Veterinary Drug Residues: Comparison
Please note this is a comparison between Version 2 by Camila Xu and Version 1 by Kaizhou Xie.

Veterinary drugs are substances or mixtures used for the prevention, treatment, or diagnosis of animal diseases or for purposeful regulation of animal physiological functions

  • veterinary drugs
  • animal-derived foods
  • extraction
  • detection methods
Please wait, diff process is still running!

References

  1. Tufa, T.B. Veterinary drug residues in food-animal products: Its risk factors and potential effects on public health. J. Vet. Sci. Technol. 2015, 7, 1–7.
  2. Gehring, R.; Baynes, R.E.; Riviere, J.E. Application of risk assessment and management principles to the extralabel use of drugs in food-producing animals. J. Vet. Pharmacol. Ther. 2006, 29, 5–14.
  3. Boobis, A.; Cerniglia, C.; Chicoine, A.; Fattori, V.; Lipp, M.; Reuss, R.; Verger, P.; Tritscher, A. Characterizing chronic and acute health risks of residues of veterinary drugs in food: Latest methodological developments by the joint FAO/WHO expert committee on food additives. Crit. Rev. Toxicol. 2017, 47, 885–899.
  4. Bartikova, H.; Skálová, L.; Stuchlíková, L.; Vokřál, I.; Vanek, T.; Podlipná, R. Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment. Drug Metab. Rev. 2015, 47, 374–387.
  5. The European Medicines Agency. Commission Regulation (EU) No. 37/2010 of 22 December 2009 on Pharmacologically Active Substances and their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin; The European Medicines Agency: Amsterdam, The Netherlands, 2010.
  6. US Food and Drug Administration. CFR-Code of Federal Regulations Title 21 Part 556 Tolerances for Residue of New Animal Drugs in Food; US Food and Drug Administration: Rockville, MD, USA, 2014.
  7. Ministry of Agriculture of the People’s Republic of China. Maxium Residue Level of Veterinary Drugs in Food of Animal Origin; Notice No. 235 (Appendix 4); Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2002.
  8. Kirchhelle, C. Pharming animals: A global history of antibiotics in food production (1935–2017). Palgrave Commun. 2018, 4, 96.
  9. Li, R.; Lin, Z.J.; Yang, J.Y.; Xu, Z.L.; Wang, H.; Lei, H.T.; Sun, Y.M.; Shen, Y.D. An indirect competitive enzyme-linked immunosorbent assay for simultaneous determination of florfenicol and thiamphenicol in animal meat and urine. Chin. J. Anal. Chem. 2018, 46, 1321–1328.
  10. Kowalski, P.; Oledzka, I.; Lamparczyk, H. Capillary electrophoresis in analysis of veterinary drugs. J. Pharm. Biomed. Anal. 2003, 32, 937–947.
  11. Wang, B.; Zhao, X.; Xie, X.; Xie, K.; Zhang, G.; Zhang, T.; Liu, X. Development of an accelerated solvent extraction approach for quantitative analysis of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry eggs. Food Anal. Methods 2019, 12, 1705–1714.
  12. Wang, B.; Wang, Y.; Xie, X.; Diao, Z.; Xie, K.; Zhang, G.; Zhang, T.; Dai, G. Quantitative analysis of spectinomycin and lincomycin in poultry eggs by accelerated solvent extraction coupled with gas chromatography tandem mass spectrometry. Foods 2020, 9, 651.
  13. Jank, L.; Martins, M.T.; Arsand, J.B.; Motta, T.M.C.; Hoff, R.B.; Barreto, F.; Pizzolato, T.M. High-throughput method for macrolides and lincosamides antibiotics residues analysis in milk and muscle using a simple liquid-liquid extraction technique and liquid chromatography-electrospray-tandem mass spectrometry analysis (LC-MS/MS). Talanta 2015, 144, 686–695.
  14. Płotka-Wasylka, J.; Szczepańska, N.; De La Guardia, M.; Namieśnik, J. Miniaturized solid-phase extraction techniques. TrAC Trends Anal. Chem. 2015, 73, 19–38.
  15. Richter, B.E.; Raynie, D. Accelerated solvent extraction (ASE) and high-temperature water extraction. Compr. Sampl. Sample Prep. 2012, 2, 105–115.
  16. Liu, H.Y.; Lin, S.L.; Fuh, M.R. Determination of chloramphenicol, thiamphenicol and florfenicol in milk and honey using modified QuEChERS extraction coupled with polymeric monolith-based capillary liquid chromatography tandem mass spectrometry. Talanta 2016, 150, 233–239.
  17. Pan, X.D.; Wu, P.G.; Jiang, W.; Ma, B.J. Determination of chloramphenicol, thiamphenicol, and florfenicol in fish muscle by matrix solid-phase dispersion extraction (MSPD) and ultra-high pressure liquid chromatography tandem mass spectrometry. Food Control. 2015, 52, 34–38.
  18. Chen, D.; Yu, J.; Tao, Y.; Pan, Y.; Xie, S.; Huang, L.; Peng, D.; Wang, X.; Wang, Y.; Liu, Z.; et al. Qualitative screening of veterinary anti-microbial agents in tissues, milk, and eggs of food-producing animals using liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1017–1018, 82–88.
  19. Yang, F.; Zhang, W.; Gu, C.; Xu, J.; Zhou, K. Separation of seven residues of fluoroquinolones from fish samples using solid phase microextraction and Electrophoresis and their detection by Electrochemiluminescence method. Int. J. Electrochem. Sci. 2020, 15, 9300–9312.
  20. Samsidar, A.; Siddiquee, S.; Shaarani, S.M. A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends Food Sci. Technol. 2018, 71, 188–201.
  21. Majdinasab, M.; Yaqub, M.; Rahim, A.; Catanante, G.; Hayat, A.; Marty, J.L. An overview on recent progress in electrochemical biosensors for antimicrobial drug residues in animal-derived food. Sensors 2017, 17, 1947.
  22. JECFA. Residue Evaluation of Certain Veterinary Drugs (Seventy-Fifth Report of the Joint FAO/WHO Expert Committee on Food Additives); FAO JECFA Monographs 12; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012.
  23. Blumenthal, K.G.; Peter, J.G.; Trubiano, J.A.; Phillips, E.J. Antibiotic allergy. Lancet 2019, 393, 183–198.
  24. Graziani, C.; Busani, L.; Dionisi, A.M.; Lucarelli, C.; Owczarek, S.; Ricci, A.; Mancin, M.; Caprioli, A.; Luzzi, I. Antimicrobial resistance in Salmonella enterica serovar Typhimurium from human and animal sources in Italy. Vet. Microbiol. 2008, 128, 414–418.
  25. Hanekamp, J.C.; Bast, A. Antibiotics exposure and health risks: Chloramphenicol. Environ. Toxicol. Pharmacol. 2015, 39, 213–220.
  26. Kaiser, G. Protein Synthesis Inhibitors: Macrolides Mechanism of Action Animation. In Classification of Agents Pharmamotion; The Community College of Baltimore County: Baltimore County, MD, USA, 2009.
  27. Chen, J.; Ying, G.G.; Deng, W.J. Antibiotic residues in food: Extraction, analysis, and human health concerns. J. Agric. Food Chem. 2019, 67, 7569–7586.
  28. Ferrara, A.; Dos Santos, C.; Cimbro, M.; Grassi, G.G. Comparative antimicrobial activity and post-antibiotic effect of azithromycin, clarithromycin and roxithromycin against some respiratory pathogens. Int. J. Antimicrob. Agents 1996, 7, 181–186.
  29. Zhang, M.Q.; Chen, B.; Zhang, J.P.; Chen, N.; Liu, C.Z.; Hu, C.Q. Liver toxicity of macrolide antibiotics in zebrafish. Toxicology 2020, 441, 152501.
  30. Mingeot-Leclercq, M.P.; Glupczynski, Y.; Tulkens, P.M. Aminoglycosides: Activity and resistance. Antimicrob. Agents Chemother. 1999, 43, 727–737.
  31. Dowling, P.M. Miscellaneous antimicrobials: Ionophores, nitrofurans, nitroimidazoles, rifamycins, oxazolidones, and others. In Antimicrobial Therapy in Veterinary Medicine; Giguere, S., Prescott, J.F., Baggot, J.D., Walker, R.D., Dowling, P.M., Eds.; Blackwell Publishing: Ames, IA, USA, 2006; pp. 285–300.
  32. Petersen, L.; Rogers, C. Aminoglycoside-induced hearing deficits—A review of cochlear ototoxicity. S. Afr. Fam. Pract. 2015, 57, 77–82.
  33. Black, F.O.; Pesznecker, S.; Stallings, V. Permanent gentamicin vestibulotoxicity. Otol. Neurotol. 2004, 25, 559–569.
  34. Blagburn, B.L.; Lindsay, D.S. Ectoparasiticides. In Veterinary Pharmacology and Therapeutics; Adams, H.R., Ed.; Iowa State University Press: Ames, IA, USA, 2001; pp. 1017–1039.
  35. Martinez, M.; Mcdermott, P.; Walker, R. Pharmacology of the fluoroquinolones: A perspective for the use in domestic animals. Vet. J. 2006, 172, 10–28.
  36. Andersson, M.I.; Macgowan, A.P. Development of the quinolones. J. Antimicrob. Chemother. 2003, 51 (Suppl. 1), 1–11.
  37. Heeb, S.; Fletcher, M.P.; Chhabra, S.R.; Diggle, S.P.; Williams, P.; Camara, M. Quinolones: From antibiotics to autoinducers. FEMS Microbiol. Rev. 2011, 35, 247–274.
  38. De Sarro, A.; De Sarro, G. Adverse reactions to fluoroquinolones. An overview on mechanistic aspects. Curr. Med. Chem. 2001, 8, 371–384.
  39. Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260.
  40. Bishop, Y. The Veterinary Formulary; Pharmaceutical Press: London, UK, 2001.
  41. Chopra, I.; Hawkey, P.M.; Hinton, M. Tetracyclines, molecular and clinical aspects. J. Antimicrob. Chemother. 1992, 29, 245–277.
  42. Amacher, D.E.; Martin, B.A. Tetracycline-induced steatosis in primary canine hepatocyte cultures. Fundam. Appl. Toxicol. 1997, 40, 256–263.
  43. Ekwall, B.; Acosta, D. In vitro comparative toxicity of selected drugs and chemicals in HeLa cells, Chang liver cells, and rat hepatocytes. Drug Chem. Toxicol. 1982, 5, 219–231.
  44. Maffioli, S.I. A chemist’s survey of different antibiotic classes. In Antibiotics: Targets, Mechanisms and Resistance; Gualerzi, C.O., Brandi, L., Fabbretti, A., Pon, C.L., Eds.; Wiley-VCH: Weinheim, Germany, 2014; pp. 1–22.
  45. Tenson, T.; Lovmar, M.; Ehrenberg, M. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J. Mol. Biol. 2003, 330, 1005–1014.
  46. Spizek, J.; Rezanka, T. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem. Pharmacol. 2017, 133, 20–28.
  47. FAO/WHO. Toxicological Evaluation of Certain Veterinary Drug Residues in Food (Series 45); Joint FAO/WHO Expert Committee on Food Additives (JEFCA); World Health Organization: Geneva, Switzerland, 2000.
  48. Henry, R.J. The mode of action of sulfonamides. Bacteriol. Rev. 1943, 7, 175–262.
  49. Madigan, M.T.; Martinko, J.M.; Bender, K.S.; Buckley, D.H.; Stahl, D.A. Brock Biology of Microorganisms; Pearson Education Limited: Boston, MA, USA, 2012.
  50. Slatore, C.G.; Tilles, S.A. Sulfonamide hypersensitivity. Immunol. Allergy Clin. 2004, 24, 477–490.
  51. Knowles, S.; Shapiro, L.; Shear, N.H. Should celecoxib be contraindicated in patients who are allergic to sulfonamides? Revisiting the meaning of ’sulfa’ allergy. Drug Saf. 2001, 24, 239–247.
  52. Goetting, V.; Lee, K.A.; Tell, L.A. Pharmacokinetics of veterinary drugs in laying hens and residues in eggs: A review of the literature. J. Vet. Pharmacol. Ther. 2011, 34, 521–556.
  53. Edwards, D.I. Nitroimidazole drugs--action and resistance mechanisms. I. Mechanisms of action. J. Antimicrob. Chemother. 1993, 31, 9–20.
  54. Botsoglou, N.A.; Fletouris, D.J. Drug Residues in Food; Marcel Dekker: New York, NY, USA, 2001.
  55. Tang, Y.Y.; Lu, H.F.; Lin, H.Y.; Shih, Y.C.; Hwang, D.F. Multiclass analysis of 23 veterinary drugs in milk by ultraperformance liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 881–882, 12–19.
  56. Chung, S.W.C.; Lam, C.H. Development of a 15-class multiresidue method for analyzing 78 hydrophilic and hydrophobic veterinary drugs in milk, egg and meat by liquid chromatography-tandem mass spectrometry. Anal. Methods 2015, 7, 6764–6776.
  57. Biselli, S.; Schwalb, U.; Meyer, A.; Hartig, L. A multi-class, multi-analyte method for routine analysis of 84 veterinary drugs in chicken muscle using simple extraction and LC-MS/MS. Food Addit. Contam. Part. A 2013, 30, 921–939.
  58. Dasenaki, M.E.; Thomaidis, N.S. Multi-residue determination of 115 veterinary drugs and pharmaceutical residues in milk powder, butter, fish tissue and eggs using liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2015, 880, 103–121.
  59. Danezis, G.P.; Anagnostopoulos, C.J.; Liapis, K.; Koupparis, M.A. Multi-residue analysis of pesticides, plant hormones, veterinary drugs and mycotoxins using HILIC chromatography—MS/MS in various food matrices. Anal. Chim. Acta 2016, 942, 121–138.
  60. Xie, X.; Wang, B.; Pang, M.; Zhao, X.; Xie, K.; Zhang, Y.; Wang, Y.; Guo, Y.; Liu, C.; Bu, X.; et al. Quantitative analysis of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in eggs via liquid chromatography-electrospray ionization tandem mass spectrometry. Food Chem. 2018, 269, 542–548.
  61. Wang, B.; Liu, J.; Zhao, X.; Xie, K.; Diao, Z.; Zhang, G.; Zhang, T.; Dai, G. Determination of eight coccidiostats in eggs by liquid–liquid extraction–solid-phase extraction and liquid chromatography–tandem mass spectrometry. Molecules 2020, 25, 987.
  62. Kaufmann, A.; Butcher, P.; Maden, K.; Walker, S.; Widmer, M. Development of an improved high resolution mass spectrometry based multi-residue method for veterinary drugs in various food matrices. Anal. Chim. Acta 2011, 700, 86–94.
  63. Dasenaki, M.E.; Bletsou, A.A.; Koulis, G.A.; Thomaidis, N.S. Qualitative multiresidue screening method for 143 veterinary drugs and pharmaceuticals in milk and fish tissue using liquid chromatography quadrupole-time-of-flight mass spectrometry. J. Agric. Food Chem. 2015, 63, 4493–4508.
  64. Turnipseed, S.B.; Storey, J.M.; Lohne, J.J.; Andersen, W.C.; Burger, R.; Johnson, A.S.; Madson, M.R. Wide-scope screening method for multiclass veterinary drug residues in fish, shrimp, and eel using liquid chromatography-quadrupole high-resolution mass spectrometry. J. Agric. Food Chem. 2017, 65, 7252–7267.
  65. Xie, J.; Peng, T.; Zhu, A.; He, J.; Chang, Q.; Hu, X.; Chen, H.; Fan, C.; Jiang, W.; Chen, M.; et al. Multi-residue analysis of veterinary drugs, pesticides and mycotoxins in dairy products by liquid chromatography-tandem mass spectrometry using low-temperature cleanup and solid phase extraction. J. Chromatogr. B 2015, 1002, 19–29.
  66. Dasenaki, M.E.; Michali, C.S.; Thomaidis, N.S. Analysis of 76 veterinary pharmaceuticals from 13 classes including aminoglycosides in bovine muscle by hydrophilic interaction liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2016, 1452, 67–80.
  67. Han, R.W.; Zheng, N.; Yu, Z.N.; Wang, J.; Xu, X.M.; Qu, X.Y.; Li, S.L.; Zhang, Y.D.; Wang, J.Q. Simultaneous determination of 38 veterinary antibiotic residues in raw milk by UPLC-MS/MS. Food Chem. 2015, 181, 119–126.
  68. Piatkowska, M.; Jedziniak, P.; Zmudzki, J. Multiresidue method for the simultaneous determination of veterinary medicinal products, feed additives and illegal dyes in eggs using liquid chromatography-tandem mass spectrometry. Food Chem. 2016, 197, 571–580.
  69. Richter, B.E.; Jones, B.A.; Ezzell, J.L.; Porter, N.L.; Avdalovic, N.; Pohl, C. Accelerated solvent extraction: A technique for sample preparation. Anal. Chem. 1996, 68, 1033–1039.
  70. USEPA. Pressurised Fluid Extraction. In Test Methods for Evaluating Solid Waste; Method 3545; USEPA: Washington, DC, USA, 1995.
  71. Tao, Y.; Yu, G.; Chen, D.; Pan, Y.; Liu, Z.; Wei, H.; Peng, D.; Huang, L.; Wang, Y.; Yuan, Z. Determination of 17 macrolide antibiotics and avermectins residues in meat with accelerated solvent extraction by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2012, 897, 64–71.
  72. Yu, H.; Tao, Y.; Chen, D.; Wang, Y.; Yuan, Z. Development of an HPLC–UV method for the simultaneous determination of tetracyclines in muscle and liver of porcine, chicken and bovine with accelerated solvent extraction. Food Chem. 2011, 124, 1131–1138.
  73. Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431.
  74. Xu, X.; Xu, X.; Han, M.; Qiu, S.; Hou, X. Development of a modified QuEChERS method based on magnetic multiwalled carbon nanotubes for the simultaneous determination of veterinary drugs, pesticides and mycotoxins in eggs by UPLC-MS/MS. Food Chem. 2019, 276, 419–426.
  75. Arias, J.L.O.; Schneider, A.; Batista-Andrade, J.A.; Vieira, A.A.; Caldas, S.S.; Primel, E.G. Chitosan from shrimp shells: A renewable sorbent applied to the clean-up step of the QuEChERS method in order to determine multi-residues of veterinary drugs in different types of milk. Food Chem. 2018, 240, 1243–1253.
  76. Zhang, Y.; Liu, X.; Li, X.; Zhang, J.; Cao, Y.; Su, M.; Shi, Z.; Sun, H. Rapid screening and quantification of multi-class multi-residue veterinary drugs in royal jelly by ultra performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Control. 2016, 60, 667–676.
  77. Shin, D.; Kang, H.S.; Jeong, J.; Kim, J.; Choe, W.J.; Lee, K.S.; Rhee, G.S. Multi-residue determination of veterinary drugs in fishery products using liquid chromatography-tandem mass spectrometry. Food Anal. Methods 2018, 11, 1815–1831.
  78. Freitas, S.K.B.; Paim, A.P.S.; Silva, P.T.D.S. Development of a LC-IT-TOF MS procedure to quantify veterinary drug residues in milk employing a QuEChERS approach. Food Anal. Methods 2013, 7, 39–46.
  79. Villar-Pulido, M.; Gilbert-Lopez, B.; Garcia-Reyes, J.F.; Martos, N.R.; Molina-Diaz, A. Multiclass detection and quantitation of antibiotics and veterinary drugs in shrimps by fast liquid chromatography time-of-flight mass spectrometry. Talanta 2011, 85, 1419–1427.
  80. Kang, J.; Fan, C.L.; Chang, Q.Y.; Bu, M.N.; Zhao, Z.Y.; Wang, W.; Pang, G.F. Simultaneous determination of multi-class veterinary drug residues in different muscle tissues by modified QuEChERS combined with HPLC-MS/MS. Anal. Methods 2014, 6, 6285.
  81. Nakajima, T.; Nagano, C.; Sasamoto, T.; Hayashi, H.; Kanda, M.; Kanai, S.; Takeba, K.; Matsushima, Y.; Takano, I. Development and validation of rapid analysis method for multi-class veterinary drugs in livestock products by LC-MS/MS. J. Food Hyg. Soc. Jpn. 2012, 53, 243–253.
  82. Barker, S.A.; Long, A.R.; Short, C.R. Isolation of drug residues from tissues by solid phase dispersion. J. Chromatogr. A 1989, 475, 353–361.
  83. Pérez, R.A.; Albero, B.; Tadeo, J.L. Book chapter: 19—Matrix solid phase dispersion. In A Volume in Handbooks in Separation Science; Elsevier: Madrid, Spain, 2020; pp. 531–549.
  84. Wang, G.N.; Zhang, L.; Song, Y.P.; Liu, J.X.; Wang, J.P. Application of molecularly imprinted polymer based matrix solid phase dispersion for determination of fluoroquinolones, tetracyclines and sulfonamides in meat. J. Chromatogr. B 2017, 1065–1066, 104–111.
  85. Shen, Q.; Jin, R.; Xue, J.; Lu, Y.; Dai, Z. Analysis of trace levels of sulfonamides in fish tissue using micro-scale pipette tip-matrix solid-phase dispersion and fast liquid chromatography tandem mass spectrometry. Food Chem. 2016, 194, 508–515.
  86. Tao, Y.; Zhu, F.; Chen, D.; Wei, H.; Pan, Y.; Wang, X.; Liu, Z.; Huang, L.; Wang, Y.; Yuan, Z. Evaluation of matrix solid-phase dispersion (MSPD) extraction for multi-fenicols determination in shrimp and fish by liquid chromatography-electrospray ionisation tandem mass spectrometry. Food Chem. 2014, 150, 500–506.
  87. Da Silva, M.C.; Orlando, R.M.; Faria, A.F. Electrical field assisted matrix solid phase dispersion as a powerful tool to improve the extraction efficiency and clean-up of fluoroquinolones in bovine milk. J. Chromatogr. A 2016, 1461, 27–34.
  88. Mu, G.; Liu, H.; Xu, L.; Tian, L.; Luan, F. Matrix solid-phase dispersion extraction and capillary electrophoresis determination of tetracycline residues in milk. Food Anal. Methods 2011, 5, 148–153.
  89. Huang, Z.; Pan, X.D.; Huang, B.F.; Xu, J.J.; Wang, M.L.; Ren, Y.P. Determination of 15 β-lactam antibiotics in pork muscle by matrix solid-phase dispersion extraction (MSPD) and ultra-high pressure liquid chromatography tandem mass spectrometry. Food Control. 2016, 66, 145–150.
  90. Capriotti, A.L.; Cavaliere, C.; Laganà, A.; Piovesana, S.; Samperi, R. Recent trends in matrix solid-phase dispersion. TrAC Trends Anal. Chem. 2013, 43, 53–66.
  91. Capriotti, A.L.; Cavaliere, C.; Foglia, P.; Samperi, R.; Stampachiacchiere, S.; Ventura, S.; Laganà, A. Recent advances and developments in matrix solid-phase dispersion. TrAC Trends Anal. Chem. 2015, 71, 186–193.
  92. Chico, J.; Rubies, A.; Centrich, F.; Companyo, R.; Prat, M.D.; Granados, M. Use of gel permeation chromatography for clean-up in the analysis of coccidiostats in eggs by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 4777–4786.
  93. Aguilera-Luiz, M.M.; Romero-Gonzalez, R.; Plaza-Bolanos, P.; Vidal, J.L.; Frenich, A.G. Rapid and semiautomated method for the analysis of veterinary drug residues in honey based on turbulent-flow liquid chromatography coupled to ultrahigh-performance liquid chromatography-Orbitrap mass spectrometry (TFC-UHPLC-Orbitrap-MS). J. Agric. Food Chem. 2013, 61, 829–839.
  94. Samanidou, V.; Galanopoulos, L.D.; Kabir, A.; Furton, K.G. Fast extraction of amphenicols residues from raw milk using novel fabric phase sorptive extraction followed by high-performance liquid chromatography-diode array detection. Anal. Chim. Acta 2015, 855, 41–50.
  95. Lu, Y.; Lu, L.; He, J.; Zhao, T. Preparation of hydrophilic molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of trace tetracyclines residues in animal derived foods. J. Sep. Sci. 2020, 43, 2172–2179.
  96. Charitonos, S.; Samanidou, V.F.; Papadoyannis, I. Development of an HPLC-DAD method for the determination of five sulfonamides in shrimps and validation according to the European decision 657/2002/EC. Food Anal. Methods 2017, 10, 2011–2017.
  97. Tajabadi, F.; Ghambarian, M.; Yamini, Y.; Yazdanfar, N. Combination of hollow fiber liquid phase microextraction followed by HPLC-DAD and multivariate curve resolution to determine antibacterial residues in foods of animal origin. Talanta 2016, 160, 400–409.
  98. Mookantsa, S.O.; Dube, S.; Nindi, M.M. Development and application of a dispersive liquid-liquid microextraction method for the determination of tetracyclines in beef by liquid chromatography mass spectrometry. Talanta 2016, 148, 321–328.
More