Metabolic Regulation of Alternative Oxidase under Nutrient Deficiency: Comparison
Please note this is a comparison between Version 2 by Rita Xu and Version 1 by Nestor Del-Saz.

The interaction of the alternative oxidase (AOX) pathway with nutrient metabolism is important for understanding how respiration modulates ATP synthesis and carbon economy in plants under nutrient deficiency. Although AOX activity reduces the energy yield of respiration, this enzymatic activity is upregulated under stress conditions to maintain the functioning of primary metabolism. The in vivo metabolic regulation of AOX activity by phosphorus (P) and nitrogen (N) and during plant symbioses with Arbuscular mycorrhizal fungi (AMF) and Rhizobium bacteria is still not fully understood. We highlight several findings and open questions concerning the in vivo regulation of AOX activity and its impact on plant metabolism during P deficiency and symbiosis with AMF. We also highlight the need for the identification of which metabolic regulatory factors of AOX activity are related to N availability and nitrogen‐fixing legume‐rhizobia symbiosis in order to improve our understanding of N assimilation and biological nitrogen fixation.

  • alternative oxidase
  • arbuscular mycorrhizal fungi
  • nitrogen and phosphorus nutrition
  • rhizobium
  • plant primary metabolism
Please wait, diff process is still running!

References

  1. Timothy S. George; Philippe Hinsinger; Benjamin Turner; Phosphorus in soils and plants – facing phosphorus scarcity. Plant and Soil 2016, 401, 1-6, 10.1007/s11104-016-2846-9.
  2. Jianbo Shen; Lixing Yuan; Junling Zhang; Haigang Li; Zhaohai Bai; Xinping Chen; Weifeng Zhang; Fusuo Zhang; Phosphorus Dynamics: From Soil to Plant1. Plant Physiology 2011, 156, 997-1005, 10.1104/pp.111.175232.
  3. Elena Vidal; Rodrigo A. Gutiérrez; A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Current Opinion in Plant Biology 2008, 11, 521-529, 10.1016/j.pbi.2008.07.003.
  4. Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Functions of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marchner, P., Ed.; Academic Press: Salt Lake City, UT, USA, 2012; pp. 135–189.
  5. William C. Plaxton; Hue T. Tran; Metabolic Adaptations of Phosphate-Starved Plants1. Plant Physiology 2011, 156, 1006-1015, 10.1104/pp.111.175281.
  6. Lambers, H.; Robinson, S.A.; Ribas-Carbo, M. Regulation of respiration in vivo. In Plant Respiration: From Cell to Ecosystem; Advances in Photosynthesis and Respiration Series; Lambers, H., Ribas-Carbo, M., Eds.; Springer: Dordrecht, The Netherlands, 2005; Volume 18, pp. 1–15.
  7. Wagner L. Araújo; Adriano Nunes-Nesi; Zoran Nikoloski; Lee J. Sweetlove; Alisdair R. Fernie; Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant, Cell & Environment 2012, 35, 1-21, 10.1111/j.1365-3040.2011.02332.x.
  8. Shane, M.W.; Lambers, H. Cluster roots: A curiosity in context. In Root Physiology: From Gene to Function, 1st ed.; Lambers, H., Colmer, T.D., Eds.; Springer: Dordrecht, The Netherlands , 2005; pp. 101–125.
  9. Hans Lambers; Michael W. Shane; Michael D. Cramer; Stuart J. Pearse; Erik J. Veneklaas; Root Structure and Functioning for Efficient Acquisition of Phosphorus: Matching Morphological and Physiological Traits. Annals of Botany 2006, 98, 693-713, 10.1093/aob/mcl114.
  10. Lambers, H.; Brundrett, M.; Raven, J.; Hopper, S; Plant mineral nutrition in ancient landscapes: High plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant and Soil 2010, 334, 11-31.
  11. Graham Zemunik; Hans Lambers; Benjamin Turner; Étienne Laliberté; Rafael S. Oliveira; High abundance of non-mycorrhizal plant species in severely phosphorus-impoverished Brazilian campos rupestres. Plant and Soil 2018, 424, 255-271, 10.1007/s11104-017-3503-7.
  12. Lambers, H.; Chapin, F.S., III; Pons, T.L. Plant Physiological Ecology; Springer: New York, NY, USA, 2008; pp. 10–95.
  13. Igor Florez-Sarasa; Hans Lambers; Xing Wang; Patrick Finnegan; Miquel Ribas-Carbó; The alternative respiratory pathway mediates carboxylate synthesis in white lupin cluster roots under phosphorus deprivation. Plant, Cell & Environment 2013, 37, 922-928, 10.1111/pce.12208.
  14. Michael W. Shane; Michael D. Cramer; Sachiko Funayama-Noguchi; Gregory R. Cawthray; A. Harvey Millar; David A. Day; Hans Lambers; Developmental Physiology of Cluster-Root Carboxylate Synthesis and Exudation in Harsh Hakea. Expression of Phosphoenolpyruvate Carboxylase and the Alternative Oxidase1. Plant Physiology 2004, 135, 549-560, 10.1104/pp.103.035659.
  15. G. C. Vanlerberghe; L. Mclntosh; Signals Regulating the Expression of the Nuclear Gene Encoding Alternative Oxidase of Plant Mitochondria. Plant Physiology 1996, 111, 589-595.
  16. Lambers, H.; Plaxton, W.C. Phosphorus: Back to the Roots. In Annual Plant Reviews Phosphorus Metabolism in Plants; Plaxton, W.C., Lambers, H., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; Volume 48, pp. 1–22.
  17. José López‐Bucio; Marı́a Fernanda Nieto-Jacobo; Verenice Ramı́rez-Rodrı́guez; Luis Rafael Herrera-Estrella; Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Science 2000, 160, 1-13, 10.1016/s0168-9452(00)00347-2.
  18. Ralitza Alexova; Clark Nelson; A. Harvey Millar; Temporal development of the barley leaf metabolic response to P i limitation. Plant, Cell & Environment 2017, 40, 645-657, 10.1111/pce.12882.
  19. Maria E. Theodorou; Ivor R. Elrifi; David H. Turpin; William C. Plaxton; Narayana M. Upadhyaya; C. William Parker; David S. Letham; Kieran F. Scott; Peter J. Dart; Effects of Phosphorus Limitation on Respiratory Metabolism in the Green Alga Selenastrum minutum. Plant Physiology 1991, 95, 1089-1095, 10.1104/pp.95.4.1089.
  20. Anna M. Rychter; Maria Mikulska; The relationship between phosphate status and cyanide-resistant respiration in bean roots. Physiologia Plantarum 1991, 79, 663-667, 10.1034/j.1399-3054.1990.790413.x.
  21. Marcel H. N. Hoefnagel; Frank Van Iren; Kees R. Libbenga; Linus H. W. Van Der Plas; Possible role of adenylates in the engagement of the cyanide-resistant pathway in nutrient-starved Catharanthus roseus cells. Physiologia Plantarum 1994, 90, 269-278, 10.1034/j.1399-3054.1994.900205.x.
  22. Hannah L. Parsons; Increased Respiratory Restriction during Phosphate-Limited Growth in Transgenic Tobacco Cells Lacking Alternative Oxidase. Plant Physiology 1999, 121, 1309-1320, 10.1104/pp.121.4.1309.
  23. Izabela Juszczuk; Eligio Malusá; Anna M. Rychter; Oxidative stress during phosphate deficiency in roots of bean plants (Phaseolus vulgaris L.). Journal of Plant Physiology 2001, 158, 1299-1305, 10.1078/0176-1617-00541.
  24. Stephen M. Sieger; Brian K. Kristensen; Christine A. Robson; Sasan Amirsadeghi; Edward W. Y. Eng; Amal Abdel-Mesih; Ian M Møller; Greg C. Vanlerberghe; The role of alternative oxidase in modulating carbon use efficiency and growth during macronutrient stress in tobacco cells. Journal of Experimental Botany 2005, 56, 1499-1515, 10.1093/jxb/eri146.
  25. Ko Noguchi; Ichiro Terashima; Sachiko Funayama-Noguchi; Comparison of the response to phosphorus deficiency in two lupin species,Lupinus albusandL. angustifolius, with contrasting root morphology. Plant, Cell & Environment 2014, 38, 399-410, 10.1111/pce.12390.
  26. Greg C. Vanlerberghe; Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants. International Journal of Molecular Sciences 2013, 14, 6805-6847, 10.3390/ijms14046805.
  27. Néstor Fernández Del-Saz; Gregory R. Cawthray; Antònia Romero-Munar; Jaume Flexas; Ricardo Aroca; Elena Baraza; Hans Lambers; Miquel Ribas-Carbó; Arbuscular mycorrhizal fungus colonization in Nicotiana tabacum decreases the rate of both carboxylate exudation and root respiration and increases plant growth under phosphorus limitation. Plant and Soil 2017, 416, 97-106, 10.1007/s11104-017-3188-y.
  28. Néstor Fernández Del-Saz; Antònia Romero-Munar; Gregory R. Cawthray; Francisco Palma; Ricardo Aroca; Elena Baraza; Igor Florez-Sarasa; Hans Lambers; Miquel Ribas-Carbó; Phosphorus concentration coordinates a respiratory bypass, synthesis and exudation of citrate, and the expression of high-affinity phosphorus transporters in Solanum lycopersicum. Plant, Cell & Environment 2018, 41, 865-875, 10.1111/pce.13155.
  29. M. A. Gonzalez-Meler; L. Giles; R. B. Thomas; James N Siedow; Metabolic regulation of leaf respiration and alternative pathway activity in response to phosphate supplyy. Plant, Cell & Environment 2001, 24, 205-215, 10.1111/j.1365-3040.2001.00674.x.
  30. Campbell, C.D.; Sage, R.F; Interactions between the effects of atmospheric CO2 content and P nutrition on photosynthesis in white lupin (Lupinus albus L.). Plant Cell Environ. 2006, 29, 844–853.
  31. Christian Rm Hermans; John Hammond; Philip J. White; Nathalie Verbruggen; How do plants respond to nutrient shortage by biomass allocation?. Trends in Plant Science 2006, 11, 610-617, 10.1016/j.tplants.2006.10.007.
  32. Adriano Nunes-Nesi; Wagner L. Araújo; Toshihiro Obata; Alisdair R. Fernie; Regulation of the mitochondrial tricarboxylic acid cycle. Current Opinion in Plant Biology 2013, 16, 335-343, 10.1016/j.pbi.2013.01.004.
  33. Jianbo Shen; Lixing Yuan; Junling Zhang; Haigang Li; Zhaohai Bai; Xinping Chen; Weifeng Zhang; Fusuo Zhang; Phosphorus Dynamics: From Soil to Plant. Plant Physiology 2011, 156, 997-1005, 10.1104/pp.111.175232.
  34. Chunyuan Huang; Ute Roessner; Ira Eickmeier; Yusuf Genc; Damien Callahan; Neil J Shirley; Peter Langridge; Antony Bacic; Antony Bacic; Metabolite Profiling Reveals Distinct Changes in Carbon and Nitrogen Metabolism in Phosphate-Deficient Barley Plants (Hordeum vulgare L.). Plant and Cell Physiology 2008, 49, 691-703, 10.1093/pcp/pcn044.
  35. Charles Warren; How does P affect photosynthesis and metabolite profiles of Eucalyptus globulus?. Tree Physiology 2011, 31, 727-739, 10.1093/treephys/tpr064.
  36. Wagner L. Araújo; Takayuki Tohge; Kimitsune Ishizaki; Christopher J. Leaver; Alisdair R. Fernie; Protein degradation – an alternative respiratory substrate for stressed plants. Trends in Plant Science 2011, 16, 489–498, 10.1016/j.tplants.2011.05.008.
  37. Tatjana M. Hildebrandt; Adriano Nunes-Nesi; Wagner L. Araújo; Hans-Peter Braun; Amino Acid Catabolism in Plants. Molecular Plant 2015, 8, 1563-1579, 10.1016/j.molp.2015.09.005.
  38. Bożena Szal; Anna Podgórska; The role of mitochondria in leaf nitrogen metabolism. Plant, Cell & Environment 2012, 35, 1756-1768, 10.1111/j.1365-3040.2012.02559.x.
  39. Mark C. Brundrett; Leho Tedersoo; Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist 2018, 220, 1108-1115, 10.1111/nph.14976.
  40. Dieter Strack; Thomas Fester; Bettina Hause; Willibald Schliemann; Michael Walter; Arbuscular mycorrhiza: biological, chemical, and molecular aspects. Journal of Chemical Ecology 2003, 29, 1955–1979.
  41. Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3th ed.; Academic Press: London, UK, 2008; pp. 1–769.
  42. Réka Nagy; David Drissner; Nikolaus Amrhein; Iver Jakobsen; Marcel Bucher; Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytologist 2008, 181, 950-959, 10.1111/j.1469-8137.2008.02721.x.
  43. Glaciela Kaschuk; Thomas W. Kuyper; P.A. Leffelaar; Mariangela Hungria; Ken E. Giller; Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?. Soil Biology and Biochemistry 2009, 41, 1233-1244, 10.1016/j.soilbio.2009.03.005.
  44. John K. Hughes; Angela Hodge; Alastair Fitter; Owen K. Atkin; Mycorrhizal respiration: implications for global scaling relationships. Trends in Plant Science 2008, 13, 583-588, 10.1016/j.tplants.2008.08.010.
  45. B. Bago; Carbon Metabolism and Transport in Arbuscular Mycorrhizas. Plant Physiology 2000, 124, 949-958, 10.1104/pp.124.3.949.
  46. Rob Baas; Daan Kuiper; Effects of vesicular-arbuscular mycorrhizal infection and phosphate on Plantago major ssp. pleiosperma in relation to internal cytokinin concentrations. Physiologia Plantarum 1989, 76, 211-215, 10.1111/j.1399-3054.1989.tb05634.x.
  47. A. Hodge; Impact of elevated CO2 on mycorrhizal associations and implications for plant growth. Biology and Fertility of Soils 1996, 23, 388-398, 10.1007/bf00335912.
  48. David Johnson; Jonathan R. Leake; D.J Read; Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C. Soil Biology and Biochemistry 2002, 34, 1521-1524, 10.1016/s0038-0717(02)00126-8.
  49. Natalija Hohnjec; Martin F. Vieweg; Alfred Pühler; Anke Becker; Helge Küster; Overlaps in the Transcriptional Profiles of Medicago truncatula Roots Inoculated with Two Different Glomus Fungi Provide Insights into the Genetic Program Activated during Arbuscular Mycorrhiza. Plant Physiology 2005, 137, 1283-1301, 10.1104/pp.104.056572.
  50. Willibald Schliemann; Christian Ammer; Dieter Strack; Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 2008, 69, 112-146, 10.1016/j.phytochem.2007.06.032.
  51. Jérôme Laparre; Mathilde Malbreil; Fabien Létisse; Christophe Roux; Guillaume Becard; Virginie Puech-Pages; Jean-Charles Portais; Combining Metabolomics and Gene Expression Analysis Reveals that Propionyl- and Butyryl-Carnitines Are Involved in Late Stages of Arbuscular Mycorrhizal Symbiosis. Molecular Plant 2014, 7, 554-566, 10.1093/mp/sst136.
  52. Megan H. Ryan; Mark Tibbett; T. Edmonds-Tibbett; L. D. B. Suriyagoda; Hans Lambers; G. R. Cawthray; J. Pang; Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Plant, Cell & Environment 2012, 35, 2170-2180, 10.1111/j.1365-3040.2012.02547.x.
  53. Nazanin K. Nazeri; Hans Lambers; Mark Tibbett; Megan H. Ryan; Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries. Plant, Cell & Environment 2013, 37, 911-921, 10.1111/pce.12207.
  54. Antònia Romero-Munar; Néstor Fernández Del-Saz; Miquel Ribas-Carbó; Jaume Flexas; Elena Baraza; Igor Florez-Sarasa; Alisdair Robert Fernie; Javier Gulías; Arbuscular Mycorrhizal Symbiosis withArundo donaxDecreases Root Respiration and Increases Both Photosynthesis and Plant Biomass Accumulation. Plant, Cell & Environment 2017, 40, 1115-1126, 10.1111/pce.12902.
  55. Stuart Pearse; Erik J. Veneklaas; Greg Cawthray; Mike D. A. Bolland; Hans Lambers; Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytologist 2007, 173, 181-190, 10.1111/j.1469-8137.2006.01897.x.
  56. Jiayin Pang; Megan H. Ryan; Mark Tibbett; Gregory R. Cawthray; Kadambot H. M. Siddique; Mike D. A. Bolland; Matthew D. Denton; Hans Lambers; Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant and Soil 2009, 331, 241-255, 10.1007/s11104-009-0249-x.
  57. John A. Raven; Hans Lambers; Sally E. Smith; Mark Westoby; Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. New Phytologist 2018, 217, 1420-1427, 10.1111/nph.14967.
  58. D. P. Stribley; P. B. Tinker; J. H. Rayner; RELATION OF INTERNAL PHOSPHORUS CONCENTRATION AND PLANT WEIGHT IN PLANTS INFECTED BY VESICULAR-ARBUSCULAR MYCORRHIZAS. New Phytologist 1980, 86, 261-266, 10.1111/j.1469-8137.1980.tb00786.x.
  59. Néstor Fernández Del-Saz; Antònia Romero-Munar; David Alonso; Ricardo Aroca; Elena Baraza; Jaume Flexas; Miquel Ribas-Carbó; Respiratory ATP cost and benefit of arbuscular mycorrhizal symbiosis with Nicotiana tabacum at different growth stages and under salinity. Journal of Plant Physiology 2017, 218, 243-248, 10.1016/j.jplph.2017.08.012.
  60. Sally E. Smith; F. Andrew Smith; Iver Jakobsen; Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist 2004, 162, 511-524, 10.1111/j.1469-8137.2004.01039.x.
  61. Marcel Bucher; Bettina Hause; Franziska Krajinski; Helge Küster; Through the doors of perception to function in arbuscular mycorrhizal symbioses. New Phytologist 2014, 204, 833-840, 10.1111/nph.12862.
  62. Stephanie J. Watts-Williams; Iver Jakobsen; Timothy Cavagnaro; Mette Grønlund; Local and distal effects of arbuscular mycorrhizal colonization on direct pathway Pi uptake and root growth in Medicago truncatula. Journal of Experimental Botany 2015, 66, 4061-4073, 10.1093/jxb/erv202.
  63. Marcel Bucher; Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist 2007, 173, 11-26, 10.1111/j.1469-8137.2006.01935.x.
  64. Vladimir Karandashov; Marcel Bucher; Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science 2005, 10, 22-29, 10.1016/j.tplants.2004.12.003.
  65. Ruairidh J. H. Sawers; Simon F. Svane; Clement Quan; Mette Grønlund; Barbara Wozniak; Mesfin-Nigussie Gebreselassie; Eliécer González-Muñoz; Ricardo A. Chavez Montes; Ivan Baxter; Jérôme Goudet; et al.Iver JakobsenUta. Paszkowski Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytologist 2017, 214, 632-643, 10.1111/nph.14403.
  66. Sally E. Smith; Iver Jakobsen; Mette Grønlund; F. Andrew Smith; Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition1. Plant Physiology 2011, 156, 1050-1057, 10.1104/pp.111.174581.
  67. E. Facelli; T. Duan; S E. Smith; H.M. Christophersen; J M. Facelli; F A. Smith; Opening the black box: outcomes of interactions between arbuscular mycorrhizal (AM) and non-host genotypes of Medicago depend on fungal identity, interplay between P uptake pathways and external P supply. Plant, Cell & Environment 2013, 37, 1382-1392, 10.1111/pce.12237.
  68. Catarina Campos; Hélia Cardoso; Amaia Nogales; Jan Svensson; Juan Antonio López-Ráez; María J. Pozo; Tânia Nobre; Carolin Schneider; Birgit Arnholdt-Schmitt; Intra and Inter-Spore Variability in Rhizophagus irregularis AOX Gene. PLOS ONE 2015, 10, 1-24, 10.1371/journal.pone.0142339.
  69. Carl R. Fellbaum; Jerry A. Mensah; Adam J. Cloos; Gary E. Strahan; Philip E. Pfeffer; E. Toby Kiers; Heike Bücking; Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytologist 2014, 203, 646-656, 10.1111/nph.12827.
  70. Alwyn Williams; Lokeshwaran Manoharan; Nicholas P. Rosenstock; Pål Axel Olsson; Katarina Hedlund; Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange. New Phytologist 2016, 213, 874-885, 10.1111/nph.14196.
  71. A.J. Miller; M. D. Cramer; Root nitrogen acquisition and assimilation. Plant Ecophysiology 2005, 4, 1-36, 10.1007/1-4020-4099-7_1.
  72. P J Lea; R.A. Azevedo; Nitrogen use efficiency. 2. Amino acid metabolism. Annals of Applied Biology 2007, 151, 269-275, 10.1111/j.1744-7348.2007.00200.x.
  73. Barber, S. Soil Nutrient Bioavailability: A Mechanistic Approach, 2nd ed.; Wiley: New York, NY, USA, 1995; p. 384.
  74. Heinz Rennenberg; Henning Wildhagen; B. Ehlting; Nitrogen nutrition of poplar trees. Plant Biology 2010, 12, 275-291, 10.1111/j.1438-8677.2009.00309.x.
  75. Honghao Gan; Yu Jiao; Jingbo Jia; Xinli Wang; Hong Li; Wenguang Shi; Changhui Peng; Andrea Polle; Zhi-Bin Luo; Phosphorus and nitrogen physiology of two contrasting poplar genotypes when exposed to phosphorus and/or nitrogen starvation. Tree Physiology 2015, 36, 22-38, 10.1093/treephys/tpv093.
  76. Guohua Xu; Xiaorong Fan; A. J. Miller; Plant Nitrogen Assimilation and Use Efficiency. Annual Review of Plant Biology 2012, 63, 153-182, 10.1146/annurev-arplant-042811-105532.
  77. Ichiro Terashima; John R Evans; Effects of Light and Nitrogen Nutrition on the Organization of the Photosynthetic Apparatus in Spinach. Plant and Cell Physiology 1988, 29, 143–155, 10.1093/oxfordjournals.pcp.a077461.
  78. Amane Makino; Barry Osmond; Effects of Nitrogen Nutrition on Nitrogen Partitioning between Chloroplasts and Mitochondria in Pea and Wheat. Plant Physiology 1991, 96, 355-362, 10.1104/pp.96.2.355.
  79. George T. Byrd; Rowan F. Sage; R. Harold Brown; A Comparison of Dark Respiration between C3 and C4 Plants. Plant Physiology 1992, 100, 191-198, 10.1104/pp.100.1.191.
  80. Christopher H. Lusk; Peter B. Reich; Relationships of leaf dark respiration with light environment and tissue nitrogen content in juveniles of 11 cold-temperate tree species. Oecologia 2000, 123, 318-329, 10.1007/s004420051018.
  81. Céline Richard-Molard; Anne Krapp; François Brun; Bertrand Ney; Françoise Daniel-Vedele; Sylvain Chaillou; Plant response to nitrate starvation is determined by N storage capacity matched by nitrate uptake capacity in two Arabidopsis genotypes. Journal of Experimental Botany 2008, 59, 779-791, 10.1093/jxb/erm363.
  82. Wolf-Rüdiger Scheible; Agustin Gonzalez-Fontes; Marianne Lauerer; Bernd Müller-Röber; Michel Caboche; Mark Stitt; Nitrate Acts as a Signal to Induce Organic Acid Metabolism and Repress Starch Metabolism in Tobacco. The Plant Cell 1997, 9, 783-789, 10.2307/3870432.
  83. Muriel Lancien; Sylvie Ferrario-Méry; Yvette Roux; Evelyne Bismuth; Céline Masclaux; Bertrand Hirel; Pierre Gadal; Michael Hodges; Simultaneous Expression of NAD-Dependent Isocitrate Dehydrogenase and Other Krebs Cycle Genes after Nitrate Resupply to Short-Term Nitrogen-Starved Tobacco. Plant Physiology 1999, 120, 717-726, 10.1104/pp.120.3.717.
  84. Noguchi, K.; Terashima, I; Responses of spinach leaf mitochondria to low N availablity. Plant Cell Environ. 2006, 29, 710–719.
  85. Néstor Fernández Del-Saz; Miquel Ribas-Carbó; Allison E. McDonald; Hans Lambers; Alisdair R. Fernie; Igor Florez-Sarasa; An In Vivo Perspective of the Role(s) of the Alternative Oxidase Pathway. Trends in Plant Science 2018, 23, 206-219, 10.1016/j.tplants.2017.11.006.
  86. Igor Florez-Sarasa; Miquel Ribas-Carbó; Néstor Fernández Del-Saz; Kevin Schwahn; Zoran Nikoloski; Alisdair R. Fernie; Jaume Flexas; Unravelling the in vivo regulation and metabolic role of the alternative oxidase pathway in C3 species under photoinhibitory conditions. New Phytologist 2016, 212, 66-79, 10.1111/nph.14030.
  87. F. F. Millenaar; Regulation of Alternative Oxidase Activity in Six Wild Monocotyledonous Species. An in Vivo Study at the Whole Root Level. Plant Physiology 2001, 126, 376-387, 10.1104/pp.126.1.376.
  88. Craig Macfarlane; Lee D. Hansen; Miquel Ribas-Carbó; Igor Florez-Sarasa; Plant mitochondria electron partitioning is independent of short-term temperature changes. Plant, Cell & Environment 2009, 32, 585-591, 10.1111/j.1365-3040.2009.01953.x.
  89. Allan G. Rasmusson; Alisdair R. Fernie; Joost T. Van Dongen; Alternative oxidase: a defence against metabolic fluctuations?. Physiologia Plantarum 2009, 137, 371-382, 10.1111/j.1399-3054.2009.01252.x.
  90. M. Stitt; Nitrate regulation of metabolism and growth. Current Opinion in Plant Biology 1999, 2, 178-186, 10.1016/s1369-5266(99)80033-8.
  91. Hachiya, T.; Terashima, I.; Noguchi, K; Increase in respiratory cost at high growth temperature is attributed to high protein turnover cost in Petunia x hybrida petals. Plant Cell Environ. 2007, 30, 1269–1283.
  92. Graham Noctor; Christine H. Foyer; A re-evaluation of the ATP :NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity?. Journal of Experimental Botany 1998, 49, 1895-1908, 10.1093/jxb/49.329.1895.
  93. Ingeborg Scheurwater; David T. Clarkson; Judith V. Purves; Geraldine Van Rijt; Leslie R. Saker; Rob Welschen; Hans Lambers; Relatively large nitrate efflux can account for the high specific respiratory costs for nitrate transport in slow-growing grass species. Plant and Soil 1999, 215, 123-134, 10.1023/a:1004559628401.
  94. Dev T. Britto; Herbert J Kronzucker; NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology 2002, 159, 567-584, 10.1078/0176-1617-0774.
  95. Matthew A. Escobar; Daniela A. Geisler; Allan G. Rasmusson; Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate. The Plant Journal 2006, 45, 775-788, 10.1111/j.1365-313x.2005.02640.x.
  96. Takushi Hachiya; Chihiro K. Watanabe; Carolina Boom; Danny Tholen; Kentaro Takahara; Maki Kawai-Yamada; Hirofumi Uchimiya; Yukifumi Uesono; Ichiro Terashima; Ko Noguchi; et al. Ammonium-dependent respiratory increase is dependent on the cytochrome pathway in Arabidopsis thaliana shoots. Plant, Cell & Environment 2010, 33, 1888-1897, 10.1111/j.1365-3040.2010.02189.x.
  97. Takushi Hachiya; Ko Noguchi; Integrative response of plant mitochondrial electron transport chain to nitrogen source. Plant Cell Reports 2010, 30, 195-204, 10.1007/s00299-010-0955-0.
  98. Anna Podgórska; Radosław Mazur; Monika Ostaszewska-Bugajska; Katsiaryna Kryzheuskaya; Kacper Dziewit; Klaudia Borysiuk; Agata Wdowiak; Maria Burian; Allan G. Rasmusson; Bożena Szal; et al. Efficient Photosynthetic Functioning of Arabidopsis thaliana Through Electron Dissipation in Chloroplasts and Electron Export to Mitochondria Under Ammonium Nutrition. Frontiers in Plant Science 2020, 103, 1-8, 10.3389/fpls.2020.00103.
  99. Raquel Esteban; Idoia Ariz; Cristina Cruz; Jose Fernando Moran; Review: Mechanisms of ammonium toxicity and the quest for tolerance. Plant Science 2016, 248, 92-101, 10.1016/j.plantsci.2016.04.008.
  100. Silvia Frechilla; Berta Lasa; Manolitxi Aleu; Nerea Juanarena; Carmen Lamsfus; Pedro M. Aparicio-Tejo; Short-term ammonium supply stimulates glutamate dehydrogenase activity and alternative pathway respiration in roots of pea plants. Journal of Plant Physiology 2002, 159, 811-818, 10.1078/0176-1617-00675.
  101. Berta Lasa; Silvia Frechilla; Pedro M. Aparicio-Tejo; Carmen Lamsfus; Alternative pathway respiration is associated with ammonium ion sensitivity in spinach and pea plants. Plant Growth Regulation 2002, 37, 49-55, 10.1023/a:1020312806239.
  102. Patterson, K.; Cakmak, T.; Cooper, A.; Lager, I.; Rasmusson, A.G.; Escobar, M.A; Distinct signalling athways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants. Plant Cell Environ. 2010, 33, 1486–1501.
  103. Kapuganti J. Gupta; Aprajita Kumari; Igor Florez-Sarasa; Alisdair R Fernie; Abir U. Igamberdiev; Interaction of nitric oxide with the components of the plant mitochondrial electron transport chain. Journal of Experimental Botany 2018, 69, 3413-3424, 10.1093/jxb/ery119.
  104. Anthony Kearns; James Whelan; Susan Young; Thomas E. Elthon; David A. Day; Tissue-Specific Expression of the Alternative Oxidase in Soybean and Siratro. Plant Physiology 1992, 99, 712-717, 10.1104/pp.99.2.712.
  105. Patrick Finnegan; James Whelan; A. Harvey Millar; Q. Zhang; M. K. Smith; J. T. Wiskich; David A. Day; Differential expression of the multigene family encoding the soybean mitochondrial alternative oxidase. Plant Physiology 1997, 114, 455-466, 10.1104/pp.114.2.455.
  106. Crystal Sweetman; Kathleen L. Soole; Colin Jenkins; David A. Day; Genomic structure and expression of alternative oxidase genes in legumes. Plant, Cell & Environment 2018, 42, 71-84, 10.1111/pce.13161.
  107. Néstor Fernández Del-Saz; Igor Florez-Sarasa; María José Clemente-Moreno; Haytem Mhadhbi; Jaume Flexas; Alisdair R. Fernie; Miquel Ribas-Carbó; Salinity tolerance is related to cyanide-resistant alternative respiration in Medicago truncatula under sudden severe stress. Plant, Cell & Environment 2016, 39, 2361-2369, 10.1111/pce.12776.
  108. Marwa Batnini; Néstor Fernández Del-Saz; Mateu Fullana-Pericàs; Francisco Palma; Imen Haddoudi; Moncef Mrabet; Miquel Ribas-Carbó; Haythem Mhadhbi; The alternative oxidase pathway is involved in optimizing photosynthesis in Medicago truncatula infected by Fusarium oxysporum and Rhizoctonia solani. Physiologia Plantarum 2020, -, -, 10.1111/ppl.13080.
  109. M. A. Gonzalez-Meler; L. Giles; R. B. Thomas; James N Siedow; Metabolic regulation of leaf respiration and alternative pathway activity in response to phosphate supply. Plant, Cell & Environment 2001, 24, 205-215, 10.1111/j.1365-3040.2001.00674.x.
  110. Gonzàlez-Meler, M.A.; Siedow, J.N; Inhibition of respiratory enzymes by elevated CO2: Does it matter at the intact tissue and whole plant levels. Tree Physiol. 1999, 19, 253–259.
  111. María C. Martí; Igor Florez-Sarasa; Daymi Camejo; Miquel Ribas-Carbó; Juan J. Lázaro; Francisca Sevilla; Ana Jiménez; Response of mitochondrial thioredoxin PsTrxo1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves. Journal of Experimental Botany 2011, 62, 3863-3874, 10.1093/jxb/err076.
  112. Teodoro Coba De La Peña; José J. Pueyo; Legumes in the reclamation of marginal soils, from cultivar and inoculant selection to transgenic approaches. Agronomy for Sustainable Development 2011, 32, 65-91, 10.1007/s13593-011-0024-2.
  113. Shin Okazaki; Takakazu Kaneko; Shusei Sato; Kazuhiko Saeki; Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proceedings of the National Academy of Sciences 2013, 110, 17131-17136, 10.1073/pnas.1302360110.
  114. Benjamin Gourion; Fathi Berrabah; Pascal Ratet; Gary Stacey; Rhizobium–legume symbioses: the crucial role of plant immunity. Trends in Plant Science 2015, 20, 186-194, 10.1016/j.tplants.2014.11.008.
  115. Catherine Masson-Boivin; Joel L Sachs; Symbiotic nitrogen fixation by rhizobia — the roots of a success story. Current Opinion in Plant Biology 2018, 44, 7-15, 10.1016/j.pbi.2017.12.001.
  116. Teodoro Coba De La Peña; Elena Fedorova; José J. Pueyo; M. Mercedes Lucas; The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle?. Frontiers in Plant Science 2018, 8, 2229, 10.3389/fpls.2017.02229.
  117. S. Tajima; H. Kouchi; Metabolism and Compartmentation of Carbon and Nitrogen in Legume Nodules. Plant-microbe Interactions 2 1997, 29, 27-60, 10.1007/978-1-4615-6053-1_2.
  118. Ailin Liu; Carolina A. Contador; Kejing Fan; Hon-Ming Lam; Interaction and Regulation of Carbon, Nitrogen, and Phosphorus Metabolisms in Root Nodules of Legumes. Frontiers in Plant Science 2018, 9, 1860, 10.3389/fpls.2018.01860.
  119. Emma Lodwig; Arthur Hosie; A. Bourdes; K. Findlay; David Allaway; R. Karunakaran; J A Downie; Philip S. Poole; Amino-acid cycling drives nitrogen fixation in the legume–Rhizobium symbiosis. Nature 2003, 422, 722-726, 10.1038/nature01527.
  120. Rao, T.P.; Ito, O. Differences in root system morphology and root respiration in relation to nitrogen uptake among six crop species. Jpn. Agric. Res. Q. 1998, 32, 97–104.
  121. Schulze, J.; Beschow, H.; Adgo, E.; Merbach, W. Efficiency of N2 fixation in Vicia faba L. in combination with different Rhizobium leguminosarum strains. J. Plant Nutr. Soil Sci. 2000, 163, 367–373.
  122. Mortimer, P.E.; Pérez-Fernández, M.A.; Valentine, A.J. The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. S. Biol. Biochem. 2008, 40, 1019–1027.
  123. Wang, Y.Y.; Hsu, P.K.; Tsay, Y.F. Uptake, allocation and signaling of nitrate. Trends Plant Sci. 2012, 17, 458–467.
  124. Udvardi, M.; Poole, P.S. Transport and metabolism in legume-rhizobia symbioses. Annu. Rev. Plant Biol. 2013, 64, 781–805.
  125. Downie, J.A. Legume nodulation. Curr. Biol. 2014, 24, 184–190.
  126. Winkler, R.D.; Blevins, D.G.; Polacco, J.C.; Randall, D.D; Ureide catabolism in soybeans. II. Pathway of catabolism in intact leaf tissue. Plant Physiol. 1987, 83, 585–591.
  127. Sprent, J.I. Legume Nodulation: A Global Perspective; Wiley-Blackwell: Oxford, UK, 2009; pp. 1–183.
  128. Adriano Nunes-Nesi; Alisdair R. Fernie; Mark Stitt; Metabolic and Signaling Aspects Underpinning the Regulation of Plant Carbon Nitrogen Interactions. Molecular Plant 2010, 3, 973-996, 10.1093/mp/ssq049.
  129. Kathleen Marchal; J. Vanderleyden; The "oxygen paradox" of dinitrogen-fixing bacteria. Biology and Fertility of Soils 2000, 30, 363-373, 10.1007/s003740050017.
  130. Felix D. Dakora; Craig A. Atkins; Adaptation of Nodulated Soybean (Glycine max L. Merr.) to Growth in Rhizospheres Containing Nonambient pO2. Plant Physiology 1991, 96, 728-736, 10.1104/pp.96.3.728.
  131. Sm Brown; Kb Walsh; Anatomy of the Legume Nodule Cortex With Respect to Nodule Permeability. Functional Plant Biology 1994, 21, 49-68, 10.1071/pp9940049.
  132. A. J. Gordon; F. R. Minchin; Leif Skot; C. L. James; Stress-Induced Declines in Soybean N2 Fixation Are Related to Nodule Sucrose Synthase Activity. Plant Physiology 1997, 114, 937-946, 10.1104/pp.114.3.937.
  133. Becana, M.; Navascués, J.; Pérez-Rontomé, C.; Walker, F.A.; Desbois, A.; Abian, J. Leghemoglobins with nitrated hemes in legume root nodules. In Biological Nitrogen Fixation; Bruijn, F.J., Ed.; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2015; pp. 705–713.
  134. Manuel A Matamoros; Nieves Fernández-García; Stefanie Wienkoop; Jorge Loscos; Ana Saiz; Manuel Becana; Mitochondria are an early target of oxidative modifications in senescing legume nodules. New Phytologist 2013, 197, 873-885, 10.1111/nph.12049.
  135. A. Harvey Millar; Patrick Finnegan; James Whelan; J. J. Drevon; David A. Day; Expression and kinetics of the mitochondrial alternative oxidase in nitrogen-fixing nodules of soybean roots. Plant, Cell & Environment 1997, 20, 1273-1282, 10.1046/j.1365-3040.1997.d01-25.x.
  136. James H. Bryce; David A. Day; Tricarboxylic Acid Cycle Activity in Mitochondria from Soybean Nodules and Cotyledons. Journal of Experimental Botany 1990, 41, 961-967, 10.1093/jxb/41.8.961.
  137. David A. Day; G. Dean Price; P. M. Gresshoff; Isolation and oxidative properties of mitochondria and bacteroids from soybean root nodules. Protoplasma 1986, 134, 121-129, 10.1007/bf01275710.
  138. Wai Yan Cheah; Pau Loke Show; Jo-Shu Chang; Tau Chuan Ling; Joon Ching Juan; Biosequestration of atmospheric CO 2 and flue gas-containing CO 2 by microalgae. Bioresource Technology 2015, 184, 190-201, 10.1016/j.biortech.2014.11.026.
  139. F. J. Bergersen; G. L. Turner; Leghaemoglobin and the Supply of O2 to Nitrogen-fixing Root Nodule Bacteroids: Presence of Two Oxidase Systems and ATP Production at Low Free O2 Concentration. Journal of General Microbiology 1975, 91, 345-354, 10.1099/00221287-91-2-345.
  140. F. J. Bergersen; G. L. Turner; Properties of Terminal Oxidase Systems of Bacteroids from Root Nodules of Soybean and Cowpea and of N2-fixing Bacteria Grown in Continuous Culture. Microbiology 1980, 118, 235-252, 10.1099/00221287-118-1-235.
  141. A. Harvey Millar; David A. Day; F. J. Bergersen; Microaerobic respiration and oxidative phosphorylation by soybean nodule mitochondria: implications for nitrogen fixation. Plant, Cell & Environment 1995, 18, 715-726, 10.1111/j.1365-3040.1995.tb00574.x.
  142. Ries Visser; Hans Lambers; Growth and the efficiency of root respiration of Pisum sativum as dependent on the source of nitrogen. Physiologia Plantarum 1983, 58, 533-543, 10.1111/j.1399-3054.1983.tb05739.x.
  143. O Preisig; R Zufferey; L Thöny-Meyer; C A Appleby; H Hennecke; A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. Journal of Bacteriology 1996, 178, 1532-1538, 10.1128/jb.178.6.1532-1538.1996.
  144. Miguel López-Gómez; Jose Antonio Herrera Cervera; Carmen Iribarne; Noel A. Tejera; Carmen Lluch; Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: Nodule carbon metabolism. Journal of Plant Physiology 2008, 165, 641-650, 10.1016/j.jplph.2007.05.009.
  145. Xiurong Wang; Jianbo Shen; Hong Liao; Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops?. Plant Science 2010, 179, 302-306, 10.1016/j.plantsci.2010.06.007.
  146. L. Qin; Jing Zhao; Jiang Tian; Liyu Chen; Zhaoan Sun; Yongxiang Guo; Xing Lu; Mian Gu; Guohua Xu; Hong Liao; et al. The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiology 2012, 159, 1634-1643, 10.1104/pp.112.199786.
  147. Georgina Hernández; Oswaldo Valdés‐López; Mario Ramírez; Nicolas Goffard; Georg Weiller; Rosaura Aparicio-Fabre; Sara Isabel Fuentes; Alexander Erban; Joachim Kopka; Michael K. Udvardi; et al.Carroll P. Vance Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. Plant Physiology 2009, 151, 1221-1238, 10.1104/pp.109.143842.
More
ScholarVision Creations