MP and MPc: Comparison
Please note this is a comparison between Version 2 by Conner Chen and Version 3 by Conner Chen.

Metalloporphyrins (MP) and metallophtalocyanines (MPc) are innovative materials with catalytic properties that have attracted attention for their application for diverse electrochemical purposes. The presence of metallic centers in their structure offers a redox-active behavior that is being applied in the design of solid electrodes for the quantification of biomolecules, water contaminants, and pharmaceuticals, among others.

  • porphyrin complexes
  • electro-catalysis
  • electrochemical sensors
Please wait, diff process is still running!

References

  1. Mashazi, P.N.; Nombona, N.; Muchindu, M.; Vilakazi, S. Metallophthalocyanines and Metalloporphyrins as Electrocatalysts: A Case of Hydrogen Peroxide and Glucose Detection. J. Porphyr. Phthalocyanines 2012, 16, 741–753.
  2. Pereira, M.M.; Dias, L.D.; Calvete, M.J.F. Metalloporphyrins: Bioinspired Oxidation Catalysts. ACS Catal. 2018, 8, 10784–10808.
  3. Yamazaki, S. Metalloporphyrins and Related Metallomacrocycles as Electrocatalysts for Use in Polymer Electrolyte Fuel Cells and Water Electrolyzers. Coord. Chem. Rev. 2018, 373, 148–166.
  4. Li, Q.; Bao, Y.; Bai, F. Porphyrin and Macrocycle Derivatives for Electrochemical Water Splitting. MRS Bull. 2020, 45, 569–573.
  5. Beyene, B.B.; Hung, C.-H. Recent Progress on Metalloporphyrin-Based Hydrogen Evolution Catalysis. Coord. Chem. Rev. 2020, 410, 213234.
  6. Sorokin, A.B. Phthalocyanine Metal Complexes in Catalysis. Chem. Rev. 2013, 113, 8152–8191.
  7. Hsine, Z.; Bizid, S.; Zahou, I.; Ben Haj Hassen, L.; Nasri, H.; Mlika, R. A Highly Sensitive Impedimetric Sensor Based on Iron (III) Porphyrin and Thermally Reduced Graphene Oxide for Detection of Bisphenol A. Synth. Met. 2018, 244, 27–35.
  8. Wang, H.; Bu, Y.; Dai, W.; Li, K.; Wang, H.; Zuo, X. Well-Dispersed Cobalt Phthalocyanine Nanorods on Graphene for the Electrochemical Detection of Hydrogen Peroxide and Glucose Sensing. Sens. Actuators B Chem. 2015, 216, 298–306.
  9. Ciszewski, A.; Stepniak, I. Preparation, Characterization and Redox Reactivity of Glassy Carbon Electrode Modified with Organometallic Complex of Nickel. Electrochim. Acta 2012, 76, 462–467.
  10. Cruz-Navarro, J.A.; Mendoza-Huizar, L.H.; Salazar-Pereda, V.; Cobos-Murcia, J.Á.; Colorado-Peralta, R.; Álvarez-Romero, G.A. Progress in the Use of Electrodes Modified with Coordination Compounds for Methanol Electro-Oxidation. Inorg. Chim. Acta 2021, 520, 120293.
  11. Švancara, I.; Kalcher, K. Carbon Paste Electrodes. In Advances in Electrochemical Science and Engineering; Wiley: Weinheim, Germany, 2016; Volume 16, pp. 379–423.
  12. Švancara, I.; Vytřas, K.; Barek, J.; Zima, J. Carbon Paste Electrodes in Modern Electroanalysis. Crit. Rev. Anal. Chem. 2001, 31, 311–345.
  13. Cruz-Navarro, J.A.; Hernandez-Garcia, F.; Alvarez Romero, G.A. Novel Applications of Metal-Organic Frameworks (MOFs) as Redox-Active Materials for Elaboration of Carbon-Based Electrodes with Electroanalytical Uses. Coord. Chem. Rev. 2020, 412, 213263.
  14. Scozzari, A. Electrochemical Sensing Methods: A Brief Review. In NATO Science for Peace and Security Series A: Chemistry and Biology; Springer Nature: Basel, Switzerland, 2008; Volume 16, pp. 335–351.
  15. Mei, B.-A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. J. Phys. Chem. C 2018, 122, 194–206.
  16. Shao, M.; Xu, X.; Han, J.; Zhao, J.; Shi, W.; Kong, X.; Wei, M.; Evans, D.G.; Duan, X. Magnetic-Field-Assisted Assembly of Layered Double Hydroxide/Metal Porphyrin Ultrathin Films and Their Application for Glucose Sensors. Langmuir 2011, 27, 8233–8240.
  17. Chaiyo, S.; Mehmeti, E.; Siangproh, W.; Hoang, T.L.; Nguyen, H.P.; Chailapakul, O.; Kalcher, K. Non-Enzymatic Electrochemical Detection of Glucose with a Disposable Paper-Based Sensor Using a Cobalt Phthalocyanine–Ionic Liquid–Graphene Composite. Biosens. Bioelectron. 2018, 102, 113–120.
  18. Davies, M.B.; Austin, J.; Partridge, D.A. Vitamin C: Its Chemistry and Biochemistry. Free Radic. Biol. Med. 1993, 14, 99.
  19. Litwack, G. Vitamins and Nutrition. In Human Biochemistry; Litwack, G., Ed.; Elsevier: Boston, MA, USA, 2018; pp. 645–680.
  20. Hemila, H.; Louhiala, P. Vitamin C May Affect Lung Infections. J. R. Soc. Med. 2007, 100, 495–498.
  21. Holford, P.; Carr, A.C.; Jovic, T.H.; Ali, S.R.; Whitaker, I.S.; Marik, P.E.; Smith, A.D. Vitamin C—An Adjunctive Therapy for Respiratory Infection, Sepsis and COVID-19. Nutrients 2020, 12, 3760.
  22. Patel, M.; Hong, G.; Schmidt, B.; Al-janabi, L.; Adusumilli, R.K.; Tusha, J.; Giri, P.; Kumar, S. The Significance of Oral Ascorbic Acid in Patients with Covid-19. Chest 2020.
  23. Rosseti, C.A.; Real, J.P. High Dose of Ascorbic Acid Used in Sars Covid-19 Treatment: Scientific and Clinical Support for Its Therapeutic Implementation. ARS Pharm. 2020, 61, 145–148.
  24. Wang, C.; Yuan, R.; Chai, Y.; Chen, S.; Zhang, Y.; Hu, F.; Zhang, M. Non-Covalent Iron(III)-Porphyrin Functionalized Multi-Walled Carbon Nanotubes for the Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid and Nitrite. Electrochim. Acta 2012, 62, 109–115.
  25. Wu, H.; Li, X.; Chen, M.; Wang, C.; Wei, T.; Zhang, H.; Fan, S. A Nanohybrid Based on Porphyrin Dye Functionalized Graphene Oxide for the Application in Non-Enzymatic Electrochemical Sensor. Electrochim. Acta 2018, 259, 355–364.
  26. Huang, D.; Li, X.; Chen, M.; Chen, F.; Wan, Z.; Rui, R.; Wang, R.; Fan, S.; Wu, H. An Electrochemical Sensor Based on a Porphyrin Dye-Functionalized Multi-Walled Carbon Nanotubes Hybrid for the Sensitive Determination of Ascorbic Acid. J. Electroanal. Chem. 2019, 841, 101–106.
  27. Guo, X.M.; Guo, B.; Li, C.; Wang, Y.L. Amperometric Highly Sensitive Uric Acid Sensor Based on Manganese(III)Porphyrin-Graphene Modified Glassy Carbon Electrode. J. Electroanal. Chem. 2016, 783, 8–14.
  28. Sebarchievici, I.; Lascu, A.; Fagadar-Cosma, G.; Palade, A.; Fringu, I.; Birdeanu, M.; Taranu, B.; Fagadar-Cosma, E. Optical and Electrochemical-Mediated Detection of Ascorbic Acid Using Manganese Porphyrin and Its Gold Hybrids. C. R. Chim. 2018, 21, 327–338.
  29. Kemmegne-Mbouguen, J.C.; Angnes, L. Simultaneous Quantification of Ascorbic Acid, Uric Acid and Nitrite Using a Clay/Porphyrin Modified Electrode. Sens. Actuatorsb Chem. 2015, 212, 464–471.
  30. Sakthinathan, S.; Kubendhiran, S.; Chen, S.M.; Manibalan, K.; Govindasamy, M.; Tamizhdurai, P.; Huang, S.T. Reduced Graphene Oxide Non-Covalent Functionalized with Zinc Tetra Phenyl Porphyrin Nanocomposite for Electrochemical Detection of Dopamine in Human Serum and Rat Brain Samples. Electroanalysis 2016, 28, 2126–2135.
  31. Dos Santos, M.P.; Rahim, A.; Fattori, N.; Kubota, L.T.; Gushikem, Y. Novel Amperometric Sensor Based on Mesoporous Silica Chemically Modified with Ensal Copper Complexes for Selective and Sensitive Dopamine Determination. Sens. Actuatorsb Chem. 2012, 171–172, 712–718.
  32. Sajjan, V.A.; Mohammed, I.; Nemakal, M.; Aralekallu, S.; Hemantha Kumar, K.R.; Swamy, S.; Sannegowda, L.K. Synthesis and Electropolymerization of Cobalt Tetraaminebenzamidephthalocyanine Macrocycle for the Amperometric Sensing of Dopamine. J. Electroanal. Chem. 2019, 838, 33–40.
  33. Rahim, A.; Barros, S.B.A.; Kubota, L.T.; Gushikem, Y. SiO2/C/Cu(II)Phthalocyanine as a Biomimetic Catalyst for Dopamine Monooxygenase in the Development of an Amperometric Sensor. Electrochim. Acta 2011, 56, 10116–10121.
  34. Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose Sensing for Diabetes Monitoring: Recent Developments. Sensors 2017, 17, 1866.
  35. Kim, J.; Campbell, A.S.; Wang, J. Wearable Non-Invasive Epidermal Glucose Sensors: A Review. Talanta 2018, 177, 163–170.
  36. Luo, X.; Shi, W.; Liu, Y.; Sha, P.; Chu, Y.; Cui, Y. A Smart Tongue Depressor-Based Biosensor for Glucose. Sensors 2019, 19, 3864.
  37. Sha, P.; Luo, X.; Shi, W.; Liu, Y.; Cui, Y. A Smart Dental Floss for Biosensing of Glucose. Electroanalysis 2019, 31, 791–796.
  38. Vargas, E.; Teymourian, H.; Tehrani, F.; Eksin, E.; Sánchez-Tirado, E.; Warren, P.; Erdem, A.; Dassau, E.; Wang, J. Enzymatic/Immunoassay Dual-Biomarker Sensing Chip: Towards Decentralized Insulin/Glucose Detection. Angew. Chem. Int. Ed. 2019, 58, 6376–6379.
  39. Mohammadifar, M.; Tahernia, M.; Choi, S. An Equipment-Free, Paper-Based Electrochemical Sensor for Visual Monitoring of Glucose Levels in Urine. Slas Technol. Transl. Life Sci. Innov. 2019, 24, 499–505.
  40. Baghayeri, M.; Veisi, H.; Ghanei-Motlagh, M. Amperometric Glucose Biosensor Based on Immobilization of Glucose Oxidase on a Magnetic Glassy Carbon Electrode Modified with a Novel Magnetic Nanocomposite. Sens. Actuators B Chem. 2017, 249, 321–330.
  41. Go, A.; Kim, H.T.; Park, Y.J.; Park, S.R.; Lee, M.-H. Fabrication of Repeatedly Usable Pt-Electrode Chip Coated with Solidified Glucose Oxidase and Ascorbate Oxidase for the Quantification of Glucose in Urine. IEEE Sens. Lett. 2019, 3, 1–4.
  42. Ozoemena, K.I.; Nyokong, T. Novel Amperometric Glucose Biosensor Based on an Ether-Linked Cobalt(II) Phthalocyanine-Cobalt(II) Tetraphenylporphyrin Pentamer as a Redox Mediator. Electrochim. Acta 2006, 51, 5131–5136.
  43. Sánchez-Calvo, A.; Costa-García, A.; Blanco-López, M.C. Paper-Based Electrodes Modified with Cobalt Phthalocyanine Colloid for the Determination of Hydrogen Peroxide and Glucose. Analyst 2020, 145, 2716–2724.
  44. Mani, V.; Devasenathipathy, R.; Chen, S.M.; Huang, S.T.; Vasantha, V.S. Immobilization of Glucose Oxidase on Graphene and Cobalt Phthalocyanine Composite and Its Application for the Determination of Glucose. Enzym. Microb. Technol. 2014, 66, 60–66.
  45. He, J.; Yang, H.; Zhang, Y.; Yu, J.; Miao, L.; Song, Y.; Wang, L. Smart Nanocomposites of Cu-Hemin Metal-Organic Frameworks for Electrochemical Glucose Biosensing. Sci. Rep. 2016, 6, 1–9.
  46. He, W.; Huang, Y.; Wu, J. Enzyme-Free Glucose Biosensors Based on MoS2 Nanocomposites. Nanoscale Res. Lett. 2020, 15, 60.
  47. Wang, F.; Chen, X.; Chen, L.; Yang, J.; Wang, Q. High-Performance Non-Enzymatic Glucose Sensor by Hierarchical Flower-like Nickel(II)-Based MOF/Carbon Nanotubes Composite. Mater. Sci. Eng. C 2019, 96, 41–50.
  48. Devasenathipathy, R.; Karuppiah, C.; Chen, S.-M.; Palanisamy, S.; Lou, B.-S.; Ali, M.A.; Al-Hemaid, F.M.A. A Sensitive and Selective Enzyme-Free Amperometric Glucose Biosensor Using a Composite from Multi-Walled Carbon Nanotubes and Cobalt Phthalocyanine. RSC Adv. 2015, 5, 26762–26768.
  49. Maia Quintino, M.D.S.; Winnischofer, H.; Nakamura, M.; Araki, K.; Toma, H.E.; Angnes, L. Amperometric Sensor for Glucose Based on Electrochemically Polymerized Tetraruthenated Nickel-Porphyrin. Anal. Chim. Acta 2005, 539, 215–222.
  50. Elouarzaki, K.; Le, A.; Holzinger, M.; Thery, J.; Cosnier, S. Electrocatalytic Oxidation of Glucose by Rhodium Porphyrin-Functionalized MWCNT Electrodes: Application to a Fully Molecular Catalyst-Based Glucose/O2 Fuel Cell. J. Am. Chem. Soc. 2012, 134, 14078–14085.
  51. Zhang, R.; Chen, W. Recent Advances in Graphene-Based Nanomaterials for Fabricating Electrochemical Hydrogen Peroxide Sensors. Biosens. Bioelectron. 2017, 89, 249–268.
  52. Jeong, H.; Ahmed, M.S.; Jeon, S. Poly-Cobalt[Tetrakis(o-Aminophenyl)Porphyrin] Nanowire and Single-Walled Carbon Nanotube for the Analysis of Hydrogen Peroxide. J. Nanosci. Nanotechnol. 2011, 11, 987–993.
  53. Naseri, M.; Fotouhi, L.; Ehsani, A. Nanostructured Metal Organic Framework Modified Glassy Carbon Electrode as a High Efficient Non-Enzymatic Amperometric Sensor for Electrochemical Detection of H2O2. J. Electrochem. Sci. Technol. 2019, 9, 28–36.
  54. Gao, X.; DelaCruz, S.; Zhu, C.; Cheng, S.; Gardner, D.; Xie, Y.; Carraro, C.; Maboudian, R. Surface Functionalization of Carbon Cloth with Cobalt-Porphyrin-Based Metal Organic Framework for Enhanced Electrochemical Sensing. Carbon 2019, 148, 64–71.
  55. Ozoemena, K.I.; Zhao, Z.; Nyokong, T. Immobilized Cobalt(II) Phthalocyanine-Cobalt(II) Porphyrin Pentamer at a Glassy Carbon Electrode: Applications to Efficient Amperometric Sensing of Hydrogen Peroxide in Neutral and Basic Media. Electrochem. Commun. 2005, 7, 679–684.
  56. Fan, S.; Zhu, Y.; Liu, R.; Zhang, H.; Wang, Z.S.; Wu, H. A Porphyrin Derivative for the Fabrication of Highly Stable and Sensitive Electrochemical Sensor and Its Analytical Applications. Sens. Actuatorsb Chem. 2016, 233, 206–213.
  57. Wu, H.; Fan, S.; Jin, X.; Zhang, H.; Chen, H.; Dai, Z.; Zou, X. Construction of a Zinc Porphyrin-Fullerene-Derivative Based Nonenzymatic Electrochemical Sensor for Sensitive Sensing of Hydrogen Peroxide and Nitrite. Anal. Chem. 2014, 86, 6285–6290.
  58. Peng, R.; Offenhäusser, A.; Ermolenko, Y.; Mourzina, Y. Biomimetic Sensor Based on Mn(III) Meso-Tetra(N-Methyl-4-Pyridyl) Porphyrin for Non-Enzymatic Electrocatalytic Determination of Hydrogen Peroxide and as an Electrochemical Transducer in Oxidase Biosensor for Analysis of Biological Media. Sens. Actuatorsb Chem. 2020, 321, 128437.
  59. Xie, Y.; Xu, M.; Wang, L.; Liang, H.; Wang, L.; Song, Y. Iron-Porphyrin-Based Covalent-Organic Frameworks for Electrochemical Sensing H2O2 and PH. Mater. Sci. Eng. C 2020, 112, 110864.
  60. dos Santos Pereira, T.; Mauruto de Oliveira, G.; Aparecido Santos, F.; Raymundo-Pereira, P.; Oliveira, O.; Campos Janegitz, B. Use of zein microspheres to anchor carbon black and hemoglobin in electrochemical biosensors to detect hydrogen peroxide in cosmetic products, food and biological fluids. Talanta 2019, 194, 737–744.
  61. Akhtar, N.; El-Safty, S.A.; Khairy, M.; El-Said, W.A. Fabrication of a Highly Selective Nonenzymatic Amperometric Sensor for Hydrogen Peroxide Based on Nickel Foam/Cytochrome c Modified Electrode. Sens. Actuatorsb Chem. 2015, 207, 158–166.
  62. Feier, B.; Florea, A.; Cristea, C.; Săndulescu, R. Electrochemical Detection and Removal of Pharmaceuticals in Waste Waters. Curr. Opin. Electrochem. 2018, 11, 1–11.
  63. El Harrad, L.; Bourais, I.; Mohammadi, H.; Amine, A. Recent Advances in Electrochemical Biosensors Based on Enzyme Inhibition for Clinical and Pharmaceutical Applications. Sensors 2018, 18, 164.
  64. Ferreira, L.M.C.; Martins, P.R.; Araki, K.; Toma, H.H.; Angnes, L. Amperometric Folic Acid Quantification Using a Supramolecular Tetraruthenated Nickel Porphyrin Μ-Peroxo-Bridged Matrix Modified Electrode Associated to Batch Injection Analysis. Electroanalysis 2015, 27, 2322–2328.
  65. Gong, F.C.; Zhang, X.B.; Guo, C.C.; Shen, G.L.; Yu, R.Q. Amperometric Metronidazole Sensor Based on the Supermolecular Recognition by Metalloporphyrin Incorporated in Carbon Paste Electrode. Sensors 2003, 3, 91–100.
  66. Kemmegne-Mbouguen, J.C.; Toma, H.E.; Araki, K.; Constantino, V.R.L.; Ngameni, E.; Angnes, L. Simultaneous Determination of Acetaminophen and Tyrosine Using a Glassy Carbon Electrode Modified with a Tetraruthenated Cobalt(II) Porphyrin Intercalated into a Smectite Clay. Microchim. Acta 2016, 183, 3243–3253.
  67. Sonkar, P.K.; Yadav, M.; Prakash, K.; Ganesan, V.; Sankar, M.; Yadav, D.K.; Gupta, R. Electrochemical Sensing of Rifampicin in Pharmaceutical Samples Using Meso-Tetrakis(4-Hydroxyphenyl)Porphyrinato Cobalt(II) Anchored Carbon Nanotubes. J. Appl. Electrochem. 2018, 48, 937–946.
  68. Aguirre-Araque, J.S.; Gonçalves, J.M.; Nakamura, M.; Rossini, P.O.; Angnes, L.; Araki, K.; Toma, H.E. GO Composite Encompassing a Tetraruthenated Cobalt Porphyrin-Ni Coordination Polymer and Its Behavior as Isoniazid BIA Sensor. Electrochim. Acta 2019, 300, 113–122.
  69. Balasoiu, S.C.; Stefan-Van Staden, R.I.; Van Staden, J.F.; Ion, R.M.; Radu, G.L.; Aboul-Enein, H.Y. Amperometric Dot-Sensors Based on Zinc Porphyrins for Sildenafil Citrate Determination. Electrochim. Acta 2011, 58, 290–295.
  70. Mainali, K. Phenolic Compounds Contaminants in Water: A Glance. Curr. Trends Civ. Struct. Eng. 2020, 4.
  71. Kazemi, P.; Peydayesh, M.; Bandegi, A.; Mohammadi, T.; Bakhtiari, O. Stability and Extraction Study of Phenolic Wastewater Treatment by Supported Liquid Membrane Using Tributyl Phosphate and Sesame Oil as Liquid Membrane. Chem. Eng. Res. Des. 2014, 92, 375–383.
  72. Mazzotta, E.; Malitesta, C. Electrochemical Detection of the Toxic Organohalide 2,4-DB Using a Co-Porphyrin Based Electrosynthesized Molecularly Imprinted Polymer. Sens. Actuatorsb Chem. 2010, 148, 186–194.
  73. Isaacs, M.; Aguirre, M.J.; Toro-Labbé, A.; Costamagna, J.; Páez, M.; Zagal, J.H. Comparative Study of the Electrocatalytic Activity of Cobalt Phthalocyanine and Cobalt Naphthalocyanine for the Reduction of Oxygen and the Oxidation of Hydrazine. Electrochim. Acta 1998, 43, 1821–1827.
  74. Geraldo, D.A.; Togo, C.A.; Limson, J.; Nyokong, T. Electrooxidation of Hydrazine Catalyzed by Noncovalently Functionalized Single-Walled Carbon Nanotubes with CoPc. Electrochim. Acta 2008, 53, 8051–8057.
  75. Canales, C.; Gidi, L.; Arce, R.; Ramírez, G. Hydrazine Electrooxidation Mediated by Transition Metal Octaethylporphyrin-Modified Electrodes. New J. Chem. 2016, 40, 2806–2813.
  76. Sousa, L.M.; Vilarinho, L.M.; Ribeiro, G.H.; Bogado, A.L.; Dinelli, L.R. An Electronic Device Based on Gold Nanoparticles and Tetraruthenated Porphyrin as an Electrochemical Sensor for Catechol. R. Soc. Open Sci. 2017, 4, 170675.
  77. Nemakal, M.; Aralekallu, S.; Mohammed, I.; Pari, M.; Venugopala Reddy, K.R.; Sannegowda, L.K. Nanomolar Detection of 4-Aminophenol Using Amperometric Sensor Based on a Novel Phthalocyanine. Electrochim. Acta 2019, 318, 342–353.
  78. Wong, A.; Sotomayor, M.D.P.T. Biomimetic Sensor Based on 5,10,15,20-Tetrakis(Pentafluorophenyl)-21H,23H- Porphyrin Iron (III) Chloride and MWCNT for Selective Detection of 2,4-D. Sens. Actuatorsb Chem. 2013, 181, 332–339.
  79. Kazemi, S.H.; Hosseinzadeh, B.; Zakavi, S. Electrochemical Fabrication of Conducting Polymer of Ni-Porphyrin as Nano-Structured Electrocatalyst for Hydrazine Oxidation. Sens. Actuatorsb Chem. 2015, 210, 343–348.
  80. Sakthinathan, S.; Kubendhiran, S.; Chen, S.-M.; Govindasamy, M.; Al-Hemaid, F.M.A.; Ajmal Ali, M.; Tamizhdurai, P.; Sivasanker, S. Metallated Porphyrin Noncovalent Interaction with Reduced Graphene Oxide-Modified Electrode for Amperometric Detection of Environmental Pollutant Hydrazine. Appl. Organomet. Chem. 2017, 31, 3703.
  81. Nemakal, M.; Aralekallu, S.; Mohammed, I.; Swamy, S.; Sannegowda, L.K. Electropolymerized Octabenzimidazole Phthalocyanine as an Amperometric Sensor for Hydrazine. J. Electroanal. Chem. 2019, 839, 238–246.
More
ScholarVision Creations