You're using an outdated browser. Please upgrade to a modern browser for the best experience.
FAK Family Kinases in Vascular Diseases: Comparison
Please note this is a comparison between Version 2 by Rita Xu and Version 1 by Ssang-Taek Steve Lim.

In various vascular diseases, extracellular matrix (ECM) and integrin expression are frequently altered, leading to FAK or Pyk2 activation. In addition to the major roles of FAK and Pyk2 in regulating adhesion dynamics via integrins, recent studies have shown a new role of nuclear FAK in gene regulation in various vascular cells. In particular, FAK primarily localizes within the nuclei of vascular smooth muscle cells (VSMCs) of healthy arteries. However, vessel injury increased FAK localization back to adhesions and elevated FAK activity, leading to VSMC hyperplasia. The study suggested that abnormal FAK or Pyk2 activation in vascular cells may cause pathological condition in vascular diseases. Here we will review several studies of FAK and Pyk2 associated with integrin signaling in vascular diseases including restenosis, atherosclerosis, heart failure, pulmonary arterial hypertension, aneurysm, and thrombosis. Despite the importance of FAK family kinases in vascular diseases, comprehensive reviews are scarce. Therefore, we summarized animal models involving FAK family kinases in vascular diseases

  • Pyk2
  • integrin
  • vascular disease
  • restenosis
  • atherosclerosis
  • heart failure
  • pulmonary hypertension
  • aneurysm
  • thrombosis
Please wait, diff process is still running!

References

  1. Cai, W.J.; Li, M.B.; Wu, X.; Wu, S.; Zhu, W.; Chen, D.; Luo, M.; Eitenmuller, I.; Kampmann, A.; Schaper, J.; et al.et al Activation of the integrins alpha 5beta 1 and alpha v beta 3 and focal adhesion kinase (FAK) during arteriogenesis. Mol. Cell Biochem. 2009, 322, 161–169.
  2. Jia, D.; Zhu, Q.; Liu, H.; Zuo, C.; He, Y.; Chen, G.; Lu, A; Osteoprotegerin Disruption Attenuates HySu-Induced Pulmonary Hypertension Through Integrin alphavbeta3/FAK/AKT Pathway Suppression. Circ. Cardiovasc. Genet. 2017, -, 10.
  3. Turner, C.J.; Badu-Nkansah, K.; Crowley, D.; van der Flier, A.; Hynes, R.O; alpha5 and alphav integrins cooperate to regulate vascular smooth muscle and neural crest functions in vivo. Development 2015, 142, 797–808.
  4. Tobias Petzold; A. Wayne Orr; Cornelia Hahn; Krishna A. Jhaveri; J. Thomas Parsons; Martin A. Schwartz; Focal adhesion kinase modulates activation of NF-kappaB by flow in endothelial cells. American Journal of Physiology-Cell Physiology 2009, 297, C814–C822, 10.1152/ajpcell.00226.2009.
  5. Julián Albarrán-Juárez; András Iring; Shengpeng Wang; Sayali Joseph; Myriam Grimm; Boris Strilic; Nina Wettschureck; Till F. Althoff; Stefan Offermanns; Piezo1 and Gq/G11 promote endothelial inflammation depending on flow pattern and integrin activation. Journal of Experimental Medicine 2018, 215, 2655-2672, 10.1084/jem.20180483.
  6. Yurdagul, A., Jr.; Green, J.; Albert, P.; McInnis, M.C.; Mazar, A.P.; Orr, A.W; alpha5beta1 integrin signaling mediates oxidized low-density lipoprotein-induced inflammation and early atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1362–1373.
  7. Hu, S.; Liu, Y.; You, T.; Heath, J.; Xu, L.; Zheng, X.; Wang, A.; Wang, Y.; Li, F.; Yang, F.; et al.et al Vascular Semaphorin 7A Upregulation by Disturbed Flow Promotes Atherosclerosis Through Endothelial beta1 Integrin. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 335–343.
  8. Chen, J.; Green, J.; Yurdagul, A., Jr.; Albert, P.; McInnis, M.C.; Orr, A.W; alphavbeta3 Integrins Mediate Flow-Induced NF-kappaB Activation, Proinflammatory Gene Expression, and Early Atherogenic Inflammation. Am. J. Pathol. 2015, 185, 2575–2589.
  9. Dhandapani Kuppuswamy; Charlene Kerr; Takahiro Narishige; Vijaykumar S. Kasi; Donald R. Menick; G Cooper; Association of Tyrosine-phosphorylated c-Src with the Cytoskeleton of Hypertrophying Myocardium. Journal of Biological Chemistry 1997, 272, 4500-4508, 10.1074/jbc.272.7.4500.
  10. S J Shattil; B Haimovich; M Cunningham; L Lipfert; J T Parsons; M H Ginsberg; J S Brugge; Tyrosine phosphorylation of pp125FAK in platelets requires coordinated signaling through integrin and agonist receptors. Journal of Biological Chemistry 1994, 269, 14738–14745.
  11. Cipolla, L.; Consonni, A.; Guidetti, G.; Canobbio, I.; Okigaki, M.; Falasca, M.; Ciraolo, E.; Hirsch, E.; Balduini, C.; Torti, M; et al. The proline-rich tyrosine kinase Pyk2 regulates platelet integrin alphaIIbbeta3 outside-in signaling. J. Thromb. Haemost. 2013, 11, 345–356.
  12. Consonni, A.; Cipolla, L.; Guidetti, G.; Canobbio, I.; Ciraolo, E.; Hirsch, E.; Falasca, M.; Okigaki, M.; Balduini, C.; Torti, M; et al. Role and regulation of phosphatidylinositol 3-kinase beta in platelet integrin alpha2beta1 signaling. Blood 2012, 119, 847–856.
  13. Andrew Newby; An overview of the vascular response to injury: a tribute to the late Russell Ross. Toxicology Letters 2000, 112, 519-529, 10.1016/s0378-4274(99)00212-x.
  14. A W Clowes; M A Reidy; M M Clowes; Mechanisms of stenosis after arterial injury. Laboratory Investigation 1983, 49, 208–215.
  15. Chiraz Chaabane; Fumiyuki Otsuka; Renu Virmani; Marie-Luce Bochaton-Piallat; Biological responses in stented arteries. Cardiovascular Research 2013, 99, 353-363, 10.1093/cvr/cvt115.
  16. Drachman, D.E.; Simon, D.I; Restenosis: Intracoronary Brachytherapy. Curr. Treat. Options Cardiovasc.Med. 2002, 4, 109–118.
  17. Alexandra C. Finney; Karen Y. Stokes; Christopher B. Pattillo; A. Wayne Orr; Integrin signaling in atherosclerosis. Cellular and Molecular Life Sciences 2017, 74, 2263-2282, 10.1007/s00018-017-2490-4.
  18. Alex O. Morla; Jon E. Mogford; Control of Smooth Muscle Cell Proliferation and Phenotype by Integrin Signaling through Focal Adhesion Kinase. Biochemical and Biophysical Research Communications 2000, 272, 298-302, 10.1006/bbrc.2000.2769.
  19. Jessica Pérez; Rebecca A. Torres; Petra Rocic; Mary J. Cismowski; David S. Weber; Victor Darley-Usmar; Pamela A. Lucchesi; PYK2 signaling is required for PDGF-dependent vascular smooth muscle cell proliferation. American Journal of Physiology-Cell Physiology 2011, 301, C242–C251, 10.1152/ajpcell.00315.2010.
  20. Joan M. Taylor; Christopher P. Mack; Kate Nolan; Chris Regan; Gary K. Owens; J T Parsons; Selective Expression of an Endogenous Inhibitor of FAK Regulates Proliferation and Migration of Vascular Smooth Muscle Cells. Molecular and Cellular Biology 2001, 21, 1565-1572, 10.1128/mcb.21.5.1565-1572.2001.
  21. Rebecca L. Sayers; Liisa J. Sundberg-Smith; Mauricio Rojas; Haruko Hayasaka; J. Thomas Parsons; Christopher P. Mack; Joan M. Taylor; FRNK Expression Promotes Smooth Muscle Cell Maturation During Vascular Development and After Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology 2008, 28, 2115-2122, 10.1161/atvbaha.108.175455.
  22. Yevgeniya E. Koshman; Taehoon Kim; Miensheng Chu; Steven J. Engman; Rekha Iyengar; Seth L. Robia; Allen Samarel; FRNK inhibition of focal adhesion kinase-dependent signaling and migration in vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology 2010, 30, 2226-2233, 10.1161/ATVBAHA.110.212761.
  23. Heather A. Walker; John M. Whitelock; Pamela J. Garl; Raphael A. Nemenoff; Kurt R. Stenmark; Mary C.M. Weiser-Evans; Perlecan Up-Regulation of FRNK Suppresses Smooth Muscle Cell Proliferation via Inhibition of FAK Signaling. Molecular Biology of the Cell 2003, 14, 1941-1952, 10.1091/mbc.E02-08-0508.
  24. Keeley L. Mui; YongHo Bae; Lin Gao; Shu-Lin Liu; Tina Xu; Glenn L. Radice; Christopher S. Chen; Richard K. Assoian; N-Cadherin Induction by ECM Stiffness and FAK Overrides the Spreading Requirement for Proliferation of Vascular Smooth Muscle Cells. Cell Reports 2015, 10, 1477-1486, 10.1016/j.celrep.2015.02.023.
  25. Eric A. Klein; Liqun Yin; Devashish Kothapalli; Paola Castagnino; Fitzroy J. Byfield; Tina Xu; Ilya Levental; Elizabeth Hawthorne; Paul A. Janmey; Richard K. Assoian; et al. Cell-Cycle Control by Physiological Matrix Elasticity and In Vivo Tissue Stiffening. Current Biology 2009, 19, 1511-1518, 10.1016/j.cub.2009.07.069.
  26. YongHo Bae; Keeley L. Mui; Bernadette Y. Hsu; Shu-Lin Liu; Alexandra Cretu; Ziba Razinia; Tina Xu; Ellen Puré; Richard K. Assoian; A FAK-Cas-Rac-Lamellipodin Signaling Module Transduces Extracellular Matrix Stiffness into Mechanosensitive Cell Cycling. Science Signaling 2014, 7, ra57, 10.1126/scisignal.2004838.
  27. Kyuho Jeong; Jung-Hyun Kim; James M. Murphy; Hyeonsoo Park; Su-Jeong Kim; Yelitza A.R. Rodriguez; Hyunkyung Kong; ChungSik Choi; Jun-Lin Guan; Joan M. Taylor; et al.Thomas M. LincolnWilliam T. GerthofferJun-Sub KimEun-Young Erin AhnDavid D. SchlaepferSsang-Taek Steve Lim Nuclear Focal Adhesion Kinase Controls Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia Through GATA4-Mediated Cyclin D1 Transcription. Circulation Research 2019, 125, 152-166, 10.1161/circresaha.118.314344.
  28. Bond, M.; Sala-Newby, G.B.; Newby, A.C; Focal adhesion kinase (FAK)-dependent regulation of S-phase kinase-associated protein-2 (Skp-2) stability. A novel mechanism regulating smooth muscle cell proliferation. J. Biol. Chem. 2004, 279, 37304–37310.
  29. Jeng-Jiann Chiu; Shu Chien; Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiological Reviews 2011, 91, 327-387, 10.1152/physrev.00047.2009.
  30. A. Wayne Orr; Mark H. Ginsberg; Sanford J. Shattil; Hans Deckmyn; Martin A. Schwartz; Matrix-specific Suppression of Integrin Activation in Shear Stress Signaling. Molecular Biology of the Cell 2006, 17, 4686-4697, 10.1091/mbc.E06-04-0289.
  31. Yingxiao Wang; Joann Chang; Yi-Chen Li; Yi-Shuan Li; John Y.-J. Shyy; Shu Chien; Shear stress and VEGF activate IKK via the Flk-1/Cbl/Akt signaling pathway. American Journal of Physiology-Heart and Circulatory Physiology 2004, 286, H685-H692, 10.1152/ajpheart.00237.2003.
  32. Wang, Y.; Flores, L.; Lu, S.; Miao, H.; Li, Y.S.; Chien, S; Shear Stress Regulates the Flk-1/Cbl/PI3K/NF-kappaB Pathway Via Actin and Tyrosine Kinases. Cell Mol. Bioeng. 2009, 2, 341–350.
  33. Jane E. Murphy; Philip R. Tedbury; Shervanthi Homer-Vanniasinkam; John H. Walker; Sreenivasan Ponnambalam; Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis 2005, 182, 1-15, 10.1016/j.atherosclerosis.2005.03.036.
  34. Jillian P. Rhoads; Amy S. Major; How Oxidized Low-Density Lipoprotein Activates Inflammatory Responses. Critical Reviews in Immunology 2018, 38, 333-342, 10.1615/CritRevImmunol.2018026483.
  35. Yurdagul, A., Jr.; Sulzmaier, F.J.; Chen, X.L.; Pattillo, C.B.; Schlaepfer, D.D.; Orr, A.W; Oxidized LDL induces FAK-dependent RSK signaling to drive NF-kappaB activation and VCAM-1 expression. J. Cell Sci. 2016, 129, 1580–1591.
  36. Murphy, J.M.; Jeong, K.; Rodriguez, Y.A.R.; Kim, J.H.; Ahn, E.E.; Lim, S.S; FAK and Pyk2 activity promote TNF-alpha and IL-1beta-mediated pro-inflammatory gene expression and vascular inflammation. Sci. Rep. 2019, 9, 7617.
  37. Ssang-Taek Steve Lim; Nichol L.G. Miller; Xiao Lei Chen; Isabelle Tancioni; Colin T. Walsh; Christine Lawson; Sean Uryu; Sara M. Weis; David A. Cheresh; David D. Schlaepfer; et al. Nuclear-localized focal adhesion kinase regulates inflammatory VCAM-1 expression. Journal of Cell Biology 2012, 197, 907-919, 10.1083/jcb.201109067.
  38. Takeshi Yamaura; Tatsuhiko Kasaoka; Naoko Iijima; Masaaki Kimura; Shinji Hatakeyama; Evaluation of therapeutic effects of FAK inhibition in murine models of atherosclerosis. BMC Research Notes 2019, 12, 200, 10.1186/s13104-019-4220-5.
  39. Thenappan Thenappan; Stephen Y. Chan; E. Kenneth Weir; Role of extracellular matrix in the pathogenesis of pulmonary arterial hypertension. American Journal of Physiology-Heart and Circulatory Physiology 2018, 315, H1322-H1331, 10.1152/ajpheart.00136.2018.
  40. Paul B. Dieffenbach; Marcy Maracle; Daniel J. Tschumperlin; Laura E. Fredenburgh; Mechanobiological Feedback in Pulmonary Vascular Disease. Frontiers in Physiology 2018, 9, 951, 10.3389/fphys.2018.00951.
  41. Kaiser M. Bijli; Bum-Yong Kang; Roy L. Sutliff; C. Michael Hart; Proline-rich tyrosine kinase 2 downregulates peroxisome proliferator-activated receptor gamma to promote hypoxia-induced pulmonary artery smooth muscle cell proliferation. Pulmonary Circulation 2016, 6, 202-210, 10.1086/686012.
  42. Fukai, K.; Nakamura, A.; Hoshino, A.; Nakanishi, N.; Okawa, Y.; Ariyoshi, M.; Kaimoto, S.; Uchihashi, M.; Ono, K.; Tateishi, S.; et al.et al Pyk2 aggravates hypoxia-induced pulmonary hypertension by activating HIF-1alpha. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H951–H959.
  43. Jamie L. Wilson; Chamila Rupasinghe; Anny Usheva; Rod Warburton; Chloe Kaplan; Linda Taylor; Nicholas Hill; Dale F. Mierke; Peter Polgar; Modulating the dysregulated migration of pulmonary arterial hypertensive smooth muscle cells with motif mimicking cell permeable peptides. Current Topics in Peptide & Protein Research 2015, 16, 1-17.
  44. Roxane Paulin; Jolyane Meloche; Audrey Courboulin; Caroline Lambert; Alois Haromy; Antony Courchesne; Pierre Bonnet; Steeve Provencher; Evangelos D. Michelakis; Sébastien Bonnet; et al. Targeting cell motility in pulmonary arterial hypertension. European Respiratory Journal 2013, 43, 531-544, 10.1183/09031936.00181312.
  45. K Graf; Yung S. Do; Naoto Ashizawa; Woerner P. Meehan; Cecilia M. Giachelli; Charles C. Marboe; Eckart Fleck; W Hsueh; Myocardial osteopontin expression is associated with left ventricular hypertrophy. Circulation 1997, 96, 3063-3071, 10.1161/01.cir.96.9.3063.
  46. W. Mamuya; A. Chobanian; Peter Brecher; Age-related changes in fibronectin expression in spontaneously hypertensive, Wistar-Kyoto, and Wistar rat hearts. Circulation Research 1992, 71, 1341-1350, 10.1161/01.res.71.6.1341.
  47. L Terracio; K Rubin; D Gullberg; E Balog; W Carver; R Jyring; T K Borg; Expression of collagen binding integrins during cardiac development and hypertrophy. Circulation Research 1991, 68, 734–744.
  48. Joan M. Taylor; Joshua D. Rovin; J. Thomas Parsons; A Role for Focal Adhesion Kinase in Phenylephrine-induced Hypertrophy of Rat Ventricular Cardiomyocytes. Journal of Biological Chemistry 2000, 275, 19250-19257, 10.1074/jbc.m909099199.
  49. Allison L. Bayer; Maria C. Heidkamp; Nehu Patel; Michael J. Porter; Steven J. Engman; Allen Samarel; PYK2 expression and phosphorylation increases in pressure overload-induced left ventricular hypertrophy. American Journal of Physiology-Heart and Circulatory Physiology 2002, 283, H695-H706, 10.1152/ajpheart.00021.2002.
  50. Laura A. DiMichele; Jason T. Doherty; Mauricio Rojas; Hilary E. Beggs; Louis F. Reichardt; Christopher P. Mack; Joan M. Taylor; Myocyte-restricted focal adhesion kinase deletion attenuates pressure overload-induced hypertrophy. Circulation Research 2006, 99, 636-645, 10.1161/01.RES.0000240498.44752.d6.
  51. Carolina F.M.Z. Clemente; Thaís F. Tornatore; Thais H. Theizen; Ana C. Deckmann; Tiago Campos Pereira; Iscia Lopes-Cendes; José Roberto M. Souza; Kleber G. Franchini; Targeting Focal Adhesion Kinase With Small Interfering RNA Prevents and Reverses Load-Induced Cardiac Hypertrophy in Mice. Circulation Research 2007, 101, 1339-1348, 10.1161/circresaha.107.160978.
  52. J Chen; S W Kubalak; K R Chien; Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis. Development 1998, 125, 1943–1949.
  53. Zeenat S. Hakim; Laura A. DiMichele; Mauricio Rojas; Dane Meredith; Christopher P. Mack; Joan M. Taylor; FAK regulates cardiomyocyte survival following ischemia/reperfusion. Journal of Molecular and Cellular Cardiology 2008, 46, 241-248, 10.1016/j.yjmcc.2008.10.017.
  54. Zhaokang Cheng; Laura A. DiMichele; Zeenat S. Hakim; Mauricio Rojas; Christopher P. Mack; Joan M. Taylor; Targeted focal adhesion kinase activation in cardiomyocytes protects the heart from ischemia/reperfusion injury. Arteriosclerosis, Thrombosis, and Vascular Biology 2012, 32, 924-933, 10.1161/ATVBAHA.112.245134.
  55. Sofia-Iris Bibli; Zongmin Zhou; Sven Zukunft; Beate Fisslthaler; Ioanna Andreadou; Csaba Szabo; Peter Brouckaert; Ingrid Fleming; Andreas Papapetropoulos; Tyrosine phosphorylation of eNOS regulates myocardial survival after an ischaemic insult: role of PYK2. Cardiovascular Research 2017, 113, 926-937, 10.1093/cvr/cvx058.
  56. Loot, A.E.; Schreiber, J.G.; Fisslthaler, B.; Fleming, I; Angiotensin II impairs endothelial function via tyrosine phosphorylation of the endothelial nitric oxide synthase. J. Exp. Med. 2009, 206, 2889–2896.
  57. Raymundo Alain Quintana; W. Robert Taylor; Cellular Mechanisms of Aortic Aneurysm Formation. Circulation Research 2019, 124, 607-618, 10.1161/circresaha.118.313187.
  58. Osamu Yamashita; Koichi Yoshimura; Ayako Nagasawa; Koshiro Ueda; Noriyasu Morikage; Yasuhiro Ikeda; Kimikazu Hamano; Periostin Links Mechanical Strain to Inflammation in Abdominal Aortic Aneurysm. PLOS ONE 2013, 8, e79753, 10.1371/journal.pone.0079753.
  59. Takasuke Harada; Koichi Yoshimura; Osamu Yamashita; Koshiro Ueda; Noriyasu Morikage; Yasuhiro Sawada; Kimikazu Hamano; Focal Adhesion Kinase Promotes the Progression of Aortic Aneurysm by Modulating Macrophage Behavior. Arteriosclerosis, Thrombosis, and Vascular Biology 2017, 37, 156-165, 10.1161/atvbaha.116.308542.
  60. S J Shattil; H Kashiwagi; N Pampori; Integrin signaling: the platelet paradigm. Blood 1998, 91, 2645–2657.
  61. B Haimovich; N Kaneshiki; P Ji; Protein kinase C regulates tyrosine phosphorylation of pp125FAK in platelets adherent to fibrinogen. Blood 1996, 87, 152-161, 10.1182/blood.v87.1.152.bloodjournal871152.
  62. Ian S. Hitchcock; Norma E. Fox; Nicolas Prévost; Katherine Sear; Sanford J. Shattil; Kenneth Kaushansky; Roles of focal adhesion kinase (FAK) in megakaryopoiesis and platelet function: studies using a megakaryocyte lineage–specific FAK knockout. Blood 2008, 111, 596-604, 10.1182/blood-2007-05-089680.
  63. M. E. Roh; M. Cosgrove; K. Górski; Ian S. Hitchcock; Off-targets effects underlie the inhibitory effect of FAK inhibitors on platelet activation: studies using Fak-deficient mice. Journal of Thrombosis and Haemostasis 2013, 11, 1776-1778, 10.1111/jth.12343.
More
Academic Video Service