Ergot Alkaloids Mycotoxins in Cereals: Comparison
Please note this is a comparison between Version 2 by Camila Xu and Version 1 by Sofia Agriopoulou.

Mycotoxins are secondary metabolites synthesized by an array of fungal genera, usually

Fusarium

,

Penicillium

and

Aspergillus. Many types of different food products can be contaminated, even in different phases from the field to processing and storage. Plants are commonly considered the main hosts of fungal growth, with consequent mycotoxin contamination while food of animal origin may contain mycotoxins because of animal feeding with contaminated products. Ergot alkaloids (EAs) are mycotoxins produced by a wide range of mycotoxigenic fungi mainly in the genus Claviceps, causing severe health problems both in humans and animals. Rye, barley, wheat, millet, oats, and triticale are the main cereal crops affected by EAs. As cereals and cereal based foods are an important category of food in human nutrition and health, continuous monitoring is required at all stages of their production in order to avoid contamination by mycotoxins. The main aim of this work is to describe the occurrence, toxicity, and control strategies of major ergot alkaloids in cereal and cereal based foods.

.

  • ergot alkaloid mycotoxins
  • cereals
  • cereal-based product safety
  • quality
  • characteristics
  • control strategies
  • occurrence
  • toxicity
  • health impacts
Please wait, diff process is still running!

References

  1. Smaoui, S.; Bra, O.B.; Hlima, H.B. Mycotoxins analysis in cereals and related foodstuffs by liquid chromatography-tandem mass spectrometry techniques. J. Food Qual. 2020.
  2. Lee, H.J.; Ryu, D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. J. Agric. Food Chem. 2017, 65, 7034–7051.
  3. Khaneghah, A.M.; Farhadi, A.; Nematollahi, A.; Vasseghian, Y.; Fakhri, Y. A systematic review and meta-analysis to investigate the concentration and prevalence of trichothecenes in the cereal-based food. Trends Food Sci. Technol. 2020, 102, 193–202.
  4. Kyei, N.N.A.; Boakye, D.; Gabrysch, S. Maternal mycotoxin exposure and adverse pregnancy outcomes: A systematic review. Mycotoxin Res. 2020, 28, 1–13.
  5. Varzakas, T. Quality and safety aspects of cereals (wheat) and their products. Crit. Rev. Food Sci. Nutr. 2016, 56, 2495–2510.
  6. Kifer, D.; Sulyok, M.; Jakšić, D.; Krska, R.; Klarić, Š.M. Fungi and their metabolites in grain from individual households in Croatia. Food Addit. Contam. Part B 2021, 16, 1–12.
  7. Bessaire, T.; Mujahid, C.; Mottier, P.; Desmarchelier, A. Multiple mycotoxins determination in food by LC-MS/MS: An international collaborative study. Toxins 2019, 11, 658.
  8. Winter, G.; Pereg, L. A review on the relation between soil and mycotoxins: Effect of aflatoxin on field, food and finance. Eur. J. Soil Sci. 2019, 70, 882–897.
  9. Agriopoulou, S. Physicochemical Study Using Liquid Chromatography Technique on the Effect of Ozone on Aflatoxins’ Degradation and Elimination, in Pure Substrates and Foods. Ph.D. Thesis, University of Patras, Patras, Greece, 2015.
  10. Kaushik, G. Effect of processing on mycotoxin content in grains. Crit. Rev. Food Sci. Nutr. 2015, 55, 1672–1683.
  11. Pleadin, J.; Frece, J.; Markov, K. Mycotoxins in food and feed. Adv. Food Nutr. Res. 2019, 89, 297–345.
  12. Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 2020, 9, 137.
  13. Di Mavungu, J.D.; Malysheva, S.V.; Sanders, M.; Larionova, D.; Robbens, J.; Dubruel, P.; van Peteghem, C.; de Saeger, S. Development and validation of a new LC-MS/MS method for the simultaneous determination of six major ergot alkaloids and their corresponding epimers. Application to some food and feed commodities. Food Chem. 2012, 135, 292–303.
  14. Korn, A.K.; Gross, M.; Usleber, E.; Thom, N.; Köhler, K.; Erhardt, G. Dietary ergot alkaloids as a possible cause of tail necrosis in rabbits. Mycotoxin Res. 2014, 30, 241–250.
  15. Hulvova, H.; Galuszka, P.; Frebortova, J.; Frebort, I. Parasitic fungus Claviceps as a source for biotechnological production of ergot alkaloids. Biotechnol. Adv. 2013, 31, 79–89.
  16. Janik, E.; Niemcewicz, M.; Ceremuga, M.; Stela, M.; Saluk-Bijak, J.; Siadkowski, A.; Bijak, M. Molecular aspects of mycotoxins—A serious problem for human health. Int. J. Mol. Sci. 2020, 21, 8187.
  17. Krska, R.; Crews, C. Significance, chemistry and determination of ergot alkaloids: A review. Food Addit. Contam. Part A 2008, 25, 722–731.
  18. Agriopoulou, S.; Koliadima, A.; Karaiskakis, G.; Kapolos, J. Kinetic study of aflatoxins’ degradation in the presence of ozone. Food Control. 2016, 61, 221–226.
  19. Agriopoulou, S. Enniatins: An emerging food safety issue. EC Nutr. 2016, 3, 1142–1146.
  20. Shahid, M.G.; Nadeem, M.; Gulzar, A.; Saleem, M.; Rehman, H.U.; Ghafoor, G.Z.; Hayyat, M.U.; Shahzad, L.; Arif, R.; Nelofer, R. Novel ergot alkaloids production from Penicillium citrinum employing response surface methodology technique. Toxins 2020, 12, 427.
  21. Arroyo-Manzanares, N.; Gámiz-Gracia, L.; García-Campaña, A.M.; di Mavungu, J.D.; de Saeger, S. Ergot alkaloids: Chemistry, biosynthesis, bioactivity, and methods of analysis. In Fungal Metabolites, Reference Series in Phytochemistry; Mérillon, J.M., Ramawat, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 887–929.
  22. Holderied, I.; Rychlik, M.; Elsinghorst, P.W. Optimized analysis of ergot alkaloids in rye products by liquid chromatography-fluorescence detection applying lysergic acid diethylamide as an internal standard. Toxins 2019, 11, 184.
  23. Kodisch, A.; Oberforster, M.; Raditschnig, A.; Rodemann, B.; Tratwal, A.; Danielewicz, J.; Korbas, M.; Schmiedchen, B.; Eifler, J.; Gordillo, A.; et al. Covariation of ergot severity and alkaloid content measured by HPLC and one Elisa method in inoculated winter rye across three isolates and three European countries. Toxins 2020, 12, 676.
  24. Schummer, C.; Zandonella, I.; van Nieuwenhuyse, A.; Moris, G. Epimerization of ergot alkaloids in feed. Heliyon 2020, 6, e04336.
  25. Crews, C.; Anderson, W.A.C.; Rees, G.; Krska, R. Ergot alkaloids in some rye-based UK cereal products. Food Addit. Contam. Part B 2009, 2, 79–85.
  26. Pierri, L.; Pitman, I.H.; Rae, I.D.; Winkler, D.A.; Andrews, P.R. Conformational analysis of the ergot alkaloids ergotamine and ergotaminine. J. Med. Chem. 1982, 137, 937–942.
  27. Komerova, E.L.; Tolkachev, O.N. The chemistry of peptide alkaloids. Part 1. Classification and chemistry of ergot peptides. Pharm. Chem. J. 2001, 35, 504–513.
  28. Arroyo-Manzanares, N.; Rodríguez-Estévez, V.; García-Campaña, A.M.; Castellón-Rendón, E.; Gámiz-Gracia, L. Determination of principal ergot alkaloids in swine feeding. J. Sci. Food Agric. 2021.
  29. Merkel, S.; Dib, B.; Maul, R.; Koppen, R.; Koch, M.; Nehls, I. Degradation and epimerization of ergot alkaloids after baking and in vitro digestion. Anal. Bioanal. Chem. 2012, 404, 2489–2497.
  30. Hafner, M.; Sulyok, M.; Schuhmacher, R.; Crews, C.; Krska, R. Stability and epimerisation behaviour of ergot alkaloids in various solvents. World Mycotoxin J. 2008, 1, 67–78.
  31. Battilani, P.; Costa, L.G.; Dossena, A.; Gullino, M.L.; Marchelli, R.; Galaverna, G.; Pietri, A.; Dall’Asta, C.; Giorni, P.; Spadaro, D.; et al. Scientific information on mycotoxins and natural plant toxicants. EFSA Supporting Publ. 2009, 6, 24E.
  32. Wallwey, C.; Li, S.-M. Ergot alkaloids: Structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat. Prod. Rep. 2011, 28, 496–510.
  33. Eady, C. The impact of alkaloid-producing epichloë endophyte on forage ryegrass breeding: A New Zealand perspective. Toxins 2021, 13, 158.
  34. Shimshoni, J.A.; Cuneah, O.; Sulyok, M.; Krska, R.; Sionov, E.; Barel, S.; Harel, Y.M. Newly discovered ergot alkaloids in Sorghum ergot Claviceps africana occurring for the first time in Israel. Food Chem. 2017, 219, 459–467.
  35. Haarmann, T.; Rolke, Y.; Giesbert, S.; Tudzynski, P. Plant diseases that changed the world. Ergot: From witchcraft to biotechnology. Mol. Plant Pathol. 2009, 10, 563–577.
  36. WHO. Selected Mycotoxins: Ochratoxins, Trichothecenes, Ergot; World Health Organization: Geneva, Switzerland, 1990.
  37. Shahid, M.G.; Baig, S.; Saleem, M.; Arif, R.; Ghafoor, G.; Liaqat, A. Qualitative and quantitative analysis of ergot alkaloids produced by Aspergillus niger through surface culture fermentation process. Pak. J. Bot. 2018, 50, 2423–2428.
  38. Shahid, M.G.; Nadeem, M.; Baig, S.; Cheema, T.A.; Atta, S.; Ghafoor, G. Screening and optimization of some inorganic salts for the production of ergot alkaloids from Penicillium species using surface culture fermentation process. Pak. J. Pharm. Sci. 2016, 29, 407–414.
  39. Young, C.A.; Schardl, C.L.; Panaccione, D.G.; Florea, S.; Takach, J.E.; Charlton, N.D.; Moore, N.; Webb, J.S.; Jaromczyk, J. Genetics, genomics and evolution of ergot alkaloid diversity. Toxins 2015, 7, 1273–1302.
  40. Klotz, J.L. Activities and effects of ergot alkaloids on livestock physiology and production. Toxins 2015, 7, 2801–2821.
  41. Babič, J.; Tavčar-Kalcher, G.; Celar, F.A.; Kos, K.; Červek, M.; Jakovac-Strajn, B. Ergot and ergot alkaloids in cereal grains intended for animal feeding collected in Slovenia: Occurrence, pattern and correlations. Toxins 2020, 12, 730.
  42. Miedaner, T.; Geiger, H.H. Biology, genetics, and management of ergot (Claviceps spp.) in rye, sorghum, and pearl millet. Toxins 2015, 7, 659–678.
  43. Appelt, M.; Ellner, F.M. Investigations into the occurrence of alkaloids in ergot and single sclerotia from the 2007 and 2008 harvests. Mycotoxin Res. 2009, 25, 95–101.
  44. Tudzynski, P.; Neubauer, L. Ergot alkaloids. In Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites; Martín, J.F., García-Estrada, C., Zeilinger, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 303–316.
  45. Tkachenko, A.; Benson, K.; Mostrom, M.; Guag, J.; Reimschuessel, R.; Webb, B. Extensive evaluation via blinded testing of an UHPLC-MS/MS method for quantitation of ten ergot alkaloids in rye and wheat grains. J. AOAC Int. 2021, 20, 1–9.
  46. Arcella, D.; Ruiz, J.Á.G.; Innocenti, M.L.; Roldán, R. Human and animal dietary exposure to ergot alkaloids. EFSA J. 2017, 15.
  47. Stroka, J.; Gonçalves, C. Mycotoxins in food and feed: An overview. In Encyclopedia of Food Chemistry; Laurence, M., Shahidi, F., Varelis, P., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 401–419.
  48. Dung, J.K.S.; Alderman, S.C.; Walenta, D.L.; Hamm, P.B. Spatial patterns of ergot and quantification of sclerotia in perennial ryegrass seed fields in eastern Oregon. Plant Dis. 2016, 100, 1110–1117.
  49. Alderman, S.C.; Walenta, D.L.; Hamm, P.B.; Martin, R.C.; Dung, J.; Kosman, E. Afternoon ascospore release in Claviceps purpurea optimizes perennial ryegrass infection. Plant Dis. 2015, 99, 1410–1415.
  50. Pscheidt, J.W.; Ocamb, C.M. Pacific Northwest Plant Disease Management Handbook; Oregon State University: Corvallis, OR, USA, 2016; Available online: (accessed on 7 April 2021).
  51. Guo, Q.; Shao, B.; Du, Z.; Zhang, J. Simultaneous determination of 25 ergot alkaloids in cereal samples by ultraperformance liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2016, 64, 7033–7039.
  52. Shi, H.; Schwab, W.; Liu, N.; Yu, P. Major ergot alkaloids in naturally contaminated cool-season barley grain grown under a cold climate condition in western Canada, explored with near-infrared (NIR) and fourier transform mid-infrared (ATR-FT/MIR) spectroscopy. Food Control 2019, 102, 221–230.
  53. Storm, I.D.; Rasmussen, P.H.; Strobel, B.W.; Hansen, H.C.B. Ergot alkaloids in rye flour determined by solid-phase cation-exchange and high-pressure liquid chromatography with fluorescence detection. Food Addit. Contam. 2008, 25, 338–346.
  54. Pitt, J.I.; Miller, J.D. A concise history of mycotoxin research. J. Agric. Food Chem. 2017, 65, 7021–7033.
  55. Krska, R.; Crews, C. HPLC/MS/MS Method for the Determination of Ergot Alkaloids in Cereals. Available online: (accessed on 20 March 2021).
  56. EFSA. Opinion of the scientific panel on contaminants in food chain on a request from the commission related to ergot as undesirable substance in animal feed. EFSA J. 2005, 225, 1–27.
  57. Debegnach, F.; Patriarca, S.; Brera, C.; Gregori, E.; Sonego, E.; Moracci, G.; de Santis, B. Ergot alkaloids in wheat and rye derived products in Italy. Foods 2019, 8, 150.
  58. Kralova, F.I.; Frebortova, J.; Pencık, A.; Frébort, I. Overexpression of Trp-related genes in Claviceps purpurea leading to increased ergot alkaloid production. New Biotechnol. 2021, 61, 69–79.
  59. Liu, M.; Shoukouhi, P.; Bisson, K.R.; Wyka, S.A.; Broders, K.D.; Menzies, J.G. Sympatric divergence of the ergot fungus, Claviceps purpurea, populations infecting agricultural and nonagricultural grasses in North America. Ecol. Evol. 2021, 11, 273–293.
  60. Commission Regulation (EC). No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24.
  61. European Union. Commission regulation (EU) 2015/1940 of 28 October 2015 amending regulation (EC) No 1881/2006 as regards maximum levels of ergot sclerotia in certain unprocessed cereals and the provisions on monitoring and reporting. Off. J. Eur. Union 2015, 283, 3–8.
  62. European Communities. Directive 2002/32/EC of the European parliament and of the council of 7 May 2002 on undesirable substances in animal feed. Off. J. Eur. Comm. 2002, 140, 10–22.
  63. Alexander, J.; Benford, D.; Boobis, A.; Ceccatelli, S.; Cottrill, B.; Cravedi, J.P.; di Domenico, A.; Doerge, D.; Dogliotti, E.; Edler, L.; et al. Scientific opinion on ergot alkaloids in food and feed. EFSA J. 2012, 10, 1–58.
  64. Ünüsan, N. Systematic review of mycotoxins in food and feeds in Turkey. Food Control 2019, 97, 1–14.
  65. Brennan, J. Ergot alkaloids—Avoiding a bad trip on new regulations. In Milling Wheat Conference; Agriculture and Horticulture Development Board: Kenilworth, UK, 2020.
  66. Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in analysis and detection of major mycotoxins in foods. Foods 2020, 9, 518.
  67. Chung, S.W.C. A critical review of analytical methods for ergot alkaloids in cereals and feed and in particular suitability of method performance for regulatory monitoring and epimer-specific quantification. Food Addit. Contam. Part A 2021, 30, 1–16.
  68. Kniel, B.; Meißner, M.; Koehler, P.; Schwake-Anduschus, C. Studies on the applicability of HPLC-FLD and HPLC-MS/MS for the determination of ergot alkaloids in rye-containing breads. J. Consum. Prot. Food Saf. 2018, 13, 69–78.
  69. Walker, K.; Duringer, J.; Craig, A.M. Determination of the ergot alkaloid ergovaline in tall fescue seed and straw using a QuEChERS extraction method with high-performance liquid chromatography-fluorescence detection. J. Agric. Food Chem. 2015, 63, 4236–4242.
  70. RASFF (Rapid Alert System for Food and Feed). Available online: (accessed on 20 March 2021).
  71. Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789.
  72. Tittlemier, S.A.; Drul, D.; Roscoe, M.; McKendry, T. Occurrence of ergot and ergot alkaloids in Western Canadian wheat and other cereals. J. Agric. Food Chem. 2015, 63, 6644–6650.
  73. Schnaufer, R.; Baitinger, A.; Vollmer, G. Ergot Alkaloids in Rye Flours and Rye Breads. 2013. Available online: (accessed on 20 March 2021).
  74. Malysheva, S.V.; Larionova, D.A.; di Mavungu, J.D.; de Saeger, S. Pattern and distribution of ergot alkaloids in cereals and cereal products from European countries. World Mycotoxin J. 2014, 7, 217–230.
  75. Drakopoulos, D.; Sulyok, M.; Krska, R.; Logrieco, A.F.; Vogelgsang, S. Raised concerns about the safety of barley grains and straw: A Swiss survey reveals a high diversity of mycotoxins and other fungal metabolites. Food Control 2021, 125, 107919.
  76. Orlando, B.; Maumené, C.; Piraux, F. Ergot and ergot alkaloids in French cereals: Occurrence, pattern and agronomic practices for managing the risk. World Mycotoxin J. 2017, 10, 327–337.
  77. Topi, D.; Jakovac-Strajn, B.; Pavšič-Vrtač, K.; Tavčar-Kalcher, G. Occurrence of ergot alkaloids in wheat from Albania. Food Addit. Contam. Part A 2017, 34, 1333–1343.
  78. Bryła, M.; Szymczyk, K.; Jędrzejczak, R.; Roszko, M. Application of liquid chromatography/ion trap mass spectrometry technique to determine ergot alkaloids in grain products. Food Technol. Biotechnol. 2015, 53, 18–28.
  79. Bryła, M.; Ksieniewicz-Woźniak, E.; Podolska, G.; Waśkiewicz, A.; Szymczyk, K.; Jędrzejczak, R. Occurrence of ergot and its alkaloids in winter rye harvested in Poland. World Mycotoxin J. 2018, 11, 635–646.
  80. Mulder, P.P.; Pereboom-de Fauw, D.P.; Hoogenboom, R.L.; de Stoppelaar, J.; de Nijs, M. Tropane and ergot alkaloids in grain-based products for infants and young children in the Netherlands in 2011–2014. Food Addit. Contam. Part B 2015, 8, 284–290.
  81. Grusie, T.; Cowan, V.; Singh, J.; McKinnon, J.; Blakley, B. Proportions of predominant Ergot alkaloids (Claviceps purpurea) detected in Western Canadian grains from 2014 to 2016. World Mycotoxin J. 2018, 11, 259–264.
  82. Menzies, J.G.; Turkington, T.K. An overview of the ergot (Claviceps purpurea) issue in western Canada: Challenges and solutions. Can. J. Plant Pathol. 2015, 37, 40–51.
  83. Ilha, M.R.; Loretti, A.P.; Barro, C.S. Hyperthermic syndrome in dairy cattle associated with consumption of ergots of Claviceps purpurea in Southern Brazil. Vet. Hum. Toxicol. 2003, 45, 140–145.
  84. Blaney, B.J.; Molloy, J.B.; Brock, I.J. Alkaloids in Australian rye ergot (Claviceps purpurea) sclerotia: Implications for food and stockfeed regulations. Animal Product. Sci. 2009, 49, 975–982.
  85. Menzies, J.G.; Klein-Gebbinck, H.W.; Gordon, A.; O’Sullivan, D.M. Evaluation of Claviceps purpurea isolates on wheat reveals complex virulence and host susceptibility relationships. Can. J. Plant Pathol. 2017, 39, 307–317.
  86. Xue, A.G.; Chen, Y.; Ai-Rewashdy, Y. Diseases of spring wheat in central and eastern Ontario in 2017. Can. Plant Dis. Surv. 2017, 98, 148–149.
  87. Wyka, S.A.; Mondo, S.J.; Liu, M.; Nalam, V.; Broders, K.D. A large accessory genome, high recombination rates, and selection of secondary metabolite genes help maintain global distribution and broad host range of the fungal plant pathogen Claviceps purpurea. BioRxiv 2020.
  88. Rubert, J.; Dzuman, Z.; Vaclavikova, M.; Zachariasova, M.; Soler, C.; Hajslova, J. Analysis of mycotoxins in barley using ultra high liquid chromatography high resolution mass spectrometry: Comparison of efficiency and efficacy of different extraction procedures. Talanta 2012, 99, 712–719.
  89. Carbonell-Rozas, L.; Mahdjoubi, C.K.; Arroyo-Manzanares, N.; Gámiz-Gracia, L.; García-Campaña, A.M. Determination and occurrence of ergot alkaloids in cereal samples from Algeria. Toxins 2021.
  90. Müller, C.; Kemmlein, S.; Klaffke, H.; Krauthause, W.; Preiss-Weigert, A.; Wittkowski, R. A basic tool for risk assessment: A new method for the analysis of ergot alkaloids in rye and selected rye products. Mol. Nutr. Food Res. 2009, 53, 500–507.
  91. Arroyo-Manzanares, N.; de Ruyck, K.; Uka, V.; Gámiz-Gracia, L.; García-Campaña, A.M.; de Saeger, S.; di Mavungu, J.D. In-house validation of a rapid and efficient procedure for simultaneous determination of ergot alkaloids and other mycotoxins in wheat and maize. Anal. Bioanal. Chem. 2018, 410, 5567–5581.
  92. Usleber, E.; Bauer, J.I.; Gross, M. Two forms of historic ergotism—Two groups of toxins? In Proceedings of the 40th Mycotoxin Workshop, Munich, Germany, 11–13 June 2018; p. 32. Available online: (accessed on 13 December 2020).
  93. Waret-Szkuta, A.; Larraillet, L.; Oswald, I.P.; Legrand, X.; Guerre, P.; Martineau, G.-P. Unusual acute neonatal mortality and sow agalactia linked with ergot alkaloid contamination of feed. Porc. Health Manag. 2019, 5, 24.
  94. Baldim, I.; Oliveira, W.P.; Kadian, V.; Rao, R.; Yadav, N.; Mahant, S.; Lucarini, M.; Durazzo, A.; da Ana, R.; Capasso, R.; et al. Natural ergot alkaloids in ocular pharmacotherapy: Known molecules for novel nanoparticle-based delivery systems. Biomolecules 2020, 10, 980.
  95. Coufal-Majewski, S.; Stanford, K.; McAllister, T.; Blakley, B.; McKinnon, J.; Chaves, A.V.; Wang, Y. Impacts of cereal ergot in food animal production. Front. Vet. Sci. 2016, 3, 15.
  96. Maruo, V.M.; Bracarense, A.P.; Metayer, J.-P.; Vilarino, M.; Oswald, I.P.; Pinton, P. Ergot alkaloids at doses close to EU regulatory limits induce alterations of the liver and intestine. Toxins 2018, 10, 183.
  97. Urga, K.; Debella, A.; Medihn, Y.W.; Agata, N.; Bayu, A.; Zewdie, W. Laboratory studies on the outbreak of gangrenous ergotism associated with consumption of contaminated barley in Arsi, Ethiopia. Ethiop. J. Health Dev. 2002, 16, 317–323.
  98. Craig, A.M.; Klotz, J.L.; Duringer, J.M. Cases of ergotism in livestock and associated ergot alkaloid concentrations in feed. Front. Chem. 2015, 3, 1–6.
  99. Bryden, W.L. Mycotoxin contamination of the feed supply chain: Implication for animal productivity and feed security. Anim. Feed Sci. Technol. 2012, 173, 134–158.
  100. Mavrommatis, A.; Giamouri, E.; Tavrizelou, S.; Zacharioudaki, M.; Danezis, G.; Simitzis, P.E.; Zoidis, E.; Tsiplakou, E.; Pappas, A.C.; Georgiou, C.A.; et al. Impact of mycotoxins on animals’ oxidative status. Antioxidants 2021, 10, 214.
  101. Mahato, D.K.; Devi, S.; Pandhi, S.; Sharma, B.; Maurya, K.K.; Mishra, S.; Dhawan, K.; Selvakumar, R.; Kamle, M.; Mishra, A.K.; et al. Occurrence, impact on agriculture, human health, and management strategies of zearalenone in food and feed: A review. Toxins 2021, 13, 92.
  102. Chulze, S.N.; Palazzini, J.M.; Torres, A.M.; Barros, G.; Ponsone, M.L.; Geisen, R. Biological control as a strategy to reduce the impact of mycotoxins in peanuts, grapes and cereals in Argentina. Food Addit. Contam. Part A 2014, 32, 37–41.
  103. Nešić, K.; Habschied, K.; Mastanjević, K. Possibilities for the biological control of mycotoxins in food and feed. Toxins 2021, 13, 198.
  104. Agriopoulou, S.; Stamatelopoulou, E.; Sachadyn-Król, M.; Varzakas, T. Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects. Microorganisms 2020, 8, 952.
  105. Hahn, I.; Thamhesl, M.; Apfelthaler, E.; Klingenbrunner, V.; Hametner, C.; Krska, R.; Schatzmayr, G.; Moll, W.-D.; Berthiller, F.; Schwartz-ZimmermannH, H.E. Characterisation and determination of metabolites formed by microbial and enzymatic degradation of ergot alkaloids. World Mycotoxin J. 2015, 8, 393–404.
  106. Li, C.; Kong, Q.; Mou, H.; Jiang, Y.; Du, Y.; Zhang, F. Biotransformation of alkylamides and alkaloids by lactic acid bacteria strains isolated from Zanthoxylum bungeanum meal. Bioresour. Technol. 2021, 330, 124944.
  107. Dabkevicius, Z.; Semaskiene, R. Control of ergot (Claviceps purpurea (FR.) Tul.) ascocarpus formation under the ipact of chemical and biological seed dressing. Plant protection science. In Proceedings of the 6th Conference of EFPP, Prague, Czech Republic, 8–14 September 2002; Taborsky, V., Polak, J., Lebede, A., Kudela, V., Eds.; Lithuanian Institute of Agriculture: Kėdainiai, Lithuania, 2002.
  108. Lyagin, I.; Efremenko, E. Enzymes for detoxification of various mycotoxins: Origins and mechanisms of catalytic action. Molecules 2019, 24, 2362.
  109. Uppala, S.S.; Wu, B.M.; Alderman, S.C. Effects of temperature and duration of preconditioning cold treatment on sclerotial germination of Claviceps purpurea. Plant Dis. 2016, 100, 2080–2086.
  110. Dung, J.K.S.; Kaur, N.; Walenta, D.L.; Alderman, S.C.; Frost, K.E.; Hamm, P.B. Reducing Claviceps purpurea sclerotia germination with soil-applied fungicides. Crop Prot. 2018, 106, 146–149.
  111. Thabit, T.M.A.; Abdelkareem, E.M.; Bouqellah, N.A.; Shokr, S.A. Triazole fungicide residues and their inhibitory effect on some trichothecenes mycotoxin excretion in wheat grains. Molecules 2021, 26, 1784.
  112. Bailey, K.L.; Gossen, B.D.; Gugel, R.K.; Morrall, R.A.A. Diseases of Field Crops in Canada, 3rd ed.; The Canadian Phytopathological Society and University Extension Press; University of Saskatchewan: Saskatoon, SK, Canada, 2003; pp. 89–93.
  113. Suman, M. Last decade studies on mycotoxins’ fate during food processing: An overview. Curr. Opin. Food Sci. 2021, 41, 70–80.
  114. Ji, C.; Fan, Y.; Zhao, L. Review on biological degradation of mycotoxins. Anim. Nutr. 2016, 2, 127–133.
  115. Calado, T.; Venâncio, A.; Abrunhosa, L. Irradiation for mold and mycotoxin control: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1049–1061.
  116. Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 2017, 78, 412–425.
  117. Bryła, M.; Ksieniewicz-Woźniak, E.; Waśkiewicz, A.; Podolska, G.; Szymczyk, K. Stability of ergot alkaloids during the process of baking rye bread. LWT 2019, 110, 269–274.
  118. Milani, J.; Maleki, G. Effects of processing on mycotoxin stability in cereals. J. Food Sci. Agric. 2014, 94, 2372–2375.
  119. Karlovsky, P.; Suman, M.; Berthiller, F.; de Meester, J.; Eisenbrand, G.; Perrin, I.; Oswald, I.P.; Speijers, G.; Chiodini, A.; Recker, T.; et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016, 32, 179–205.
  120. Tittlemier, S.A.; Drul, D.; Roscoe, M.; Turnock, D.; Taylor, D.; Fu, B.X. Fate of ergot alkaloids during laboratory scale durum processing and pasta production. Toxins 2019, 11, 195.
  121. Meleard, B. Degradation and Epimerization of Wheat Ergot Alkaloids during French Baking Test. 2016. Available online: (accessed on 7 April 2021).
More
Video Production Service