Candida and Candidiasis—Opportunism Versus Pathogenicity: Comparison
Please note this is a comparison between Version 2 by Rita Xu and Version 1 by Adrian Man.

One of the most important questions in microbiology nowadays is how apparently harmless, commensal yeasts such as

Candida

spp. can cause a rising number of infections. The occurrence of the disease requires firstly the attachment to the host cells, followed by the invasion of the tissue. The adaptability translates into a rapid ability to respond to stress factors, to take up nutrients or to multiply under different conditions. By forming complex intracellular networks such as biofilms,

Candida

spp. become not only more refractive to antifungal therapies but also more prone to cause disease. The inter-microbial interactions can enhance the virulence of a strain.

In vivo

, the fungal cells face a multitude of challenges and, as a result, they develop complex strategies serving one ultimate goal: survival. This review presents the virulence factors of the most important

Candida

spp., contributing to a better understanding of the onset of candidiasis and raising awareness of the highly complex interspecies interactions that can change the outcome of the disease.

  • Candida
  • pathogenicity
  • adaptability
Please wait, diff process is still running!

References

  1. Méthot, P.-O.; Alizon, S; What is a pathogen? Toward a process view of host-parasite interactions. Virulence 2014, 5, 775–785.
  2. Michail S. Lionakis; Mihai G. Netea; Candida and Host Determinants of Susceptibility to Invasive Candidiasis. PLOS Pathogens 2013, 9, e1003079, 10.1371/journal.ppat.1003079.
  3. Sarah Höfs; Selene Mogavero; Bernhard Hube; Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota. The Journal of Microbiology 2016, 54, 149-169, 10.1007/s12275-016-5514-0.
  4. David Moyes; Jonathan P. Richardson; Julian R. Naglik; Candida albicans-epithelial interactions and pathogenicity mechanisms: scratching the surface. Virulence 2015, 6, 338-346, 10.1080/21505594.2015.1012981.
  5. Frédéric Dalle; Betty Wã¤Chtler; Coralie L'ollivier; Gudrun Holland; Norbert Bannert; Duncan Wilson; Catherine Labruã¨re; Alain Bonnin; Bernhard Hube; Cellular interactions ofCandida albicanswith human oral epithelial cells and enterocytes. Cellular Microbiology 2010, 12, 248-271, 10.1111/j.1462-5822.2009.01394.x.
  6. François L. Mayer; Duncan Wilson; Bernhard Hube; Candida albicans pathogenicity mechanisms. Virulence 2013, 4, 119-128, 10.4161/viru.22913.
  7. Fang Li; Michael J. Svarovsky; Amy J. Karlsson; Joel P. Wagner; Karen Marchillo; Philip Oshel; David Andes; Sean P. Palecek; Eap1p, an Adhesin That Mediates Candida albicans Biofilm Formation In Vitro and In Vivo. Eukaryotic Cell 2007, 6, 931-939, 10.1128/ec.00049-07.
  8. Hashash, R.; Younes, S.; Bahnan, W.; Koussa, J.E.; Maalouf, K.; Dimassi, H.I.; Khalaf, R.A; Characterisation of Pga1, a putative Candida albicans cell wall protein necessary for proper adhesion and biofilm formation. Mycoses 2011, 54, 491–500.
  9. Butler, G.; Rasmussen, M.D.; Lin, M.F.; Santos, M.A.S.; Sakthikumar, S.; Munro, C.A.; Rheinbay, E.; Grabherr, M.; Forche, A.; Reedy, J.L.; et al.et al Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 2009, 459, 657-662, 10.1038/nature08064.
  10. Lois L. Hoyer; Ernesto Cota; Candida albicans Agglutinin-Like Sequence (Als) Family Vignettes: A Review of Als Protein Structure and Function. Frontiers in Microbiology 2016, 7, 280, 10.3389/fmicb.2016.00280.
  11. Quynh T Phan; Carter L Myers; Yue Fu; Donald C Sheppard; Michael R Yeaman; William H Welch; Ashraf S Ibrahim; John E Edwards; Scott G. Filler; Als3 Is a Candida albicans Invasin That Binds to Cadherins and Induces Endocytosis by Host Cells. PLOS Biology 2007, 5, e64, 10.1371/journal.pbio.0050064.
  12. Renee Domergue; Irene Castano; Alejandro De Las Peñas; Margaret Zupancic; Virginia Lockatell; J. Richard Hebel; David Johnson; Brendan Cormack; Nicotinic Acid Limitation Regulates Silencing of Candida Adhesins During UTI. Science 2005, 308, 866-870, 10.1126/science.1108640.
  13. Silva, S.; Negri, M.; Henriques, M.; Oliveira, R.; Williams, D.W.; Azeredo, J; Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol. 2011, 19, 241–247.
  14. Andrew P. Jackson; John A. Gamble; Tim Yeomans; Gary P. Moran; David Saunders; David Harris; Martin Aslett; Jamie F. Barrell; Geraldine Butler; Francesco Citiulo; et al.David C. ColemanPiet De GrootTim J. GoodwinMichael A. QuailJacqueline McQuillanCarol MunroArnab PainRussell T. M. PoulterMarie-Adèle RajandreamHubert RenauldMartin J. SpieringAdrian TiveyNeil GowBarclay BarrellDerek SullivanMatthew Berriman Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genes & Development 2009, 19, 2231-2244, 10.1101/gr.097501.109.
  15. Attila Gácser; Wilhelm Schäfer; Jerome S. Nosanchuk; Siegfried Salomon; Joshua D. Nosanchuk; Virulence of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis in reconstituted human tissue models. Fungal Genetics and Biology 2007, 44, 1336-1341, 10.1016/j.fgb.2007.02.002.
  16. Martin Schaller; Claudia Borelli; Hans C. Korting; Bernhard Hube; Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 2005, 48, 365-377, 10.1111/j.1439-0507.2005.01165.x.
  17. Iva Pichová; Libuše Pavlíčková; Jiří Dostál; Elena Dolejší; Olga Hrušková-Heidingsfeldová; Jan Weber; Tomáš Ruml; Milan Souček; Secreted aspartic proteases of Candida albicans, Candida tropicalis, Candida parapsilosis and Candida lusitaniae. JBIC Journal of Biological Inorganic Chemistry 2001, 268, 2669-2677, 10.1046/j.1432-1327.2001.02152.x.
  18. Dhirendra Kumar Singh; Tibor Németh; Alexandra Papp; Renáta Tóth; Szilvia Lukácsi; Olga Heidingsfeld; Jiri Dostal; Csaba Vágvölgyi; Zsuzsa Bajtay; Mihály Józsi; et al.Attila Gacser Functional Characterization of Secreted Aspartyl Proteases in Candida parapsilosis. mSphere 2019, 4, e00484-19, 10.1128/msphere.00484-19.
  19. Josidel Conceição Oliver; Carla Benedini Ribeiro Jorge Ferreira; Naiara Chaves Silva; Amanda Latercia Tranches Dias; Candida spp. and phagocytosis: multiple evasion mechanisms. Antonie van Leeuwenhoek 2019, 112, 1409-1423, 10.1007/s10482-019-01271-x.
  20. Vinitha Mohandas; Mamatha Ballal; Distribution of Candida Species in Different Clinical Samples and Their Virulence: Biofilm Formation, Proteinase and Phospholipase Production: A Study on Hospitalized Patients in Southern India. Journal of Global Infectious Diseases 2011, 3, 4-8, 10.4103/0974-777X.77288.
  21. Anja Forche; Gareth Cromie; Aleeza C. Gerstein; Norma V. Solis; Tippapha Pisithkul; Waracharee Srifa; Eric Jeffery; Darren Abbey; Scott G. Filler; Aimeé M. Dudley; et al.Judith Berman Rapid Phenotypic and Genotypic Diversification After Exposure to the Oral Host Niche in Candida albicans. Genetics 2018, 209, 725-741, 10.1534/genetics.118.301019.
  22. Joshua M. Wang; Richard J. Bennett; Matthew Z. Anderson; The Genome of the Human Pathogen Candida albicans is Shaped by Mutation and Cryptic Sexual Recombination. mBio 2018, 9, 310201, 10.1101/310201.
  23. Robert T. Todd; Tyler D Wikoff; Anja Forche; Anna Selmecki; Genome plasticity in Candida albicans is driven by long repeat sequences. eLife 2019, 8, e45954, 10.7554/eLife.45954.
  24. Siobhán A. Turner; Geraldine Butler; The Candida Pathogenic Species Complex. Cold Spring Harbor Perspectives in Medicine 2014, 4, a019778-a019778, 10.1101/cshperspect.a019778.
  25. Ensembl Fungi. Available online: https://fungi.ensembl.org/index.html (accessed on 24 May 2020).
  26. Cuomo, C.A.; Shea, T.; Yang, B.; Rao, R.; Forche, A; Evolution of pathogenicity and sexual reproduction in eight Candida genomesWhole genome sequence of the heterozygous clinical isolate Candida krusei 81-B-5. G3 Genesgenomesgenetics 2017, 7, 2883–2889, 10.1038/nature08064.
  27. Carreté, L.; Ksiezopolska, E.; Gómez-Molero, E.; Angoulvant, A.; Bader, O.; Fairhead, C.; Gabaldón, T; Evolution of pathogenicity and sexual reproduction in eight Candida genomesGenome comparisons of Candida glabrata serial clinical isolates reveal patterns of genetic variation in infecting clonal populations. Front. Microbiol. 2019, 10, -.
  28. Chen, Y.-N.; Lo, H.-J.; Wu, C.-C.; Ko, H.-C.; Chang, T.-P.; Yang, Y.-L; Loss of Heterozygosity of FCY2 leading to the development of flucytosine resistance in Candida tropicalis. Antimicrob. Agents Chemother. 2011, 55, 2506–2514.
  29. Carreté, L.; Ksiezopolska, E.; Pegueroles, C.; Gómez-Molero, E.; Saus, E.; Iraola-Guzmán, S.; Loska, D.; Bader, O.; Fairhead, C.; Gabaldón, T; et al. Patterns of genomic variation in the opportunistic pathogen Candida glabrata suggest the existence of mating and a secondary association with human. Curr. Biol. 2018, 28, 15–27.
  30. Hiroji Chibana; Paul T Magee; The enigma of the major repeat sequence ofCandida albicans. Future Microbiology 2009, 4, 171-179, 10.2217/17460913.4.2.171.
  31. Claudine Bleykasten-Grosshans; Cécile Neuvéglise; Transposable elements in yeasts. Comptes Rendus. Biologies 2011, 334, 679-686, 10.1016/j.crvi.2011.05.017.
  32. Alexander P. Douglass; Benjamin Offei; Stephanie Braun-Galleani; Aisling Y. Coughlan; Alexandre Martos; Raúl A. Ortiz‐Merino; Kevin Byrne; Kenneth H. Wolfe; Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: One species, four names. PLOS Pathogens 2018, 14, e1007138, 10.1371/journal.ppat.1007138.
  33. Derek Sullivan; Gary P. Moran; David C. Coleman; Candida dubliniensis: Ten years on. FEMS Microbiology Letters 2005, 253, 9-17, 10.1016/j.femsle.2005.09.015.
  34. Asiya Gusa; Sue Jinks-Robertson; Mitotic Recombination and Adaptive Genomic Changes in Human Pathogenic Fungi. Genes 2019, 10, 901, 10.3390/genes10110901.
  35. C. M. Hull; Evidence for Mating of the "Asexual" Yeast Candida albicans in a Mammalian Host. Science 2000, 289, 307-310, 10.1126/science.289.5477.307.
  36. Meleah A. Hickman; Guisheng Zeng; Anja Forche; Matthew Hirakawa; Darren Abbey; Benjamin D. Harrison; Yan-Ming Wang; Ching-Hua Su; Richard J. Bennett; Yue Wang; et al.Judith Berman The ‘obligate diploid’ Candida albicans forms mating-competent haploids. Nature 2013, 494, 55-59, 10.1038/nature11865.
  37. Shen-Huan Liang; Richard J. Bennett; The Impact of Gene Dosage and Heterozygosity on the Diploid Pathobiont Candida albicans. Journal of Fungi 2020, 6, 10, 10.3390/jof6010010.
  38. Kelly Bouchonville; Anja Forche; Karen E. S. Tang; Anna Selmecki; Judith Berman; Aneuploid Chromosomes Are Highly Unstable during DNA Transformation of Candida albicans. Eukaryotic Cell 2009, 8, 1554-1566, 10.1128/ec.00209-09.
  39. Emily M. Mallick; Audrey C. Bergeron; Stephen K Jones; Zachary R. Newman; Kimberly M. Brothers; Robbert Creton; Robert T. Wheeler; Richard J. Bennett; Phenotypic Plasticity Regulates Candida albicans Interactions and Virulence in the Vertebrate Host. Frontiers in Microbiology 2016, 7, 780, 10.3389/fmicb.2016.00780.
  40. Matt Wilkins; Ningxin Zhang; Jan Schmid; Biological Roles of Protein-Coding Tandem Repeats in the Yeast Candida Albicans. Journal of Fungi 2018, 4, 78, 10.3390/jof4030078.
  41. Burkhard R. Braun; Marco Van Het Hoog; Christophe D’Enfert; Mikhail Martchenko; Jan Dungan; Alan Kuo; Diane Inglis; M. Andrew Uhl; Hervé Hogues; Matthew Berriman; et al.Michael LorenzAnastasia LevitinUrsula OberholzerCatherine BachewichDoreen HarcusAnne MarcilDaniel DignardTatiana IoukRosa ZitoLionel FrangeulFredj TekaiaKim RutherfordEdwin WangCarol MunroSteven BatesNeil GowLois L. HoyerGerwald KöhlerJoachim MorschhäuserGeorge NewportSadri ZnaidiMartine RaymondBernard TurcotteGavin SherlockMaria CostanzoJan IhmelsJudith BermanD. SanglardNina AgabianA P MitchellAlexander D. JohnsonMalcolm WhitewayAndre Nantel A Human-Curated Annotation of the Candida albicans Genome. PLOS Genetics 2005, 1, e1, 10.1371/journal.pgen.0010001.
  42. Leszek Potocki; Ewelina Kuna; Kamila Filip; Beata Kasprzyk; Anna Lewinska; Maciej Wnuk; Activation of transposable elements and genetic instability during long-term culture of the human fungal pathogen Candida albicans. Biogerontology 2019, 20, 457-474, 10.1007/s10522-019-09809-2.
  43. Neil Gow; Alistair J.P. Brown; Frank C Odds; Fungal morphogenesis and host invasion. Current Opinion in Microbiology 2002, 5, 366-371, 10.1016/s1369-5274(02)00338-7.
  44. Tang, S.X.; Moyes, D.L.; Richardson, J.P.; Blagojevic, M.; Naglik, J.R; Epithelial discrimination of commensal and pathogenic Candida albicans. Oral Dis. 2016, 22, 114–119.
  45. David Trofa; Attila Gácser; Joshua D. Nosanchuk; Candida parapsilosis, an Emerging Fungal Pathogen. Clinical Microbiology Reviews 2008, 21, 606-625, 10.1128/cmr.00013-08.
  46. C. G. J. McKenzie; U. Koser; L. E. Lewis; J. M. Bain; Héctor M. Mora-Montes; R. N. Barker; Neil Gow; Lars-Peter Erwig; Contribution of Candida albicans Cell Wall Components to Recognition by and Escape from Murine Macrophages. Infection and Immunity 2010, 78, 1650-1658, 10.1128/iai.00001-10.
  47. Padmashree C.G. Rida; Akiko Nishikawa; Gena Y. Won; Neta Dean; Yeast-to-Hyphal Transition Triggers Formin-dependent Golgi Localization to the Growing Tip inCandida albicans. Molecular Biology of the Cell 2006, 17, 4364-4378, 10.1091/mbc.e06-02-0143.
  48. Lois M. Douglas; James B. Konopka; Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans. The Journal of Microbiology 2016, 54, 178-191, 10.1007/s12275-016-5621-y.
  49. Jamie A. Greig; Ian Sudbery; Jonathan P. Richardson; Julian R. Naglik; Yue Wang; Peter E. Sudbery; Cell Cycle-Independent Phospho-Regulation of Fkh2 during Hyphal Growth Regulates Candida albicans Pathogenesis. PLOS Pathogens 2015, 11, e1004630, 10.1371/journal.ppat.1004630.
  50. Xiaojiang Tan; Beth Burgwyn Fuchs; Yan Wang; Weiping Chen; Grace J. Yuen; Rosalyn B. Chen; Elamparithi Jayamani; Cleo Anastassopoulou; Read Pukkila-Worley; Jeffrey J. Coleman; et al.Eleftherios Mylonakis The Role of Candida albicans SPT20 in Filamentation, Biofilm Formation and Pathogenesis. PLOS ONE 2014, 9, e94468, 10.1371/journal.pone.0094468.
  51. Ken Haynes; Virulence in Candida species. Trends in Microbiology 2001, 9, 591-596, 10.1016/s0966-842x(01)02237-5.
  52. Jonathan P. Richardson; Selene Mogavero; David Moyes; Mariana Blagojevic; Thomas Krüger; Akash Verma; Bianca M. Coleman; Jacinto De La Cruz Diaz; Daniela Schulz; Nicole O. Ponde; et al.Giulia CarranoOlaf KniemeyerDuncan WilsonOliver BaderSimona I. EnoiuJemima HoNessim KichikSarah L. GaffenBernhard HubeJulian R. Naglik Processing of Candida albicans Ece1p Is Critical for Candidalysin Maturation and Fungal Virulence. mBio 2018, 9, e02178-17, 10.1128/mbio.02178-17.
  53. Julian R. Naglik; Sarah L Gaffen; Bernhard Hube; Candidalysin: discovery and function in Candida albicans infections. Current Opinion in Microbiology 2019, 52, 100-109, 10.1016/j.mib.2019.06.002.
  54. Thomas Doedt; Shankarling Krishnamurthy; Dirk P. Bockmühl; Bernd Tebarth; Christian Stempel; Claire L. Russell; Alistair J.P. Brown; Joachim F. Ernst; APSES Proteins Regulate Morphogenesis and Metabolism inCandida albicans. Molecular Biology of the Cell 2004, 15, 3167-3180, 10.1091/mbc.e03-11-0782.
  55. Peter Staib; Joachim Morschhäuser; Chlamydospore formation in Candida albicans and Candida dubliniensis? an enigmatic developmental programme. Mycoses 2007, 50, 1-12, 10.1111/j.1439-0507.2006.01308.x.
  56. Anja Sonneborn; Dirk P. Bockmühl; Joachim F. Ernst; Chlamydospore Formation in Candida albicans Requires the Efg1p Morphogenetic Regulator. Infection and Immunity 1999, 67, 5514-5517.
  57. Sónia Silva; Melyssa Negri; Mariana Henriques; Rosario Oliveira; David W. Williams; Joana Azeredo; Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiology Reviews 2012, 36, 288-305, 10.1111/j.1574-6976.2011.00278.x.
  58. Swetha Tati; Peter Davidow; Andrew McCall; Elizabeth Hwang-Wong; Isolde G. Rojas; Brendan Cormack; Mira Edgerton; Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis. PLOS Pathogens 2016, 12, e1005522, 10.1371/journal.ppat.1005522.
  59. Huizhen Yue; Jian Bing; Qiushi Zheng; Yulong Zhang; Tianren Hu; Han Du; Hui Wang; Guanghua Huang; Filamentation in Candida auris, an emerging fungal pathogen of humans: passage through the mammalian body induces a heritable phenotypic switch. Emerging Microbes & Infections 2018, 7, 1-13, 10.1038/s41426-018-0187-x.
  60. George F. Sprague; Stephen C. Winans; Eukaryotes learn how to count: quorum sensing by yeast. Genes & Development 2006, 20, 1045-1049, 10.1101/gad.1432906.
  61. Ágnes Jakab; Zoltán Tóth; Fruzsina Nagy; Dániel Nemes; Ildikó Bácskay; Gábor Kardos; Tamás Emri; István Pócsi; László Majoros; Renátó Kovács; et al. Physiological and Transcriptional Responses of Candida parapsilosis to Exogenous Tyrosol. Applied and Environmental Microbiology 2019, 85, -, 10.1128/AEM.01388-19.
  62. Hao Chen; Masaki Fujita; Qinghua Feng; Jon Clardy; Gerald Fink; Tyrosol is a quorum-sensing molecule in Candida albicans. Proceedings of the National Academy of Sciences 2004, 101, 5048-5052, 10.1073/pnas.0401416101.
  63. Christine Scaduto; Shail Kabrawala; Gregory J. Thomson; William Scheving; Andy Ly; Matthew Z. Anderson; Malcolm Whiteway; Richard J. Bennett; Epigenetic control of pheromone MAPK signaling determines sexual fecundity in Candida albicans. Proceedings of the National Academy of Sciences 2017, 114, 13780-13785, 10.1073/pnas.1711141115.
  64. Veronica B. Craik; Alexander D. Johnson; Matthew Lohse; Sensitivity of White and Opaque Candida albicans Cells to Antifungal Drugs. Antimicrobial Agents and Chemotherapy 2017, 61, e00166-17, 10.1128/aac.00166-17.
  65. Yuan Sun; Chengjun Cao; Wei Jia; Li Tao; Guobo Guan; Guanghua Huang; pH Regulates White-Opaque Switching and Sexual Mating in Candida albicans. Eukaryotic Cell 2015, 14, 1127-1134, 10.1128/ec.00123-15.
  66. David R. Soll; Why doesCandida albicans switch?. FEMS Yeast Research 2009, 9, 973-989, 10.1111/j.1567-1364.2009.00562.x.
  67. Susan Lindquist; Heat-shock proteins and stress tolerance in microorganisms. Curr. Opin. Genet. Dev. 1992, 2, 748–755, 10.1016/0960-9822(92)90156-5.
  68. Nicole Robbins; Priya Uppuluri; Jeniel Nett; Ranjith Rajendran; Gordon Ramage; Jose L. Lopez-Ribot; David Andes; Leah E. Cowen; Hsp90 Governs Dispersion and Drug Resistance of Fungal Biofilms. PLOS Pathogens 2011, 7, e1002257, 10.1371/journal.ppat.1002257.
  69. Rebecca S. Shapiro; Priya Uppuluri; Aimee K. Zaas; Cathy Collins; Heather Senn; John R. Perfect; Joseph Heitman; Leah E. Cowen; Hsp90 Orchestrates Temperature-Dependent Candida albicans Morphogenesis via Ras1-PKA Signaling. Current Biology 2009, 19, 621-629, 10.1016/j.cub.2009.03.017.
  70. Guadalupe Gutiérrez-Escobedo; Oscar Hernández-Carreón; Brenda Morales-Rojano; Brenda Revuelta-Rodríguez; Norma Vázquez-Franco; Irene Castaño; Alejandro De Las Peñas; Candida glabrata peroxiredoxins, Tsa1 and Tsa2, and sulfiredoxin, Srx1, protect against oxidative damage and are necessary for virulence. Fungal Genetics and Biology 2020, 135, 103287, 10.1016/j.fgb.2019.103287.
  71. Ingrid E. Frohner; Christelle Bourgeois; Kristina Yatsyk; Olivia Majer; Karl Kuchler; Candida albicanscell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Molecular Microbiology 2009, 71, 240-252, 10.1111/j.1365-2958.2008.06528.x.
  72. Eleonora R. Setiadi; Thomas Doedt; Fabien Cottier; Christine Noffz; Joachim F. Ernst; Transcriptional Response of Candida albicans to Hypoxia: Linkage of Oxygen Sensing and Efg1p-regulatory Networks. Journal of Molecular Biology 2006, 361, 399-411, 10.1016/j.jmb.2006.06.040.
  73. Slavena Vylkova; Michael C. Lorenz; Phagosomal Neutralization by the Fungal Pathogen Candida albicans Induces Macrophage Pyroptosis. Infection and Immunity 2017, 85, e00832-16, 10.1128/iai.00832-16.
  74. Ting-Li Han; Richard D. Cannon; Silas G. Villas-Bôas; The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genetics and Biology 2011, 48, 747-763, 10.1016/j.fgb.2011.04.002.
  75. Jinjiang Fan; Vishnu Chaturvedi; Shi-Hsiang Shen; Identification and Phylogenetic Analysis of a Glucose Transporter Gene Family from the Human Pathogenic Yeast Candida albicans. Journal of Molecular Evolution 2002, 55, 336-346, 10.1007/s00239-002-2330-4.
  76. Alexandra Rodaki; Iryna M. Bohovych; Brice Enjalbert; Tim Young; Frank C. Odds; Neil Gow; Alistair J.P. Brown; Glucose Promotes Stress Resistance in the Fungal PathogenCandida albicans. Molecular Biology of the Cell 2009, 20, 4845-4855, 10.1091/mbc.e09-01-0002.
  77. Adrian Man; Cristina Nicoleta Ciurea; Dan Pasaroiu; Ana-Ioana Savin; Felicia Toma; Floredana Sular; Luigi Santacroce; Anca Mare; New perspectives on the nutritional factors influencing growth rate of Candida albicans in diabetics. An in vitro study. Memórias do Instituto Oswaldo Cruz 2017, 112, 587-592, 10.1590/0074-02760170098.
  78. Elizabeth R. Ballou; Duncan Wilson; The roles of zinc and copper sensing in fungal pathogenesis. Current Opinion in Microbiology 2016, 32, 128-134, 10.1016/j.mib.2016.05.013.
  79. Fanning, S.; Mitchell, A.P; Fungal biofilms. PLoS Pathog. 2012, 8, e1002585.
  80. Jonathan S. Finkel; A P Mitchell; Genetic control of Candida albicans biofilm development. Nature Reviews Microbiology 2011, 9, 109-118, 10.1038/nrmicro2475.
  81. Z. M. Thein; C. J. Seneviratne; Y. H. Samaranayake; L. P. Samaranayake; Community lifestyle ofCandidain mixed biofilms: a mini review. Mycoses 2009, 52, 467-475, 10.1111/j.1439-0507.2009.01719.x.
  82. Ramage, G.; Rajendran, R.; Sherry, L.; Williams, C; Fungal biofilm resistance. Int. J. Microbiol. 2012, 2012, e528521.
  83. Josselyn E. Garcia-Perez; Lotte Mathé; Stéphanie Humblet-Baron; Annabel Braem; Katrien Lagrou; Patrick Van Dijck; Adrian Liston; A Framework for Understanding the Evasion of Host Immunity by Candida Biofilms. Frontiers in Immunology 2018, 9, -, 10.3389/fimmu.2018.00538.
  84. Jeniel E. Nett; Hiram Sanchez; Michael T. Cain; Kelly M. Ross; David R. Andes; Interface of Candida albicans Biofilm Matrix-Associated Drug Resistance and Cell Wall Integrity Regulation. Eukaryotic Cell 2011, 10, 1660-1669, 10.1128/ec.05126-11.
  85. Y. Ning; X. Hu; J. Ling; Y. Du; J. Liu; H. Liu; Z. Peng; Candida albicanssurvival and biofilm formation under starvation conditions. International Endodontic Journal 2013, 46, 62-70, 10.1111/j.1365-2591.2012.02094.x.
  86. Wimpenny, J.; Manz, W.; Szewzyk, U; Heterogeneity in biofilms. Fems Microbiol. Rev. 2000, 24, 661–671.
  87. Jeniel E. Nett; Robert Zarnowski; Jonathan Cabezas-Olcoz; Erin G. Brooks; Jörg Bernhardt; Karen Marchillo; Deane F. Mosher; David R. Andes; Host Contributions to Construction of Three Device-Associated Candida albicans Biofilms. Infection and Immunity 2015, 83, 4630-4638, 10.1128/iai.00931-15.
  88. Jyotsna Chandra; Duncan M. Kuhn; Pranab K. Mukherjee; Lois L. Hoyer; Thomas S. McCormick; Mahmoud A. Ghannoum; Biofilm Formation by the Fungal PathogenCandida albicans: Development, Architecture, and Drug Resistance. Journal of Bacteriology 2001, 183, 5385-5394, 10.1128/jb.183.18.5385-5394.2001.
  89. Daniela Araújo; Mariana Henriques; Sónia Silva; Portrait of Candida Species Biofilm Regulatory Network Genes. Trends in Microbiology 2017, 25, 62-75, 10.1016/j.tim.2016.09.004.
  90. Hyunsook Park; Carter L. Myers; Donald C. Sheppard; Quynh T. Phan; Angela A. Sanchez; John E. Edwards; Scott G. Filler; Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cellular Microbiology 2005, 7, 499-510, 10.1111/j.1462-5822.2004.00476.x.
  91. Carrie Graham; Melissa R. Cruz; Danielle A. Garsin; Michael C. Lorenz; Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proceedings of the National Academy of Sciences 2017, 114, 4507-4512, 10.1073/pnas.1620432114.
  92. Alexandra C. Brand; Julia D. Barnes; Kevin S. MacKenzie; Frank C. Odds; Neil Gow; Cell wall glycans and soluble factors determine the interactions between the hyphae ofCandida albicansandPseudomonas aeruginosa. FEMS Microbiology Letters 2008, 287, 48-55, 10.1111/j.1574-6968.2008.01301.x.
  93. Patricia I. Diaz; Zhihong Xie; Takanori Sobue; Angela Thompson; Basak Biyikoglu; Austin Ricker; Laertis Ikonomou; Anna Dongari-Bagtzoglou; Synergistic Interaction between Candida albicans and Commensal Oral Streptococci in a NovelIn VitroMucosal Model. Infection and Immunity 2012, 80, 620-632, 10.1128/iai.05896-11.
  94. SungJae Jang; Kyeongju Lee; BoMi Kwon; Hyun Ju You; GwangPyo Ko; Vaginal lactobacilli inhibit growth and hyphae formation of Candida albicans. Scientific Reports 2019, 9, 8121, 10.1038/s41598-019-44579-4.
  95. Eric F. Kong; Christina Tsui; Sona Kucharíková; Patrick Van Dijck; Mary Ann Jabra-Rizk; Modulation of Staphylococcus aureus Response to Antimicrobials by the Candida albicans Quorum Sensing Molecule Farnesol. Antimicrobial Agents and Chemotherapy 2017, 61, e01573-17, 10.1128/aac.01573-17.
  96. Lisa Marie Schlecht; Brian M. Peters; Bastiaan P. Krom; Jeffrey A. Freiberg; Gertrud M. Hänsch; Scott G. Filler; Mary Ann Jabra-Rizk; Mark E. Shirtliff; Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology 2015, 161, 168-181, 10.1099/mic.0.083485-0.
  97. Olivia A. Todd; Mairi C. Noverr; Brian M. Peters; Candida albicans Impacts Staphylococcus aureus Alpha-Toxin Production via Extracellular Alkalinization. mSphere 2019, 4, -, 10.1128/msphere.00780-19.
  98. Pim T. Van Leeuwen; Jasper M. Van Der Peet; Floris Bikker; Michel A. Hoogenkamp; Ana Margarida Oliveira Paiva; Sarantos Kostidis; Oleg A. Mayboroda; Wiep Klaas Smits; Bastiaan P. Krom; Interspecies Interactions between Clostridium difficile and Candida albicans. mSphere 2016, 1, -, 10.1128/msphere.00187-16.
  99. Rodnei Dennis Rossoni; Júnia Oliveira Barbosa; Simone Furgeri Godinho Vilela; Jessica Diane Dos Santos; Patrícia Pimentel De Barros; Márcia Cristina De Azevedo Prata; Ana Lia Anbinder; Beth Burgwyn Fuchs; Antônio Olavo Cardoso Jorge; Eleftherios Mylonakis; et al.Juliana Campos Junqueira Competitive Interactions between C. albicans, C. glabrata and C. krusei during Biofilm Formation and Development of Experimental Candidiasis. PLOS ONE 2015, 10, e0131700, 10.1371/journal.pone.0131700.
  100. Priya Uppuluri; Ashok K. Chaturvedi; Anand Srinivasan; Mohua Banerjee; Anand K. Ramasubramaniam; Julia R. Köhler; David Kadosh; Jose L. Lopez-Ribot; Dispersion as an Important Step in the Candida albicans Biofilm Developmental Cycle. PLOS Pathogens 2010, 6, e1000828, 10.1371/journal.ppat.1000828.
  101. Alexander A. Goldberg; Simon D. Bourque; Pavlo Kyryakov; Christopher Gregg; Tatiana Boukh-Viner; Adam Beach; Michelle T. Burstein; Gayane Machkalyan; Vincent Richard; Sonia Rampersad; et al.David CyrSvetlana MilijevicVladimir I. Titorenko Effect of calorie restriction on the metabolic history of chronologically aging yeast. Experimental Gerontology 2009, 44, 555-571, 10.1016/j.exger.2009.06.001.
  102. Lin, S.-J.; Austriaco, N; Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans. FEMS Yeast Res. 2014, 14, 119–135.
  103. Xiao-Hong Fu; Fei-Long Meng; Yan Hu; Jin-Qiu Zhou; Candida albicans, a distinctive fungal model for cellular aging study. Aging Cell 2008, 7, 746-757, 10.1111/j.1474-9726.2008.00424.x.
  104. Andrew J. Phillips; Jonathan D. Crowe; Mark Ramsdale; Ras pathway signaling accelerates programmed cell death in the pathogenic fungus Candida albicans. Proceedings of the National Academy of Sciences 2006, 103, 726-731, 10.1073/pnas.0506405103.
  105. Eva Herker; Helmut Jungwirth; Katharina A. Lehmann; Corinna Maldener; Kai-Uwe Fröhlich; Silke Wissing; Sabrina Büttner; Markus Fehr; Stephan Sigrist; F Madeo; et al. Chronological aging leads to apoptosis in yeast. Journal of Cell Biology 2004, 164, 501-507, 10.1083/jcb.200310014.
  106. Thaís Guimarães; Marcio Nucci; João S. Mendonça; Roberto Martinez; Ligia R. Brito; Nivia Silva; Maria Luiza Moretti; Reinaldo Salomão; Arnaldo Lopes Colombo; Epidemiology and predictors of a poor outcome in elderly patients with candidemia. International Journal of Infectious Diseases 2012, 16, e442-e447, 10.1016/j.ijid.2012.02.005.
More
ScholarVision Creations