00144-3.
  19. Wilhelm Wiebe; Thomas V. Unwerth; Sven Schmitz; Hydrogen pump for hydrogen recirculation in fuel cell vehicles. E3S Web of Conferences 2020, 155, 01001, 10.1051/e3sconf/202015501001.
  20. Ye Tao; Hoseong Lee; Yunho Hwang; Reinhard Radermacher; Chunsheng Wang; Electrochemical compressor driven metal hydride heat pump. International Journal of Refrigeration 2015, 60, 278-288, 10.1016/j.ijrefrig.2015.08.018.
  21. G. Sdanghi; V. Nicolas; K. Mozet; S. Schaefer; G. Maranzana; A. Celzard; Vanessa Fierro; A 70 MPa hydrogen thermally driven compressor based on cyclic adsorption-desorption on activated carbon. Carbon 2020, 161, 466-478, 10.1016/j.carbon.2020.01.099.
  22. Pierre, M.; Tapan, B. L’hydrogène; John Libbey Eurotext: Arcueil, France, 2006; ISBN 978-2-7420-1318-0.
  23. Maha Rhandi; Marine Trégaro; Florence Druart; Jonathan Deseure; Marian Chatenet; Electrochemical hydrogen compression and purification versus competing technologies: Part I. Pros and cons. Chinese Journal of Catalysis 2020, 41, 756-769, 10.1016/s1872-2067(19)63404-2.
  24. K. Kadono; H. Kajiura; M. Shiraishi; Dense hydrogen adsorption on carbon subnanopores at 77 K. Applied Physics Letters 2003, 83, 3392–3394, 10.1063/1.1621073.
  25. Eric Poirier; Anne Dailly; On the Nature of the Adsorbed Hydrogen Phase in Microporous Metal−Organic Frameworks at Supercritical Temperatures. Langmuir 2009, 25, 12169-12176, 10.1021/la901680p.
  26. Valeska P. Ting; Anibal J. Ramirez-Cuesta; Nuno Bimbo; Jessica E. Sharpe; Antonio Noguera-Díaz; Volker Presser; Svemir Rudic; Timothy J. Mays; Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures. ACS Nano 2015, 9, 8249-8254, 10.1021/acsnano.5b02623.
  27. Sdanghi, G.; Maranzana, G.; Celzard, A.; Fierro, V. Hydrogen Adsorption on Nanotextured Carbon Materials. In Hydrogen Storage Technologies; Wiley-Blackwell: Hoboken, NJ, USA, 2018; pp. 263–320. ISBN 978-1-119-46057-2.
  28. Jinsheng Xiao; Hao Yang; Pierre Bénard; Richard Chahine; Numerical study of thermal effects in cryo-adsorptive hydrogen storage tank. Journal of Renewable and Sustainable Energy 2013, 5, 021414, 10.1063/1.4798425.
  29. L.W. Wang; Z. Tamainot-Telto; R. Thorpe; Robert Critoph; S.J. Metcalf; RuZhu Wang; Study of thermal conductivity, permeability, and adsorption performance of consolidated composite activated carbon adsorbent for refrigeration. Renewable Energy 2011, 36, 2062-2066, 10.1016/j.renene.2011.01.005.
More
Video Production Service