Optical Phase Shifters: Comparison
Please note this is a comparison between Version 2 by Conner Chen and Version 1 by Younghyun Kim.

Optical phase shifters have the functionality to control the phase of light by a change in the effective refractive index. In a Si photonics platform, it is an essential part composing optical modulators as well as switches in Si photonics. The realization of a silicon optical phase shifter marked a cornerstone for the development of silicon photonics, and it is expected that optical interconnects based on the technology relax the explosive datacom growth in data centers. High-performance silicon optical modulators and switches, integrated into a chip, play a very important role in optical transceivers, encoding electrical signals onto the light at high speed and routing the optical signals, respectively. The development of the devices is continuously required to meet the ever-increasing data traffic at higher performance and lower cost.

  • Si optical phase shifter
  • optical modulator
  • optical switch
Please wait, diff process is still running!

References

  1. BEREC. Reports on the Status of Internet Capacity during Coronavirus Confinement Measures. Available online: (accessed on 27 April 2021).
  2. E Hochberg, M.; Baehr-Jones, T. Towards fabless silicon photonics. Nat. Photonics 2010, 4, 492–494.
  3. Van Campenhout, J.; Ban, Y.; De Heyn, P.; Srinivasan, A.; De Coster, J.; Lardenois, S.; Snyder, B.; Balakrishnan, S.; Lepage, G.; Golshani, N.; et al. Silicon Photonics for 56G NRZ Optical Interconnects. In Proceedings of the Optical Fiber Communication Conference Postdeadline Papers, San Diego, CA, USA, 11–15 March 2018.
  4. Wang, J.; Long, Y. On-chip silicon photonic signaling and processing: A review. Sci. Bull. 2018, 63, 1267–1310.
  5. Boeuf, F.; Cremer, S.; Temporiti, E.; Fere, M.; Shaw, M.; Baudot, C.; Vulliet, N.; Pinguet, T.; Mekis, A.; Masini, G.; et al. Silicon Photonics R&D and Manufacturing on 300-mm Wafer Platform. J. Light. Technol. 2016, 34, 286–295.
  6. Thomson, D.; Zilkie, A.; E Bowers, J.; Komljenovic, T.; Reed, G.T.; Vivien, L.; Marris-Morini, D.; Cassan, E.; Virot, L.; Fédéli, J.-M.; et al. Roadmap on silicon photonics. J. Opt. 2016, 18, 073003.
  7. Sun, J.; Timurdogan, E.; Yaacobi, A.; Hosseini, E.S.; Watts, M.R. Large-scale nanophotonic phased array. Nature 2013, 493, 195–199.
  8. Yamada, K.; Tsuchizawa, T.; Nishi, H.; Kou, R.; Hiraki, T.; Takeda, K.; Fukuda, H.; Ishikawa, Y.; Wada, K.; Yamamoto, T. High-performance silicon photonics technology for telecommunications applications. Sci. Technol. Adv. Mater. 2014, 15, 24603.
  9. Heck, M.J.R. Highly integrated optical phased arrays: Photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 2017, 6, 93–107.
  10. Sun, X.; Zhang, L.; Zhang, Q.; Zhang, W. Si Photonics for Practical LiDAR Solutions. Appl. Sci. 2019, 9, 4225.
  11. Vandoorne, K.; Mechet, P.; Van Vaerenbergh, T.; Fiers, M.; Morthier, G.; Verstraeten, D.; Schrauwen, B.; Dambre, J.; Bienstman, P. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 2014, 5, 3541.
  12. Tait, A.N.; Nahmias, M.A.; Shastri, B.; Prucnal, P.R. Broadcast and Weight: An Integrated Network For Scalable Photonic Spike Processing. J. Light. Technol. 2014, 32, 4029–4041.
  13. Tait, A.N.; De Lima, T.F.; Zhou, E.; Wu, A.X.; Nahmias, M.A.; Shastri, B.J.; Prucnal, P.R. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 2017, 7, 1–10.
  14. Cheng, Q.; Kwon, J.; Glick, M.; Bahadori, M.; Carloni, L.P.; Bergman, K. Silicon Photonics Codesign for Deep Learning; IEEE: Piscataway, NJ, USA, 2020; Volume 108, pp. 1261–1282.
  15. Shen, Y.; Harris, N.C.; Skirlo, S.; Prabhu, M.; Baehr-Jones, T.; Hochberg, M.; Sun, X.; Zhao, S.; LaRochelle, H.; Englund, D.; et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 2017, 11, 441–446.
  16. Soref, R.; Bennett, B. Electrooptical effects in silicon. IEEE J. Quantum Electron. 1987, 23, 123–129.
  17. Nedeljkovic, M.; A Soref, R.; Mashanovich, G.Z. Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon Over the 1–14-μm Infrared Wavelength Range. IEEE Photonics J. 2011, 3, 1171–1180.
  18. Akiyama, S.; Tatsuya, U. High-Speed and Efficient Silicon Modulator Based on Forward-Biased Pin Diodes. Front. Phys. 2014, 2, 1–7.
  19. Liu, A.; Liao, L.; Rubin, D.; Nguyen, H.; Ciftcioglu, B.; Chetrit, Y.; Izhaky, N.; Paniccia, M. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 2007, 15, 660–668.
  20. Tu, X.; Liow, T.-Y.; Song, J.; Luo, X.; Fang, Q.; Yu, M.; Lo, G.-Q. 50-Gb/s silicon optical modulator with traveling-wave electrodes. Opt. Express 2013, 21, 12776–12782.
  21. Dong, P.; Liao, S.; Feng, D.; Liang, H.; Zheng, D.; Shafiiha, R.; Kung, C.-C.; Qian, W.; Li, G.; Zheng, X.; et al. Low V_pp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt. Express 2009, 17, 22484–22490.
  22. Thomson, D.J.; Gardes, F.Y.; Fedeli, J.-M.; Zlatanovic, S.; Hu, Y.; Kuo, B.P.P.; Myslivets, E.; Alic, N.; Radic, S.; Mashanovich, G.Z.; et al. 50-Gb/s Silicon Optical Modulator. IEEE Photonics Technol. Lett. 2012, 24, 234–236.
  23. Dong, P.; Chen, L.; Chen, Y.-K. High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Opt. Express 2012, 20, 6163–6169.
  24. Reed, G.T.; Mashanovich, G.Z.; Gardes, F.Y.; Nedeljkovic, M.; Hu, Y.; Thomson, D.J.; Li, K.; Wilson, P.R.; Chen, S.-W.; Hsu, S.S. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics 2014, 3, 229–245.
  25. Liu, A.; Jones, R.N.; Liao, L.; Samara-Rubio, D.; Rubin, D.; Cohen, O.; Nicolaescu, R.; Paniccia, M.J. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nat. Cell Biol. 2004, 427, 615–618.
  26. Liao, L.; Samara-Rubio, D.; Morse, M.; Liu, A.; Hodge, D.; Rubin, D.; Keil, U.D.; Franck, T. High speed silicon Mach-Zehnder modulator. Opt. Express 2005, 13, 3129–3135.
  27. Fujikata, J.; Takahashi, M.; Takahashi, S.; Horikawa, T.; Nakamura, T. High-speed and high-efficiency Si optical modulator with MOS junction, using solid-phase crystallization of polycrystalline silicon. Jpn. J. Appl. Phys. 2016, 55, 042202.
  28. Xiong, C.; Gill, D.M.; Proesel, J.E.; Orcutt, J.S.; Haensch, W.; Green, W.M.J. Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter. Optica 2016, 3, 1060–1065.
  29. Dong, P.; Liu, X.; Chandrasekhar, S.; Buhl, L.L.; Aroca, R.; Chen, Y.-K. Monolithic Silicon Photonic Integrated Circuits for Compact 100 +Gb/s Coherent Optical Receivers and Transmitters. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 150–157.
  30. Ding, R.; Liu, Y.; Li, Q.; Yang, Y.; Ma, Y.; Padmaraju, K.; Lim, A.E.-J.; Lo, G.-Q.; Bergman, K.; Baehr-Jones, T.; et al. Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator. Opt. Commun. 2014, 321, 124–133.
  31. Streshinsky, M.; Ding, R.; Liu, Y.; Novack, A.; Yang, Y.; Ma, Y.; Tu, X.; Chee, E.K.S.; Lim, A.E.-J.; Lo, P.G.-Q.; et al. Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm. Opt. Express 2013, 21, 30350–30357.
  32. Ogawa, K.; Ishihara, H.; Goi, K.; Mashiko, Y.; Lim, S.T.; Sun, M.J.; Seah, S.; Png, C.E.; Liow, T.-Y.; Tu, X.; et al. Fundamental characteristics and high-speed applications of carrier-depletion silicon Mach-Zehnder modulators. IEICE Electron. Express 2014, 11, 20142010.
  33. Ding, R.; Liu, Y.; Ma, Y.; Yang, Y.; Li, Q.; Lim, A.E.-J.; Lo, G.-Q.; Bergman, K.; Baehr-Jones, T.; Hochberg, M. High-Speed Silicon Modulator With Slow-Wave Electrodes and Fully Independent Differential Drive. J. Light. Technol. 2014, 32, 2240–2247.
  34. Younghyun, K.; Taewon, J.; Youngjoo, B. A comparative simulation study on lateral and L shape pn-junction phase shifters for single-drive 50 Gbps lumped Mach-Zehnder modulators. Jpn. J. Appl. Phys. 2021, 60, 052002.
  35. Manipatruni, S.; Preston, K.; Chen, L.; Lipson, M. Ultra-low voltage, ultra-small mode volume silicon microring modulator. Opt. Express 2010, 18, 18235–18242.
  36. Zheng, X.; Chang, E.; Amberg, P.; Shubin, I.; Lexau, J.; Liu, F.; Thacker, H.; Djordjevic, S.S.; Lin, S.; Luo, Y.; et al. A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control. Opt. Express 2014, 22, 12628–12633.
  37. Xiao, X.; Li, X.; Xu, H.; Hu, Y.; Xiong, K.; Li, Z.; Chu, T.; Yu, J.; Yu, Y. 44-Gb/s Silicon Microring Modulators Based on Zigzag PN Junctions. IEEE Photonics Technol. Lett. 2012, 24, 1712–1714.
  38. Kim, Y.; Jo, Y.; Kim, M.; Yu, B.-M.; Mai, C.; Lischke, S.; Zimmermann, L.; Choi, W.-Y.; Lars, Z. Parametric optimization of depletion-type Si micro-ring modulator performances. Jpn. J. Appl. Phys. 2019, 58, 062006.
  39. Terada, Y.; Kondo, K.; Abe, R.; Baba, T. Full C-band Si photonic crystal waveguide modulator. Opt. Lett. 2017, 42, 5110–5112.
  40. Hinakura, Y.; Akiyama, D.; Ito, H.; Baba, T. Silicon Photonic Crystal Modulators for High-Speed Transmission and Wavelength Division Multiplexing. IEEE J. Sel. Top. Quantum Electron. 2020, 27, 1–8.
  41. Melikyan, A.; Alloatti, L.; Muslija, A.; Hillerkuss, D.; Schindler, P.C.; Li, J.; A Palmer, R.; Korn, D.; Muehlbrandt, S.; Van Thourhout, D.; et al. High-speed plasmonic phase modulators. Nat. Photonics 2014, 8, 229–233.
  42. Reed, G.T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D.J. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526.
  43. Komma, J.; E Schwarz, C.; O Hofmann, G.; Heinert, D.; Nawrodt, R. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 2012, 101, 041905.
  44. Errando-Herranz, C.; Takabayashi, A.Y.; Edinger, P.; Sattari, H.; Gylfason, K.B.; Quack, N. MEMS for Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2019, 26, 1–16.
  45. Cheng, Q.; Bahadori, M.; Glick, M.; Rumley, S.; Bergman, K. Recent advances in optical technologies for data centers: A review. Optica 2018, 5, 1354–1370.
  46. Quack, N.; Sattari, H.; Takabayashi, A.Y.; Zhang, Y.; Verheyen, P.; Bogaerts, W.; Edinger, P.; Errando-Herranz, C.; Gylfason, K.B. MEMS-Enabled Silicon Photonic Integrated Devices and Circuits. IEEE J. Quantum Electron. 2019, 56, 1–10.
  47. Zhang, Z.; You, Z.; Chu, D. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light. Sci. Appl. 2014, 3, e213.
  48. Soref, R. Tutorial: Integrated-photonic switching structures. APL Photonics 2018, 3, 021101.
  49. Yong, Z.; Sacher, W.D.; Huang, Y.; Mikkelsen, J.C.; Yang, Y.; Luo, X.; Dumais, P.; Goodwill, D.; Bahrami, H.; Lo, P.G.-Q.; et al. U-shaped PN junctions for efficient silicon Mach-Zehnder and microring modulators in the O-band. Opt. Express 2017, 25, 8425–8439.
  50. Azadeh, S.S.; Merget, F.; Romero-García, S.; Moscoso-Mártir, A.; von den Driesch, N.; Müller, J.; Mantl, S.; Buca, D.; Witzens, J. Low Vπ Silicon photonics modulators with highly linear epitaxially grown phase shifters. Opt. Express 2015, 23, 23526–23550.
  51. Walton, A.K.; Metcalfe, S.F. Free-carrier absorption at low temperatures in uniaxially stressed n-type Ge, Si and GaAs. J. Phys. C Solid State Phys. 1976, 9, 3605–3625.
  52. Belyaev, A.; Gorodnichii, O.; Pidlisny, E.; Demidenko, Z.; Tomchuk, P. Free carrier absorption in uniaxially stressed n-Si. Solid State Commun. 1982, 42, 441–445.
  53. Kim, Y.; Takenaka, M.; Osada, T.; Hata, M.; Takagi, S. Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators. Sci. Rep. 2014, 4, 1–6.
  54. Takenaka, M.; Takagi, S. Strain Engineering of Plasma Dispersion Effect for SiGe Optical Modulators. IEEE J. Quantum Electron. 2011, 48, 8–16.
  55. Kim, Y.; Fujikata, J.; Takahashi, S.; Takenaka, M.; Takagi, S. Demonstration of record-low injection-current variable optical attenuator based on strained SiGe with optimized lateral pin junction. Opt. Express 2015, 23, 12354–12361.
  56. Kim, Y.; Takenaka, M.; Takagi, S. Numerical Analysis of Carrier-Depletion Strained SiGe Optical Modulators with Vertical p-n Junction. IEEE J. Quantum Electron. 2015, 51, 1–7.
  57. Fujikata, J.; Noguchi, M.; Kim, Y.; Han, J.; Takahashi, S.; Nakamura, T.; Takenaka, M. High-speed and highly efficient Si optical modulator with strained SiGe layer. Appl. Phys. Express 2018, 11, 32201.
  58. Douix, M.; Perez-Galacho, I.D.; Charlet, C.; Baudot, P.; Acosta-Alba, S.; Kerdiles, C.; Euvrard, P.; Grosse, J.; Planchot, R.; Blanc, R.; et al. Sige-Enhanced Si Capacitive Modulator Integration in a 300 Mm Silicon Photonics Platform for Low Power Consumption. Opt. Express 2019, 27, 17701–17707.
  59. Charlet, I.; Desieres, Y.; Marris-Morini, D.; Boeuf, F. Capacitive Modulator Design Optimization Using Si and Strained-SiGe for Datacom Applications. IEEE J. Sel. Top. Quant. Electron. 2021, 27, 3400508.
  60. Bennett, B.; Soref, R.A.; Del Alamo, J.A. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE J. Quantum Electron. 1990, 26, 113–122.
  61. Han, J.-H.; Boeuf, F.; Fujikata, J.; Takahashi, S.; Takagi, S.; Takenaka, M. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photonics 2017, 11, 486–490.
  62. Hiraki, T.; Aihara, T.; Hasebe, K.; Takeda, K.; Fujii, T.; Kakitsuka, T.; Tsuchizawa, T.; Fukuda, H.; Matsuo, S. Heterogeneously Integrated Iii-V/Si Mos Capacitor Mach-Zehnder Modulator. Nat. Photonics 2017, 11, 482–486.
  63. Hiraki, T.; Aihara, T.; Hasebe, K.; Takeda, K.; Fujii, T.; Kakitsuka, T.; Tsuchizawa, T.; Fukuda, H.; Matsuo, S. Integration of a High-Efficiency Mach-Zehnder Modulator with a Dfb Laser Using Membrane Inp-Based Devices on a Si Photonics Platform. Opt. Express 2021, 29, 2431–2441.
  64. Thiessen, T.; Grosse, P.; Da Fonseca, J.; Billondeau, P.; Szelag, B.; Jany, C.; Poon, J.k.S.; Menezo, S. 30 GHz heterogeneously integrated capacitive InP-on-Si Mach–Zehnder modulators. Opt. Express 2019, 27, 102–109.
  65. Wang, Z.; Tian, B.; Pantouvaki, M.; Guo, W.; Absil, P.; Van Campenhout, J.; Merckling, C.; Van Thourhout, D. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics 2015, 9, 837–842.
  66. Waldron, N.; Merckling, C.; Teugels, L.; Ong, P.; Ibrahim, S.A.U.; Sebaai, F.; Pourghaderi, A.; Barla, K.; Collaert, N.; Thean, A.V.-Y. InGaAs Gate-All-Around Nanowire Devices on 300mm Si Substrates. IEEE Electron Device Lett. 2014, 35, 1097–1099.
  67. Kim, Y.; Kim, S.; Ban, Y.; Lardenois, S.; Yudistira, D.; Pantouvaki, M.; Van Campenhout, J. Proposal and Simulation of a Low Loss, Highly Efficient Monolithic III-V/Si Optical Phase Shifter. In Proceedings of the 2019 IEEE 16th International Conference on Group IV Photonics (GFP), Singapore, 28–30 August 2019; pp. 1–2.
  68. Kim, S.; Kim, Y.; Ban, Y.; Pantouvaki, M.; Van Campenhout, J. Simulation Study of a Monolithic III-V/Si V-Groove Carrier Depletion Optical Phase Shifter. IEEE J. Quantum Electron. 2020, 56, 1–8.
  69. Wooten, E.; Kissa, K.; Yi-Yan, A.; Murphy, E.; Lafaw, D.; Hallemeier, P.; Maack, D.; Attanasio, D.; Fritz, D.; McBrien, G.; et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 69–82.
  70. Poberaj, G.; Hu, H.; Sohler, W.; Gunter, P. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev. 2012, 6, 488–503.
  71. Krasnokutska, I.; Tambasco, J.-L.; Li, X.; Peruzzo, A. Ultra-low loss photonic circuits in lithium niobate on insulator. Opt. Express 2018, 26, 897–904.
  72. Takigawa, R.; Asano, T. Thin-film lithium niobate-on-insulator waveguides fabricated on silicon wafer by room-temperature bonding method with silicon nanoadhesive layer. Opt. Express 2018, 26, 24413–24421.
  73. He, M.; Xu, M.; Ren, Y.; Jian, J.; Ruan, Z.; Xu, Y.; Gao, S.; Sun, S.; Wen, X.; Zhou, L.; et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics 2019, 13, 359–364.
  74. Eltes, F.; Mai, C.; Caimi, D.; Kroh, M.; Popoff, Y.; Winzer, G.; Petousi, D.; Lischke, S.; Ortmann, J.E.; Czornomaz, L.; et al. A BaTiO3-Based Electro-Optic Pockels Modulator Monolithically Integrated on an Advanced Silicon Photonics Platform. J. Light. Technol. 2019, 37, 1456–1462.
  75. Abel, S.; Eltes, F.; Ortmann, J.E.; Messner, A.; Castera, P.; Wagner, T.; Urbonas, D.; Rosa, A.; Gutierrez, A.M.; Tulli, D.; et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 2019, 18, 42–47.
  76. Eltes, F.; Villarreal-Garcia, G.E.; Caimi, D.; Siegwart, H.; Gentile, A.A.; Hart, A.; Stark, P.; Marshall, G.D.; Thompson, M.G.; Barreto, J.; et al. An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. 2020, 19, 1164–1168.
  77. Messner, A.; Eltes, F.; Ma, P.; Abel, S.; Baeuerle, B.; Josten, A.; Heni, W.; Caimi, D.; Fompeyrine, J.; Leuthold, J. Plasmonic Ferroelectric Modulators. J. Light. Technol. 2018, 37, 281–290.
  78. Cheng, Q.; Rumley, S.; Bahadori, M.; Bergman, K. Photonic switching in high performance datacenters [Invited]. Opt. Express 2018, 26, 16022–16043.
  79. Tu, X.; Song, C.; Huang, T.; Chen, Z.; Fu, H. State of the Art and Perspectives on Silicon Photonic Switches. Micromachines 2019, 10, 51.
  80. Ikeda, K.; Suzuki, K.; Konoike, R.; Namiki, S.; Kawashima, H. Large-scale silicon photonics switch based on 45-nm CMOS technology. Opt. Commun. 2020, 466, 125677.
  81. Tanizawa, K.; Suzuki, K.; Toyama, M.; Ohtsuka, M.; Yokoyama, N.; Matsumaro, K.; Seki, M.; Koshino, K.; Sugaya, T.; Suda, S.; et al. Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. Opt. Express 2015, 23, 17599–17606.
  82. Suzuki, K.; Konoike, R.; Hasegawa, J.; Suda, S.; Matsuura, H.; Ikeda, K.; Namiki, S.; Kawashima, H. Low-Insertion-Loss and Power-Efficient 32 × 32 Silicon Photonics Switch With Extremely High-Δ Silica PLC Connector. J. Lightwave Technol. 2019, 37, 116–122.
  83. Dumais, P.; Goodwill, D.J.; Celo, D.; Jiang, J.; Zhang, C.; Zhao, F.; Tu, X.; Yan, S.; He, J.; Li, M.; et al. Silicon Photonic Switch Subsystem With 900 Monolithically Integrated Calibration Photodiodes and 64-Fiber Package. J. Lightwave Technol. 2017, 36, 233–238.
  84. Nikolova, D.; Calhoun, D.M.; Liu, Y.; Rumley, S.; Novack, A.; Baehr-Jones, T.; Hochberg, M.; Bergman, K. Modular architecture for fully non-blocking silicon photonic switch fabric. Microsys. Nanoeng. 2017, 3, 16071.
  85. Seok, T.J.; Quack, N.; Han, S.; Muller, R.S.; Wu, M.C. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica 2016, 3, 64–70.
  86. Han, S.; Seok, T.J.; Yu, K.; Quack, N.; Muller, R.S.; Wu, M.C. Large-Scale Polarization-Insensitive Silicon Photonic MEMS Switches. J. Light. Technol. 2018, 36, 1824–1830.
  87. Seok, T.J.; Kwon, K.; Henriksson, J.; Luo, J.; Wu, M.C. 240 × 240 wafer-scale silicon photonic switches. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 3–7 March 2019; pp. 1–5.
  88. Han, S.; Beguelin, J.; Ochikubo, L.; Jacobs, J.; Seok, T.J.; Yu, K.; Quack, N.; Kim, C.-K.; Muller, R.S.; Wu, M.C. 32 × 32 silicon photonic MEMS switch with gap-adjustable directional couplers fabricated in commercial CMOS foundry. J. Opt. Microsyst. 2021, 1, 024003.
  89. Wu, M.C.; Seok, T.J.; Kwon, K.; Henriksson, J.; Luo, J. Large Scale Silicon Photonics Switches Based on MEMS Technology. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; pp. 1–3.
  90. Jacques, M.; Samani, A.; El-Fiky, E.; Patel, D.; Xing, Z.; Plant, D.V. Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Opt. Express 2019, 27, 10456–10471.
  91. Kang, J.; Nishiyama, N.; Atsumi, Y.; Amemiya, T.; Arai, S. Multi-stacked silicon wire waveguides and couplers toward 3D optical interconnects. In Proceedings of the SPIE. Photonics west: Optoelectronic Interconnects XIII, San Francisco, CA, USA, 3–6 February 2013.
  92. Han, S. Highly Scalable Silicon Photonic Switches Based on Waveguide Crossbar with Movable Waveguide Couplers. Ph.D. Thesis, UC Berkeley, Berkeley, CA, USA, 2016.
  93. Lee, B.G.; Rylyakov, A.V.; Green, W.M.J.; Assefa, S.; Baks, C.W.; Rimolo-Donadio, R.; Kuchta, D.M.; Khater, M.H.; Barwicz, T.; Reinholm, C.; et al. Monolithic Silicon Integration of Scaled Photonic Switch Fabrics, CMOS Logic, and Device Driver Circuits. J. Light. Technol. 2014, 32, 743–751.
  94. Jiang, J.; Goodwill, D.J.; Dumais, P.; Celo, D.; Zhang, C.; Mehrvar, H.; Rad, M.; Bernier, E.; Li, M.; Zhao, F.; et al. 16 × 16 silicon photonic switch with nanosecond switch time and low-crosstalk architecture. In Proceedings of the European Conference on Optical Communications (ECOC 2019), Dublin, Ireland, 22–26 September 2019; p. M.2.A.4.
  95. Zanzi, A.; Vagionas, C.; Griol, A.; Rosa, A.; Lechago, S.; Moralis-Pegios, M.; Vyrsokinos, K.; Pleros, N.; Kraft, J.; Sidorov, V.; et al. Alignment tolerant, low voltage, 0.23 Vcm, push-pull silicon photonic switches based on a vertical pn junction. Opt. Express 2019, 27, 32409–32426.
  96. Cheng, Q.; Wonfor, A.; Wei, J.L.; Penty, R.V.; White, I.H. Low-Energy, High-Performance Lossless 8 × 8 SOA Switch. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 22–26 March 2015; pp. 4–6.
  97. Wang, H.; Wonfor, A.; Williams, K.A.; Penty, R.V.; White, I.H. Demonstration of a lossless monolithic 16 × 16 QW SOA switch. In Proceedings of the 2009 35th European Conference on Optical Communication, Vienna, Austria, 20–24 September 2009; pp. 1–2.
  98. Stabile, R.P.; Albores-Mejía, A.A.; Williams, K.K. Monolithic active-passive 16 × 16 optoelectronic switch. Opt. Lett. 2012, 37, 4666–4668.
  99. Kwack, M.-J.; Tanemura, T.; Higo, A.; Nakano, Y. Monolithic InP strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection. Opt. Express 2012, 20, 28734–28741.
  100. Takenaka, M.; Kim, Y.; Han, J.; Kang, J.; Ikku, Y.; Cheng, Y.; Park, J.; Yoshida, M.; Takashima, S.; Takagi, S. Heterogeneous CMOS Photonics based on SiGe/Ge and III-V Semiconductors Integrated on Si Platform. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1.
  101. Ikku, Y.; Yokoyama, M.; Ichikawa, O.; Hata, M.; Takenaka, M.; Takagi, S. Low-driving-current InGaAsP Photonic-wire Optical Switches using III-V CMOS Photonics Platform. Opt. Express 2012, 20, B357–B364.
  102. Liang, D.; Labs, H.P.E.H.P.; Bowers, J.E. Recent Progress in Heterogeneous III-V-on-Silicon Photonic Integration. Light. Adv. Manuf. 2021, 2, 1–25.
  103. Cheung, S.; Kawakita, Y.; Shang, K.; Ben Yoo, S.J. Highly efficient chip-scale III-V/silicon hybrid optical amplifiers. Opt. Express 2015, 23, 22431–22443.
  104. Van Gasse, K.; Wang, R.; Roelkens, G. 27 dB gain III–V-on-silicon semiconductor optical amplifier with >17 dBm output power. Opt. Express 2019, 27, 293–302.
  105. Li, Q.; Han, J.-H.; Ho, C.P.; Takagi, S.; Takenaka, M. Ultra-power-efficient 2 × 2 Si Mach-Zehnder interferometer optical switch based on III-V/Si hybrid MOS phase shifter. Opt. Express 2018, 26, 35003–35012.
  106. Bogaerts, W.; Pérez, D.; Capmany, J.; Miller, D.A.B.; Poon, J.; Englund, D.; Morichetti, F.; Melloni, A. Programmable photonic circuits. Nat. Cell Biol. 2020, 586, 207–216.
  107. Zheng, J.; Khanolkar, A.; Xu, P.; Colburn, S.; Deshmukh, S.; Myers, J.; Frantz, J.; Pop, E.; Hendrickson, J.; Doylend, J.; et al. GST-on-silicon hybrid nanophotonic integrated circuits: A non-volatile quasi-continuously reprogrammable platform. Opt. Mater. Express 2018, 8, 1551–1561.
  108. Stark, P.; Geler-Kremer, J.; Eltes, F.; Caimi, D.; Fompeyrine, J.; Offrein, B.J.; Abel, S. Novel Electro-optic Components for Integrated Photonic Neural Networks. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 8–12 March 2020; p. M2I.4.
  109. Sattari, H.; Toros, A.; Graziosi, T.; Quack, N. Bistable silicon photonic MEMS switches. In Proceedings of the MOEMS and Miniaturized Systems XVIII, San Francisco, CA, USA, 2–7 February 2019.
  110. Bidenko, P.; Han, J.-H.; Song, J.; Kim, S.H. Study on Charge-Enhanced Ferroelectric SIS Optical Phase Shifters Utilizing Negative Capacitance Effect. IEEE J. Quantum Electron. 2020, 56, 1–10.
  111. Han, S.-M.; Rho, D.-W.; Ahn, D.-H.; Song, J.-D.; Choi, W.-Y.; Han, J.-H. Non-Volatile Operation of a Si PN Ring Resonator with a Ferroelectric Capacitor. In Proceedings of the Optical Fiber Communication Conference (OFC), Washington, DC, USA, 6–11 June 2021. W6A.29.
More
ScholarVision Creations