Sustainable Catalytic Pyranopyrazole Scaffolds’ Synthesis: Comparison
Please note this is a comparison between Version 2 by Conner Chen and Version 1 by Nagaraju Kerru.

Heterocycles are important components of many natural materials and are extremely valuable in organic and medicinal chemistry. Among the heterocyclic entities, pyranopyrazole moieties have demonstrated remarkable biochemical behaviours and activities which provide a versatile skeleton for drug innovation. Hence, many nitrogen-based, fused structures have been incorporated as building blocks of various pharmacological potent scaffolds. Pyranopyrazoles are known for their anti-inflammatory, analgesic, antidiabetic, antimicrobial, cholinesterase-inhibiting, antibacterial and anticancer activities, as well as for their efficacy in treating Alzheimer’s disease. Because of this, several cost-effective synthetic protocols for synthesising pyranopyrazole derivatives—utilising less expensive substrates, reusable catalysts, and eco-friendly solvents—have been developed.

  • multicomponent reactions
  • heterogeneous catalysts
  • pyranopyrazoles
Please wait, diff process is still running!

References

  1. Vedrine, J.C. Heterogeneous catalysis on metal oxides. Catalysts 2017, 7, 341.
  2. Hutchings, G.J. Heterogeneous catalysts-discovery and design. J. Mater. Chem. 2009, 19, 1222–1235.
  3. Zecchina, A.; Lamberti, C.; Bordiga, S. Surface acidity and basicity: General concepts. Catal. Today 1998, 41, 169–177.
  4. Qiu, R.; Chen, Y.; Yin, S.F.; Xu, X.; Au, C.T. A mini-review on air-stable organometallic Lewis acids: Synthesis, characterisation, and catalytic application in organic synthesis. RSC Adv. 2012, 2, 10774–10793.
  5. Kerru, N.; Gummidi, L.; Maddila, S.; Jonnalagadda, S.B. A review of recent advances in the green synthesis of azole- and pyran-based fused heterocycles using MCRs and sustainable catalysts. Curr. Org. Chem. 2021, 25, 4–39.
  6. Kerru, N.; Bhaskaruni, S.V.H.S.; Gummidi, L.; Maddila, S.N.; Maddila, S.; Jonnalagadda, S.B. Recent advances in heterogeneous catalysts for the synthesis of imidazole derivatives. Syn. Commun. 2019, 49, 2437–2459.
  7. Climent, M.J.; Corma, A.; Iborra, S. Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv. 2012, 2, 16–58.
  8. Bhaskaruni, S.V.H.S.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on multicomponent green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts. Arab. J. Chem. 2020, 13, 1142–1178.
  9. Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H.L.; Norskov, J.K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. Chem. 1997, 115, 421–429.
  10. Maddila, S.N.; Maddila, S.; Bhaskaruni, S.V.H.S.; Kerru, N.; Jonnalagadda, S.B. MnO2 on hydroxyapatite: A green heterogeneous catalyst and synthesis of pyran-carboxamide derivatives. Inorg. Chem. Commun. 2020, 112, 107706.
  11. Maddila, S.N.; Maddila, S.; Kerru, N.; Bhaskaruni, S.V.H.S.; Jonnalagadda, S.B. Facile one-pot synthesis of arylsulfonyl-4H-pyrans catalysed by Ru loaded fluorapatite. Chem. Sel. 2020, 5, 1786–1791.
  12. Sun, J.; Zhu, K.; Gao, F.; Wang, C.; Liu, J.; Peden, C.H.F.; Wang, Y. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites. J. Am. Chem. Soc. 2011, 133, 11096–11099.
  13. Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem. 2014, 16, 2958–2975.
  14. Gu, Y. Multicomponent reactions in unconventional solvents: State of the art. Green Chem. 2012, 14, 2091–2128.
  15. Elwahy, A.H.M.; Shaaban, M.R. Synthesis of heterocycles and fused heterocycles catalysed by nanomaterials. RSC Adv. 2015, 5, 75659–75710.
  16. Levi, L.; Muller, T.J.J. Multicomponent syntheses of functional chromophores. Chem. Soc. Rev. 2016, 45, 2825–2846.
  17. Kerru, N.; Gummidi, L.; Gangu, K.K.; Maddila, S.; Jonnalagadda, S.B. Synthesis of novel furo[3,2-c]coumarin derivatives through multicomponent [4+1] cycloaddition reaction using ZnO/FAp as a sustainable catalyst. Chem. Sel. 2020, 5, 4104–4110.
  18. Kerru, N.; Gummidi, L.; Maddila, S.; Jonnalagadda, S.B. Polyethylene glycol (PEG-400) mediated one-pot green synthesis of 4,7-dihydro-2H-pyrazolo[3,4-b]pyridines under catalyst-free conditions. Chem. Sel. 2020, 5, 12407–12410.
  19. Kerru, N.; Gummidi, L.; Maddila, S.; Jonnalagadda, S.B. Efficient synthesis of novel functionalised dihydro-pyrazolo[3,4-d] pyridines via the three-component reaction using MgO/HAp as a sustainable catalyst. Inorg. Chem. Commun. 2021, 123, 108321.
  20. Kerru, N.; Gummidi, L.; Bhaskaruni, S.V.H.S.; Maddila, S.N.; Jonnalagadda, S.B. Green synthesis and characterisation of novel 1,2,4,5-tetrasubstituted imidazole derivatives with eco-friendly red brick clay as efficacious catalyst. Mol. Divers. 2020, 24, 889–901.
  21. Kerru, N.; Gummidi, L.; Maddila, S.; Jonnalagadda, S.B. Gadolinium oxide loaded zirconia and multicomponent synthesis of novel dihydro-pyrazolo[3,4-d]pyridines under green conditions. Sustain. Chem. Pharmacy 2020, 18, 100316.
  22. Kerru, N.; Gummidi, L.; Maddila, S.N.; Bhaskaruni, S.V.H.S.; Jonnalagadda, S.B. Bi2O3/FAp, a sustainable catalyst for synthesis of dihydro- [1,2,4]triazolo[1,5-a]pyrimidine derivatives through green strategy. Appl. Organometal. Chem. 2020, 34, 5590.
  23. Kerru, N.; Bhaskaruni, S.V.H.S.; Gummidi, L.; Maddila, S.N.; Rana, S.; Singh, P.; Jonnalagadda, S.B. Synthesis of novel pyrazole-based triazolidin-3-one derivatives by using ZnO/ZrO2 as a reusable catalyst under green conditions. Appl. Organometal. Chem. 2019, 33, e4722.
  24. Kerru, N.; Gummidi, L.; Maddila, S.N.; Bhaskaruni, S.V.H.S.; Maddila, S.; Jonnalagadda, S.B. Green synthesis and characterisation of novel [1,3,4]thiadiazolo/benzo[4,5]thiazolo[3,2-a] pyrimidines via multicomponent reaction using vanadium oxide loaded on fluorapatite as a robust and sustainable catalyst. RSC Adv. 2020, 10, 19803–19810.
  25. Kerru, N.; Gummidi, L.; Bhaskaruni, S.V.H.S.; Maddila, S.N.; Jonnalagadda, S.B. One-pot green synthesis of novel 5,10-dihydro-1H-pyrazolo[1,2-b]phthalazine derivatives with eco-friendly biodegradable eggshell powder as efficacious catalyst. Res. Chem. Intermed. 2020, 46, 3067–3083.
  26. Settypalli, T.; Chunduri, V.R.; Kerru, N.; Nallapaneni, H.K.; Chintha, V.R.; Wudayagiri, R.; Daggupati, T.; Yeguvapalli, S. Design, synthesis, neuroprotective, antibacterial activities and docking studies of novel thieno[2,3-d]pyrimidine-alkyne mannich base and oxadiazole hybrids. Bioorg. Med. Chem. Lett. 2018, 28, 1663–1669.
  27. Gummidi, L.; Kerru, N.; Awolade, P.; Ibeji, C.; Karpoormath, R.; Singh, P. N-Phenyl substituent controlled diastereoselective synthesis of β-lactam-isatin conjugates. Tetrahed. Lett. 2020, 61, 151602.
  28. Gummidi, L.; Kerru, N.; Awolade, P.; Raza, A.; Sharma, A.; Singh, P. Synthesis of indole-tethered [1,3,4]thiadiazolo and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids as anti-pancreatic cancer agents. Bioorg. Med. Chem. Lett. 2020, 30, 127544.
  29. Slobbe, P.; Ruijter, E.; Orru, R.V.A. Recent applications of multicomponent reactions in medicinal chemistry. Med. Chem. Comm. 2012, 3, 1189–1218.
  30. Rotstein, B.H.; Zaretsky, S.; Rai, V.; Yudin, A.K. Small heterocycles in multicomponent reactions. Chem. Rev. 2014, 114, 8323–8359.
  31. Afshari, R.; Shaabani, A. Materials functionalisation with multicomponent reactions: State of the art. ACS Comb. Sci. 2018, 20, 499–528.
  32. Bhaskaruni, S.V.H.S.; Gangu, K.K.; Maddila, S.; Jonnalagadda, S.B. Our contributions in synthesis of diverse heterocyclic scaffolds by using mixed oxides as heterogeneous catalysts. Chem. Rec. 2019, 19, 1793–1812.
  33. Kerru, N.; Gummidi, L.; Maddila, S.N.; Gangu, K.K.; Jonnalagadda, S.B. Four-component rapid protocol with nickel oxide loaded on fluorapatite as a sustainable catalyst for the synthesis of novel imidazole analogs. Inorg. Chem. Commun. 2020, 116, 107935.
  34. Kerru, N.; Bhaskaruni, S.V.H.S.; Gummidi, L.; Maddila, S.N.; Singh, P.; Jonnalagadda, S.B. Efficient synthesis of novel pyrazole-linked 1,2,4-triazolidine-3-thiones using bismuth on zirconium oxide as a recyclable catalyst in aqueous medium. Mol. Divers. 2020, 24, 345–354.
  35. Domling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev. 2012, 112, 3083–3135.
  36. Constable, D.J.C.; Dunn, P.J.; Hayler, J.D.; Humphrey, G.R.; Leazer, J.L.; Linderman, R.J.; Lorenz, K.; Manley, J.; Pearlman, B.A.; Wells, A.; et al. Key green chemistry research areas-a perspective from pharmaceutical manufacturers. Green Chem. 2007, 9, 411–420.
  37. Kreuder, A.D.; Knight, T.H.; Whitford, J.; Ponnusamy, E.; Miller, P.; Jesse, N.; Rodenborn, R.; Sayag, S.; Gebel, M.; Aped, I.; et al. A method for assessing greener alternatives between chemical products following the 12 principles of green chemistry. ACS Sustain. Chem. Eng. 2017, 5, 2927–2935.
  38. Kerru, N.; Maddila, S.; Jonnalagadda, S.B. Design of carbon-carbon and carbon-heteroatom bond formation reactions under green conditions. Curr. Org. Chem. 2019, 23, 3156–3192.
  39. Clarke, C.J.; Tu, W.C.; Levers, O.; Brohl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev. 2018, 118, 747–800.
  40. Sheldon, R.A. Green solvents for sustainable organic synthesis: State of theart. Green Chem. 2005, 7, 267–278.
  41. Babaie, M.; Sheibani, H. Nanosized magnesium oxide as a highly effective heterogeneous base catalyst for the rapid synthesis of pyranopyrazoles via a tandem four-component reaction. Arab. J. Chem. 2011, 4, 159–162.
  42. Alireza, H.; Mohsen, S.; Nooshin, G.; Abdolkarim, Z.; Mohammad, M.D. Silica bonded n-propyl-4-aza-1 azoniabicyclo [2.2.2]octane chloride (SB-DABCO): A highly efficient, reusable and new heterogeneous catalyst for the synthesis of 4H-benzo[b]pyran derivatives. Appl. Catal. A Gen. 2011, 402, 11–22.
  43. Hamid Reza, S.; Kobra, A. Mild, four-component synthesis of 6-amino-4-aryl-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles catalysed by titanium dioxide nanosized particles. Res. Chem. Intermed. 2014, 40, 661–667.
  44. Davood, A.; Sayeed, M.K.; Razieh, N.Y. Nano-titania-supported preyssler-type heteropolyacid: An efficient and reusable catalyst in ultrasound-promoted synthesis of 4H-chromenes and 4H-pyrano[2,3-c]pyrazoles. J. Chem. Sci. 2014, 126, 95–101.
  45. Paul, S.; Prdhan, K.; Ghosh, S.; De, S.K.; Das, A.R. Uncapped SnO2 quantum dot catalysed cascade assembling of four components: A rapid and green approach to the pyrano[2,3-c]pyrazole and spiro-2-oxindole derivatives. Tetrahedron 2014, 70, 6088–6099.
  46. Borhade, A.V.; Uphade, B.K. ZnS nanoparticles as an efficient and reusable catalyst for synthesis of 4H-pyrano[2,3-c]pyrazoles. J. Iran. Chem. Soc. 2014, 12, 1107–1113.
  47. Nasir, I.; Mosadegh, K.; Hossein, A.S.K.; Rasool, P. Tin sulfide nanoparticles supported on activated carbon as an efficient and reusable Lewis acid catalyst for three-component one-pot synthesis of 4H-pyrano[2,3-c]pyrazole derivatives. Chin. J. Catal. 2015, 36, 626–633.
  48. Mahnaz, Z.; Mohammad, A.A. SBA-Pr-NH2 catalysed preparation of pyrano[2,3-c] pyrazolesunder solvent-free conditions. Rev. Roum. Chim. 2018, 63, 31–37.
  49. Mallappa, B.; Kalegowda, S. Four component synthesis of highly functionalised pyrano[2,3-c]pyrazoles from benzyl halides. Syn. Commun. 2018, 48, 146–154.
  50. Patel, K.G.; Misra, N.M.; Venkariya, R.H.; Shettigar, R.R. One-pot multicomponent synthesis in aqueous medium of 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile and derivatives using a green and reusable nano-SiO2 catalyst from agricultural waste. Res. Chem. Intermed. 2018, 44, 289–304.
  51. Salehi, N.; Mirjalili, B.B.F. Green Synthesis of Pyrano[2,3-c]pyrazoles and spiro[indoline-3,4′-pyrano[2,3-c]pyrazoles] using nano-silica supported 1,4- Diazabicyclo[2.2.2]octane as a novel catalyst. Org. Prep. Proced. Int. 2018, 50, 578–587.
  52. Mohammad, A.G.; Boshra, M.E.; Mohammad, H.A. Green synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazoles] using Fe3O4@ l-arginine as a robust and reusable catalyst. BMC Chem. 2019, 13, 119.
  53. Robabeh, S.M.; Mohammad, A.G.; Mohammad, R.Z.M. Green fabrication of cobalt NPs using aqueous extract of antioxidant rich Zingiber and their catalytic applications for the synthesis of pyrano[2,3-c]pyrazoles. Comb. Chem. High Throughput Screen. 2019, 22, 18–26.
  54. Tabassum, S.; Devi, K.R.; Govindaraju, S. An insight into the superior performance of nanocatalyst for the synthesis of 1,4-dihydropyrano[2,3-c]pyrazoles under ultrasound. Mater. Today Proc. 2021, 45, 3898–3903.
  55. Masoud, K.A.; Davood, A.; Hamid, R.E.Z. Sulfonic acid-functionalised Fe3O4-supported magnetised graphene oxide quantum dots: A novel organic-inorganic nanocomposite as an efficient and recyclable nanocatalyst for the synthesis of dihydropyrano[2,3-c]pyrazole and 4H-chromene derivatives. Appl. Organomet. Chem. 2020, 34, e6004.
  56. Homayoun, F.N.; Nourallah, H.; Malek, T.M. Synthesis and characterisation of Fe3O4@THAM-SO3H as a highly reusable nanocatalyst and its application for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Appl. Organometal. Chem. 2020, 34, e5472.
  57. Maddila, S.; Gorle, S.; Shabalala, S.; Oyetade, O.; Maddila, S.N.; Palakondu, L.; Jonnalagadda, S.B. Ultrasound mediated green synthesis of pyrano[2,3-c]pyrazoles by using Mn doped ZrO2. Arab. J. Chem. 2019, 12, 671–679.
  58. Heravia, M.M.; Ghodsa, A.; Derikvanda, F.; Bakhtiaria, K.; Bamoharramb, F.F. H14[NaP5W30O110] Catalysed one-pot three-component synthesis of dihydropyrano[2,3-c]pyrazole and pyrano[2,3-d]pyrimidine derivatives. J. Iran. Chem. Soc. 2020, 7, 615–620.
  59. Pradhan, K.; Paul, S.; Das, A.R. Magnetically retrievable nano crystalline CuFe2O4 catalysed multicomponent reaction: A facile and efficient synthesis of functionalised dihydropyrano[2,3-c]pyrazole, pyrano[3,2-c]coumarin and 4H-chromene derivatives in aqueous media. Catal. Sci. Technol. 2014, 4, 822–831.
  60. Mohammad, A.Z.; Roya, A.N.; Saeed, B.; Vahid, K.; Saeid, A. Applications of a novel nano magnetic catalyst in the synthesis of 1,8-dioxo-octahydroxanthene and dihydropyrano[2][2,3-c]pyrazole derivatives. J. Mol. Catal. A Chem. 2016, 418–419, 54–67.
  61. Maddila, S.N.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. CeO2/ZrO2 as green catalyst for one-pot synthesis of new pyrano[2,3-c]-pyrazoles. Res. Chem. Intermed. 2017, 43, 4313–4325.
  62. Maryam, F.; Fatemeh, N.S.; Nourallah, H.; Malek, T.M.; Mohammad, S.H.; Sahar, M. Ag/TiO2 nano-thin films as robust heterogeneous catalyst for one-pot, multicomponent synthesis of bis (pyrazol-5-ol) and dihydropyrano[2,3-c]pyrazole analogs. J. Saudi Chem. Soc. 2017, 21, 998–1006.
  63. Somayeh, H.-U.; Mohammad, A.-A.; Reza, R.-K. Fe3O4@FSM-16-SO3H as a new magnetically recyclable nanostructured catalyst: Synthesis, characterisation and catalytic application for the synthesis of pyrano[2,3-c]pyrazoles. Iran. J. Catal. 2018, 8, 311–323.
  64. Gholtash, J.E.; Farahi, M. Tungstic acid-functionalised Fe3O4@TiO2: Preparation, characterisation and its application for the synthesis of pyrano[2,3-c]pyrazole derivatives as a reusable magnetic nanocatalyst. RSC Adv. 2018, 8, 40962–40967.
  65. Mishra, M.; Nizam, A.; Jomon, K.J.; Tadaparthi, K. A new facile ultrasound-assisted magnetic nano-[CoFe2O4]-catalysed one-pot synthesis of pyrano[2,3-c]pyrazoles. Rus. J. Org. Chem. 2019, 55, 1925–1928.
  66. Sedighini, E.; Badri, R.; Kiasat, A.R. Application of yttrium iron garnet as a powerful and recyclable nanocatalyst for one-pot synthesis of pyrano[2,3-c]pyrazole derivatives under solvent-free conditions. Russ. J. Org. Chem. 2019, 55, 1755–1763.
  67. Maryam, N.; Ali, Z.; Dawood, E. Core-shell structured magnetic silica supported propylamine/molybdate complex: An efficient and magnetically recoverable nanocatalyst. New J. Chem. 2019, 43, 12283–12291.
  68. Nina, H.M.; Mostafa, G. Nano silica extracted from horsetail plant as a natural silica support for the synthesis of H3PW12O40 immobilised on aminated magnetic nanoparticles (Fe3O4@ SiO2-EP-NH-HPA): A novel and efficient heterogeneous nanocatalyst for the green one-pot synthesis of pyrano[2,3-c]pyrazole derivatives. Res. Chem. Intermed. 2020, 46, 3037–3066.
  69. Ali, A.; Razieh, N.-Y.; Mohammad, A.K.; Davood, A. Magnetic La0.7Sr0.3MnO3 nanoparticles: Recyclable and efficient catalyst for ultrasound-accelarated synthesis of 4H-chromenes, and 4H-pyrano[2,3-c]pyrazoles. J. Iran. Chem. Soc. 2013, 10, 439–446.
  70. Behrooz, M.; Hossein, E.; Mohammad, B.; Negar, N.; Amir, K.; Samaneh, S.A.; Omid, P. Silica-coated magnetic NiFe2O nanoparticlessupported H3PW12O40; synthesis, preparation, and application as an efficient, magnetic, green catalyst for one-pot synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-c]pyrazole derivatives. Res. Chem. Intermed. 2015, 42, 3071–3093.
  71. Davood, A.; Mehrdad, T.; Masoumeh, G. γ-Fe2O3@Cu3Al-LDH-TUD as a new amphoteric, highly efficient and recyclable heterogeneous catalyst for the solvent-free synthesis of dihydropyrano[3,2-c]pyrazoles and dihydropyrano [3,2-c]chromens. Appl. Organometal. Chem. 2018, 32, e4293.
  72. Rui-Yun, G.; Zhi-Min, A.; Li-Ping, M.; Shu-Tao, Y.; Hong-Xia, L.; Shu-Xia, W.; Zhan-Hui, Z. Meglumine promoted one-pot, four-component synthesis of pyranopyrazole derivatives. Tetrahedron 2013, 69, 9931–9938.
  73. Bora, P.; Bihani, M.; Bez, G. Multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles catalysed by lipase from aspergillus niger. J. Mol. Catal. B Enzym. 2013, 92, 24–33.
  74. Xingtian, H.; Zhipeng, L.; Dongyang, W.; Yiqun, L. Bovine serum albumin: An efficient and green biocatalyst for the one-pot four-component synthesis of pyrano[2,3-c]pyrazoles. Chin. J. Catal. 2016, 37, 1461–1467.
  75. Nazari, S.; Keshavarz, M. Amberlite-supported L-Prolinate: A novel heterogeneous organocatalyst for the three-component synthesis of 4H-Pyrano[2,3-c]pyrazole derivatives. Russ. J. Gen. Chem. 2017, 87, 539–545.
  76. Safari, J.; Ahmadzadeh, M. Zwitterionic sulfamic acid functionalised nanoclay: A novel nanocatalyst for the synthesis of dihydropyrano[2,3-c]pyrazoles and spiro[indoline-3,4´-pyrano[2,3-c]pyrazole] derivatives. J. Taiwan Institu. Chem. Eng. 2017, 74, 14–24.
  77. Jutika, D.; Subarna, J.K.; Dibakar, C.D. A quick micelle-catalysed one-pot synthesis of spiro [indoline-3,4’-pyrano[2, 3-c]pyrazoles] in water at room temperature. Chem. Sel. 2018, 3, 1512–1516.
  78. Pegah, F.; Manouchehr, M.; Nosrat, O.M.; Khalil, T. A green and practical method for the synthesis of novel pyrano[2,3-c]pyrazoles and bis-pyrano[2,3-c]pyrazoles using sulfonic acid-functionalised ionic liquid. J. Iran. Chem. Soc. 2018, 15, 11–16.
  79. Shinde, S.K.; Patil, M.U.; Damate, S.A.; Patil, S.S. Synergetic effects of naturally sourced metal oxides in organic synthesis: A greener approach for the synthesis of pyrano[2,3-c]pyrazoles and pyrazolyl-4H-chromenes. Res. Chem. Intermed. 2018, 44, 1775–1795.
  80. Mejdoubi, K.E.; Sallek, B.; Digua, K.; Chaair, H.; Oudadessec, H. Natural phosphate K09 as a new reusable catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives at room temperature. Kinet. Catal. 2019, 60, 536–542.
  81. Elham, A.; Naimi-Jamal, M.R.; Ramin, G. One-pot multicomponent synthesis of pyrano[2,3 c] pyrazole derivatives using CMCSO3H as a green catalyst. Chem. Sel. 2019, 4, 9033–9039.
  82. Mandle, U.M.; Pachpinde, A.M.; Kulkarni, D.R.; Shinde, B.L. An efficient one pot multicomponent synthesis of pyrano pyrazoles using Cu2+ doped Ni-Zn nano ferrite catalyst. Mater. Today Proc. 2020.
  83. Ganasan, N.S.; Suresh, P. Nitrogen-doped graphene oxide as a sustainable carbonaceous catalyst for greener synthesis: Benign and solvent-free synthesis of pyranopyrazoles. Chem. Sel. 2020, 5, 4988–4993.
More
Video Production Service