Your browser does not fully support modern features. Please upgrade for a smoother experience.
New Pediatric Vaccines against Pertussis: Comparison
Please note this is a comparison between Version 2 by Camila Xu and Version 1 by Camille Locht.

Whooping cough, or pertussis, mostly caused by Bordetella pertussis, is a respiratory disease that affects all age groups, but severe and fatal pertussis occurs almost exclusively in young children. Current vaccination strategies have shown their limits and novel vaccines are needed to definitively control this disease. This article summarizes the current state of the art.

Whooping cough, or pertussis, mostly caused by Bordetella pertussis, is a respiratory disease that affects all age groups, but severe and fatal pertussis occurs almost exclusively in young children. Current vaccination strategies have shown their limits and novel vaccines are needed to definitively control this disease.

  • whooping cough
  • acellular vaccines
  • whole-cell vaccines
  • cocoon vaccination
Please wait, diff process is still running!

References

  1. Mattoo, S.; Cherry, J.D. Molecular Pathogenesis, Epidemiology, and Clinical Manifestations of Respiratory Infections Due to Bordetella pertussis and Other Bordetella Subspecies. Clin. Microbiol. Rev. 2005, 18, 326–382.
  2. Hewlett, E.L.; Edwards, K.M. Pertussis—not just for kids. N. Engl. J. Med. 2005, 352, 1215–1222.
  3. Von König, C.H.W.; Halperin, S.; Riffelmann, M.; Guiso, N. Pertussis of adults and infants. Lancet Infect. Dis. 2002, 2, 744–750.
  4. Kendrick, P.L. Can Whooping Cough Be Eradicated? J. Infect. Dis. 1975, 132, 707–712.
  5. Mortimer, E.A.; Jones, P.K. An evaluation of pertussis vaccine. Rev. Infect. Dis. 1979, 1, 927–934.
  6. Cherry, J.D. Pertussis in the Preantibiotic and Prevaccine Era, with Emphasis on Adult Pertussis. Clin. Infect. Dis. 1999, 28, S107–S111.
  7. Collins, D.C. Age incidence of the common communicable diseases of children: A study of case rates among all children and among children not previously attacked and of death rates and the estimated case fatality. Public Health Rep. 1929, 44, 763–827.
  8. Fine, P.E.; Clarkson, J. The Recurrence of Whooping Cough: Possible Implications for Assessment of Vaccine Efficacy. Lancet 1982, 319, 666–669.
  9. Mannerstedt, G. Pertussis in adults. J. Pediatr. 1934, 5, 596–600.
  10. Kilgore, P.E.; Salim, A.M.; Zervos, M.J.; Schmitt, H.-J. Pertussis: Microbiology, Disease, Treatment, and Prevention. Clin. Microbiol. Rev. 2016, 29, 449–486.
  11. World Health Organization. Immunization Coverage with DTP3 Vaccines in Infants (from <50%). 2016. Available online: (accessed on 1 March 2021).
  12. Yeung, K.H.T.; Duclos, P.; Nelson, E.A.S.; Hutubessy, R.C.W. An update of the global burden of pertussis in children younger than 5 years: A modelling study. Lancet Infect. Dis. 2017, 17, 974–980.
  13. Chiappini, E.; Stival, A.; Galli, L.; De Martino, M. Pertussis re-emergence in the post-vaccination era. BMC Infect. Dis. 2013, 13, 151.
  14. Burns, D.L.; Meade, B.D.; Messionnier, N.E. Pertussis resurgence: Perspectives from the working group meeting on pertussis on the causes, possible paths forward, and gaps in our knowledge. J. Infect. Dis. 2014, 209, S32–S35.
  15. Esposito, S.; Stefanelli, P.; Fry, N.K.; Fedele, G.; He, Q.; Paterson, P.; Tan, T.; Knuf, M.; Rodrigo, C.; Olivier, C.W.; et al. Pertussis Prevention: Reasons for Resurgence, and Differences in the Current Acellular Pertussis Vaccines. Front. Immunol. 2019, 10, 1344.
  16. Althouse, B.M.; Scarpino, S.V. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Med. 2015, 13, 146.
  17. Provenzano, R.W.; Wetterlow, L.H.; Sullivan, C.L. Immunization and Antibody Response in the Newborn Infant. N. Engl. J. Med. 1965, 273, 959–965.e1.
  18. Halasa, N.B.; O’Shea, A.; Shi, J.R.; LaFleur, B.J.; Edwards, K.M. Poor immune responses to a birth dose of diphtheria, tetanus, and acellular pertussis vaccine. J. Pediatr. 2008, 153, 327–332.e1.
  19. Knuf, M.; Schmitt, H.J.; Wolter, J.; Schuerman, L.; Jacquet, J.M.; Kieninger, D.; Siegrist, C.A.; Zepp, F. Neonatal vaccination with an acellular pertussis vaccine accelerates the acquisition of pertussis antibodies in infants. J. Pediatr. 2008, 152, 655–660.
  20. Belloni, C.; Silvestri, A.D.; Tinelli, C.; Avanzini, M.A.; Marconi, M.; Strano, F.; Rondini, G.; Chirico, G. Immunogenicity of a Three-Component Acellular Pertussis Vaccine Administered at Birth. Pediatrics 2003, 111, 1042–1045.
  21. Wood, N.; Nolan, T.; Marshall, H.; Richmond, P.; Gibbs, E.; Perrett, K.; McIntyre, P. Immunogenicity and safety of monovalent acellular pertussis vaccine at birth. A randomized clinical trial. JAMA Pediatr. 2018, 172, 1045–1052.
  22. Wendelboe, A.M.; Njamkepo, E.; Bourillon, A.; Floret, D.D.; Gaudelus, J.; Gerber, M.; Grimprel, E.; Greenberg, D.; Halperin, S.; Liese, J.; et al. Transmission of Bordetella pertussis to Young Infants. Pediatr. Infect. Dis. J. 2007, 26, 293–299.
  23. Urwyler, P.; Heininger, U. Protecting newborns from pertussis—The challenge of complete cocooning. BMC Infect. Dis. 2014, 14, 397.
  24. Rowe, S.L.; Cunningham, H.M.; Franklin, L.J.; Lester, R.A. Uptake of a government-funded pertussis-containing booster vaccination program for parents of new babies in Victoria, Australia. Vaccine 2015, 33, 1791–1796.
  25. Healy, C.M.; Rench, M.A.; Wootton, S.H.; Castagnini, L.A. Evaluation of the Impact of a Pertussis Cocooning Program on Infant Pertussis Infection. Pediatr. Infect. Dis. J. 2015, 34, 22–26.
  26. Warfel, J.M.; Zimmerman, L.I.; Merkel, T.J. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc. Natl. Acad. Sci. USA 2014, 111, 787–792.
  27. Holubová, J.; Staněk, O.; Brázdilová, L.; Mašín, J.; Bumba, L.; Gorringe, A.R.; Alexander, F.; Šebo, P. Acellular Pertussis Vaccine Inhibits Bordetella pertussis Clearance from the Nasal Mucosa of Mice. Vaccines 2020, 8, 695.
  28. Dubois, V.; Chatagnon, J.; Thiriard, A.; Bauderlique-Le Roy, H.; Debrie, A.S.; Coutte, L.; Locht, C. Suppression of mucosal Th17 memory response by acellular pertussis vaccines enhances nasal Bordetella pertussis carriage. NPJ Vaccines 2020, 6, 6.
  29. Wilk, M.M.; Borkner, L.; Misiak, A.; Curham, L.; Allen, A.C.; Mills, K.H.G. Immunization with whole cell but not acellular pertussis vaccines primes CD4 TRM cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerg. Microbes. Infect. 2019, 8, 169–185.
  30. Maertens, K.; Orije, M.R.P.; Van Damme, P.; Leuridan, E. Vaccination during pregnancy: Current and possible future recommendations. Eur. J. Nucl. Med. Mol. Imaging 2020, 179, 235–242.
  31. Drezner, D.; Youngster, M.; Klainer, H.; Youngster, I. Maternal vaccinations coverage and reasons for non-compliance—A cross-sectional observational study. BMC Pregnancy Childbirth 2020, 20, 541.
  32. Kahn, K.E.; Black, C.L.; Ding, H.; Williams, W.W.; Lu, P.-J.; Fiebelkorn, A.P.; Havers, F.; D’Angelo, D.V.; Ball, S.; Fink, R.V.; et al. Influenza and Tdap Vaccination Coverage Among Pregnant Women—United States, April 2018. MMWR. Morb. Mortal. Wkly. Rep. 2018, 67, 1055–1059.
  33. Englund, J.A.; Anderson, E.L.; Reed, G.F.; Decker, M.D.; Edwards, K.M.; Pichichero, M.E.; Steinhoff, M.C.; Rennels, M.B.; Deforest, A.; Meade, B.D. The effect of maternal antibody on the serologic response and the incidence of adverse reactions after primary immunization with acellular and whole-cell pertussis vaccines combined with diphtheria and tetanus toxoids. Pediatrics 1995, 96, 580–584.
  34. Wanlapakorn, N.; Maertens, K.; Vongpunsawad, S.; Puenpa, J.; Tran, T.M.P.; Hens, N.; Van Damme, P.; Thiriard, A.; Raze, D.; Locht, C.; et al. Quantity and Quality of Antibodies After Acellular Versus Whole-cell Pertussis Vaccines in Infants Born to Mothers Who Received Tetanus, Diphtheria, and Acellular Pertussis Vaccine During Pregnancy: A Randomized Trial. Clin. Infect. Dis. 2019, 71, 72–80.
  35. Anderson, R.M.; May, R.M. Directly transmitted infectious diseases: Control by vaccination. Science 1982, 215, 1053–1060.
  36. Merkel, T.J. Toward a Controlled Human Infection Model of Pertussis. Clin. Infect. Dis. 2019, 71, 412–414.
  37. Higgs, R.; Higgins, S.C.; Ross, P.J.; Mills, K.H.G. Immunity to the respiratory pathogen Bordetella pertussis. Mucosal Immunol. 2012, 5, 485–500.
  38. Elahi, S.; Holmstrom, J.; Gerdts, V. The benefits of using diverse animal models for studying pertussis. Trends Microbiol. 2007, 15, 462–468.
  39. Warfel, J.M.; Beren, J.; Kelly, V.K.; Lee, G.; Merkel, T.J. Nonhuman Primate Model of Pertussis. Infect. Immun. 2012, 80, 1530–1536.
  40. Kendrick, P.L.; Eldering, G.; Dixon, M.K.; Misner, J. Mouse protection tests in the study of pertussis vaccine: A comparative series using the intracerebral route for challenge. Am. J. Public Health 1947, 37, 803–810.
  41. Bunney, W.E.; Volk, V.K.; Kendrick, P.; Top, F.H. History of the antigen committees of the American Public Health Association. Am. J. Public Health Nations Health 1965, 55, 1451–1459.
  42. Mills, K.H.G.; Ryan, M.; Ryan, E.; Mahon, B.P. A murine model in which protection correlates with pertussis vaccine efficacy in children reveals complementary roles for humoral and cell-mediated immunity in protection against Bordetella pertussis. Infect. Immun. 1998, 66, 594–602.
  43. Janda, W.M.; Santos, E.; Stevens, J.; Celig, D.; Terrile, L.; Schreckenberger, P.C. Unexpected isolation of Bordetella pertussis from a blood culture. J. Clin. Microbiol. 1994, 32, 2851–2853.
  44. Trøseid, M.; Jonassen, T.Ø.; Steinbakk, M. Isolation of Bordetella pertussis in blood culture from a patient with multiple myeloma. J. Infect. 2006, 52, e11–e13.
  45. Mahon, B.P.; Sheahan, B.J.; Griffin, F.; Murphy, G.; Mills, K.H.G. Atypical disease after Bordetella pertussis respiratory infection of mice with targeted disruptions of interferon-gamma receptor or immunoglobulin µ chain genes. J. Exp. Med. 1997, 186, 1843–1851.
  46. Solans, L.; Locht, C. The Role of Mucosal Immunity in Pertussis. Front. Immunol. 2019, 9, 3068.
  47. Solans, L.; Debrie, A.S.; Borkner, L.; Aguilo, N.; Thiriard, A.; Coutte, L.; Uranga, S.; Trottein, F.; Martin, C.; Mills, K.H.G.; et al. IL-17-dependent SIgA-mediated protection against nasal Bordetella pertussis infection by live attenuated BPZE1 vaccine. Mucosal Immunol. 2018, 11, 1753–1762.
  48. Wilk, M.M.; Misiak, A.; McManus, R.M.; Allen, A.C.; Lynch, M.A.; Mills, K.H.G. Lung CD4 Tissue-Resident Memory T Cells Mediate Adaptive Immunity Induced by Previous Infection of Mice withBordetella pertussis. J. Immunol. 2017, 199, 233–243.
  49. Warfel, J.M.; Beren, J.; Merkel, T.J. Airborne Transmission of Bordetella pertussis. J. Infect. Dis. 2012, 206, 902–906.
  50. Antunes, R.D.S.; Babor, M.; Carpenter, C.; Khalil, N.; Cortese, M.; Mentzer, A.J.; Seumois, G.; Petro, C.D.; Purcell, L.A.; Vijayanand, P.; et al. Th1/Th17 polarization persists following whole-cell pertussis vaccination despite repeated acellular boosters. J. Clin. Investig. 2018, 128, 3853–3865.
  51. Warfel, J.M.; Merkel, T.J. Bordetella pertussis infection induces a mucosal IL-17 response and long-lived Th17 and Th1 immune memory cells in nonhuman primates. Mucosal Immunol. 2013, 6, 787–796.
  52. Warfel, J.M.; Papin, J.F.; Wolf, R.F.; Zimmerman, L.I.; Merkel, T.J. Maternal and Neonatal Vaccination Protects Newborn Baboons From Pertussis Infection. J. Infect. Dis. 2014, 210, 604–610.
  53. Kapil, P.; Papin, J.F.; Wolf, R.F.; Zimmerman, L.I.; Wagner, L.D.; Merkel, T.J. Maternal vaccination with a monocomponent pertussis toxoid vaccine is sufficient to protect infants in a baboon model of whooping cough. J. Infect. Dis. 2018, 217, 1231–1236.
  54. Nguyen, A.W.; DiVenere, A.M.; Papin, J.F.; Connelly, S.; Kaleko, M.; Maynard, J.A. Neutralization of pertussis toxin by a single antibody prevents clinical pertussis in neonatal baboons. Sci. Adv. 2020, 6, eaay9258.
  55. Wearing, H.J.; Rohani, P. Estimating the Duration of Pertussis Immunity Using Epidemiological Signatures. PLOS Pathog. 2009, 5, e1000647.
  56. Warfel, J.M.; Edwards, K.M. Pertussis vaccines and the challenge of inducing durable immunity. Curr. Opin. Immunol. 2015, 35, 48–54.
  57. Chasaide, C.N.; Mills, K.H.G. Next-generation pertussis vaccines based on the induction of protective T cells in the respiratory tract. Vaccines 2020, 8, 621.
  58. Dewan, K.K.; Linz, B.; DeRocco, S.E.; Harvill, E.T. Acellular Pertussis Vaccine Components: Today and Tomorrow. Vaccines 2020, 8, 217.
  59. Hozbor, D. New Pertussis Vaccines: A Need and a Challenge. Adv. Exp. Med. Biol. 2019, 1183, 115–126.
  60. Locht, C. Will we have new pertussis vaccines? Vaccine 2018, 36, 5460–5469.
  61. Chatzis, O.; Blanchard-Rohner, G.; Mondoulet, L.; Pelletier, B.; De Gea-Hominal, A.; Roux, H.; Huttner, A.; Hervé, P.L.; Rohr, M.; Matthey, A.; et al. Safety and immunogenicity of the epicutaneous reactivation of pertussis toxin immunity iin healthy adults: A phase I, randomized, double-blind, placebo-controlled trial. Clin. Microbiol. Infect. 2020, 5, S1198.
  62. Gallivet, B.M.; Mondoulet, L.; Dhelft, V.; Eberhardt, C.S.; Auderset, F.; Pham, H.T.; Petre, J.; Lambert, P.H.; Benhamou, P.H.; Siegrist, C.A. Needle-free and adjuvant-free epicutaneous boosting of pertussis immunity: Preclinical proof of concept. Vaccine 2015, 33, 146–159.
  63. Thomas, G. Respiratory and humoral immune response to aerosol and intramuscular pertussis vaccine. J. Hyg. 1975, 74, 233–237.
  64. Berstad, A.H.; Holst, J.; Frøholm, L.; Haugen, I.; Wedege, E.; Oftung, F.; Haneberg, B. A nasal whole-cell pertussis vaccine induces specific systemic and cross-reactive mucosal antibody responses in human volunteers. J. Med. Microbiol. 2000, 49, 157–163.
  65. Ryan, E.J.; McNeela, E.; Murphy, G.A.; Stewart, H.; O’hagan, D.; Pizza, M.; Rappuoli, R.; Mills, K.H. Mutants of Escherichia coli heat-labile toxin act as effective mucosal adjuvants for nasal delivery of an acellular pertussis vaccine: Differential effects of the nontoxic AB complex and enzyme activity on Th1 and Th2 cells. Infect. Immun. 1999, 67, 6270–6280.
  66. Couch, R.B. Nasal vaccination, Escherichia coli enterotoxin, and Bell’s palsy. N. Engl. J. Med. 2004, 350, 860–861.
  67. Shi, W.; Kou, Y.; Jiang, H.; Gao, F.; Kong, W.; Su, W.; Xu, F.; Jiang, C. Novel intranasal pertussis vaccine based on bacterium-like particles as a mucosal adjuvant. Immunol. Lett. 2018, 198, 26–32.
  68. Boehm, D.T.; Wolf, M.A.; Hall, J.M.; Wong, T.Y.; Sen-Kilic, E.; Basinger, H.D.; Dziadowicz, S.A.; Gutierrez, M.D.L.P.; Blackwood, C.B.; Bradford, S.D.; et al. Intranasal acellular pertussis vaccine provides mucosal immunity and protects mice from Bordetella pertussis. npj Vaccines 2019, 4, 40.
  69. Allen, A.C.; Wilk, M.M.; Misiak, A.; Borkner, L.; Murphy, D.; Mills, K.H.G. Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting TRM cells. Mucosal. Immunol. 2018, 11, 1763–1776.
  70. Ross, P.J.; Sutton, C.E.; Higgins, S.; Allen, A.C.; Walsh, K.; Misiak, A.; Lavelle, E.D.; McLoughlin, R.M.; Mills, K.H.G. Relative contribution of Th1 and Th17 cells in adaptive immunity to Bordetella pertussis: Towards the rational design of an improved acellular pertussis vaccine. PLoS Pathog. 2013, 6, e1003264.
  71. Misiak, A.; Leuzzi, R.; Allen, A.C.; Galletti, B.; Baudner, B.C.; D’Oro, U.; O’Hagan, D.T.; Pizza, M.; Seubert, A.; Mills, K.H.G. Addition of TLR7 agonist to an acellular pertussis vaccine enhances Th1 and T17 responses and protective immunity in a mouse model. Vaccine 2017, 35, 5256–5263.
  72. Geurtsen, J.; Fransen, F.; Vandebriel, R.J.; Gremmer, E.R.; de la Fonteyne-Blanestijn, L.J.; Kuipers, B.; Tommassen, J.; van der Ley, P. Supplementation of whole-cell pertussis vaccines with lipopolysaccharide analogs: Modification of vaccine-induced immune responses. Vaccine 2008, 26, 899–906.
  73. Bruno, C.; Agnolon, V.; Berti, F.; Bufali, S.; O’Hagan, D.T.; Baudner, B.C. The preparation and characterization of PLG nanoparticles with an entrapped synthetic TLR7 agonist and their preclinical evaluation as adjuvant for an adsorbed DTaP vaccine. Eur. J. Pharm. Biopharm. 2016, 105, 1–8.
  74. Li, P.; Asokanathan, C.; Liu, F.; Khaing, K.K.; Kmiec, D.; Wei, X.; Song, B.; Xing, D.; Kong, D. PGLA nano/micro particles encapsulated with pertussis toxoid (PTd) enhances Th1/Th17 immune responses in a murine model. Int. J. Pharm. 2016, 513, 183–190.
  75. Olin, P. The best acellular pertussis vaccines are multi-component. Pediatr. Infect. Dis. J. 1997, 16, 517–519.
  76. Queenan, A.M.; Dowling, D.J.; Cheng, W.K.; Fae, K.; Fernandez, J.; Flynn, P.J.; Joshi, S.; Brightman, S.E.; Ramirez, J.; Serroyen, J.; et al. Increasing FIM2/3 antigen-content improves efficacy of Bordetella pertussis vaccines in mice in vivo without altering vaccine-induced human reactogenicity biomarkers in vitro. Vaccine 2019, 37, 80–89.
  77. Fedele, G.; Schiavoni, I.; Adkins, I.; Klimova, N.; Sebo, P. Invasion of Dendritic Cells, Macrophages and Neutrophils by the Bordetella Adenylate Cyclase Toxin: A Subversive Move to Fool Host Immunity. Toxins 2017, 9, 293.
  78. Boehm, D.T.; Hall, J.M.; Wong, T.Y.; DiVenere, A.M.; Sen-Kilic, E.; Bevere, J.R.; Bradford, S.D.; Blackwood, C.B.; Elkins, C.M.; DeRoos, K.A.; et al. Evaluation of adenylate cyclase toxin antigen in acellular pertussis vaccines by using a Bordetella pertussis challenge model in mice. Infect. Immun. 2018, 86, e00857-17.
  79. Marr, N.; Oliver, D.C.; Laurent, V.; Poolman, J.; Denoël, P.; Fernandez, R.C. Protective activity of the Bordetella pertussis BrkA autotransporter in the murine lung colonization model. Vaccine 2008, 26, 4306–4311.
  80. Suzuki, K.; Shinzawa, N.; Ishigaki, K.; Nakamura, K.; Abe, H.; Horiguchi, Y.; Fukui-Miyazaki, A.; Ikuta, K. Protective effects of in vivo -expressed autotransporters against Bordetella pertussis infection. Microbiol. Immunol. 2017, 61, 371–379.
  81. Elizagaray, M.L.; Gomes, M.T.R.; Guimaraes, E.S.; Rumbo, M.; Hozbor, D.F.; Oliveira, S.C.; Moreno, G. Canonical and Noncanonical Inflammasome Activation by Outer Membrane Vesicles Derived From Bordetella pertussis. Front. Immunol. 2020, 11, 1879.
  82. Kanojia, G.; Raeven, R.H.M.; van der Maas, L.; Bindels, T.H.E.; van Riet, E.; Metz, B.; Soema, P.C.; Ten Have, R.; Frijlink, H.W.; Amorij, J.P.; et al. Development of a thermostable spray dried outer membrane vesicle pertussis vaccine for pulmonary immunization. J. Control. Release 2018, 286, 167–178.
  83. Roberts, R.; Moreno, G.; Bottero, D.; Gaillard, M.E.; Fingermann, M.; Graieb, A.; Rumbo, M.; Hozbor, D. Outer membrane vesicles as acellular vaccine against pertussis. Vaccine 2008, 26, 4639–4646.
  84. Raeven, R.H.; Brummelman, J.; Pennings, J.L.; van der Maas, L.; Tilstra, W.; Helm, K.; van Riet, E.; Jiskoot, W.; van Els, C.A.; Han, W.G.; et al. Bordetella pertussis outer membrane vesicle vaccine confers equal efficacy in mice with milder inflammatory responses compared to whole-cell vaccine. Sci. Rep. 2016, 6, 38240.
  85. Asensio, C.J.; Gaillard, M.E.; Moreno, G.; Bottero, D.; Zurita, E.; Rumbo, M.; Van Der Ley, P.; Van Der Ark, A.; Hozbor, D. Outer membrane vesicles obtained from Bordetella pertussis Tohama expressing the lipid A deacylase PagL as a novel acellular vaccine candidate. Vaccine 2011, 29, 1649–1656.
  86. Gaillard, M.E.; Bottero, D.; Errea, A.; Ormazábal, M.; Zurita, M.E.; Moreno, G.; Rumbo, M.; Castuma, C.; Bartel, E.; Flores, D.; et al. Acellular pertussis vaccine based on outer membrane vesicles capable of conferring both long-lasting immunity and protection against different strain genotypes. Vaccine 2014, 32, 931–937.
  87. Chen, Q.; Stibitz, S. The BvgASR virulence regulon of Bordetella pertussis. Curr. Opin. Microbiol. 2019, 47, 74–81.
  88. Raeven, R.H.M.; Van Vlies, N.; Salverda, M.L.M.; Van Der Maas, L.; Uittenbogaard, J.P.; Bindels, T.H.E.; Rigters, J.; Verhagen, L.M.; Kruijer, S.; Van Riet, E.; et al. The Role of Virulence Proteins in Protection Conferred by Bordetella pertussis Outer Membrane Vesicle Vaccines. Vaccines 2020, 8, 429.
  89. Raeven, R.H.M.; Rockx-Brouwer, D.; Kanojia, G.; Van Der Maas, L.; Bindels, T.H.E.; Have, R.T.; Van Riet, E.; Metz, B.; Kersten, G.F.A. Intranasal immunization with outer membrane vesicle pertussis vaccine confers broad protection through mucosal IgA and Th17 responses. Sci. Rep. 2020, 10, 1–11.
  90. Zurita, M.E.; Wilk, M.M.; Carriquiriborde, F.; Bartel, E.; Moreno, G.; Misiak, A.; Mills, K.H.G.; Hozbor, D. A pertussis outer membrane vesicle-based vaccine induces lung-resident memory CD4 T cells and protection against Bordetella pertussis, including pertactin deficient strains. Front. Cell Infect. Microbiol. 2019, 9, 125.
  91. Roberts, M.; Maskell, D.; Novotny, P.; Dougan, G. Construction and characterization in vivo of Bordetella pertussis aroA mutants. Infect. Immun. 1990, 58, 732–739.
  92. Cornford-Nairns, R.; Daggard, G.; Mukkur, T. Construction and preliminary immunobiological characterization of a novel, non-reverting, intranasal live attenuated whooping cough vaccine candidate. J. Microbiol. Biotechnol. 2012, 22, 856–865.
  93. Mielcarek, N.; Debrie, A.-S.; Raze, D.; Bertout, J.; Rouanet, C.; Ben Younes, A.; Creusy, C.; Engle, J.; Goldman, E.W.; Locht, C. Live Attenuated B. pertussis as a Single-Dose Nasal Vaccine against Whooping Cough. PLoS Pathog. 2006, 2, e65.
  94. Debrie, A.-S.; Mielcarek, N.; Lecher, S.; Roux, X.; Sirard, J.-C.; Locht, C. Early Protection against Pertussis Induced by Live Attenuated Bordetella pertussis BPZE1 Depends on TLR. J. Immunol. 2019, 203, 3293–3300.
  95. Li, R.; Lim, A.; Phoon, M.C.; Narasaraju, T.; Ng, J.K.W.; Poh, W.P.; Sim, M.K.; Chow, V.T.; Locht, C.; Alonso, S. Attenuated Bordetella pertussis Protects against Highly Pathogenic Influenza A Viruses by Dampening the Cytokine Storm. J. Virol. 2010, 84, 7105–7113.
  96. Schnöller, C.; Roux, X.; Sawant, D.; Raze, D.; Olszewska, W.; Locht, C.; Openshaw, P.J. Attenuated Bordetella pertussis vaccine protects against respiratory syncytial virus disease via an IL-17-dependent mechanism. Am. J. Respir. Crit. Care. Med. 2014, 189, 194–202.
  97. Blecher, T.; Kammoun, H.; Coutte, L.; Debrie, A.S.; Mielcarek, N.; Sirard, J.C.; Cauchi, S.; Locht, C. Live attenuated Bordetella pertussis vaccine candidate BPZE1 transiently protects against lethal pneumococcal disease in mice. Vaccine 2018, in press.
  98. Cauchi, S.; Locht, C. Non-specific effects of live attenuated pertussis vaccine against heterologous infectious and inflammatory diseases. Front. Immunol. 2018, 9, 2872.
  99. Skerry, C.M.; Cassidy, J.P.; English, K.; Feunou, P.F.; Locht, C.; Mahon, B.P. A live attenuated Bordetella pertussis candidate vaccine does not cause disseminating infection in gamma interferon receptor knockout mice. Clin. Vaccine Immunol. 2009, 16, 1344–1351.
  100. Feunou, P.F.; Ismaili, J.; Debrie, A.S.; Huot, L.; Hot, D.; Raze, D.; Lemoine, Y.; Locht, C. Genetic stability of the live attenuated Bordetella pertussis vaccine candidate BPZE1. Vaccine 2008, 26, 5722–5727.
  101. Thalen, M.; Debrie, A.-S.; Coutte, L.; Raze, D.; Solovay, K.; Rubin, K.; Mielcarek, N.; Locht, C. Manufacture of a Stable Lyophilized Formulation of the Live Attenuated Pertussis Vaccine BPZE1. Vaccines 2020, 8, 523.
  102. Locht, C.; Papin, J.F.; Lecher, S.; Debrie, A.-S.; Thalen, M.; Solovay, K.; Rubin, K.; Mielcarek, N. Live Attenuated Pertussis Vaccine BPZE1 Protects Baboons Against Bordetella pertussis Disease and Infection. J. Infect. Dis. 2017, 216, 117–124.
  103. Medkova, A.Y.; Sinyashina, L.N.; Amichba, A.A.; Semin, E.G.; Shevtsova, Z.V.; Matua, A.Z.; Djidaryan, A.A.; Kubrava, D.T.; Kondzhariya, I.G.; Barkaya, V.S.; et al. Preclinical studies of safety, immunogenicity and protective activity of attenuated Bordetella pertussis bacteria on the rhesus macaque model. J. Microbiol. Epidemiol. Immunol. 2020, 97, 312–323.
  104. Thorstensson, R.; Trollfors, B.; Al-Tawil, N.; Jahnmatz, M.; Bergström, J.; Ljungman, M.; Törner, A.; Wehlin, L.; Van Broekhoven, A.; Bosman, F.; et al. A phase I clinical study of a live attenuated Bordetella pertussis vaccine—BPZE1; a single centre, double-blind, placebo-controlled, dose-escalating study of BPZE1 given intranasally to healthy adult male vol-unteers. PLoS ONE 2014, 9, e83449.
  105. Jahnmatz, M.; Richert, L.; Al-Tawil, N.; Storsaeter, J.; Colin, C.; Bauduin, C.; Thalen, M.; Solovay, K.; Rubin, K.; Mielcarek, N.; et al. Safety and immunogenicity of the live attenuated intranasal pertussis vaccine BPZE1: A phase 1b, double-blind, randomised, placebo-controlled dose-escalation study. Lancet Infect. Dis. 2020, 20, 1290–1301.
  106. Lin, A.; Apostolovic, D.; Jahnmatz, M.; Liang, F.; Ols, S.; Tecleab, T.; Wu, C.; Van Hage, M.; Solovay, K.; Rubin, K.; et al. Live attenuated pertussis vaccine BPZE1 induces a broad antibody response in humans. J. Clin. Investig. 2020, 130, 2332–2346.
More
Academic Video Service