Responsive Architecture: Comparison
Please note this is a comparison between Version 2 by Karina Chen and Version 1 by Ju Hyun Lee.

Responsive architecture is a type of architecture, an artificial entity, that reacts to data and information collected by a variety of types of sensors. It is also defined as an interactive and collective platform where diverse computing or operating systems are executed, leading to architectural behaviors like changing forms or services.

  • responsive architecture
  • adaptive architecture
  • intelligent building
  • kinetic architecture
  • smart environment
  • sensing space
Please wait, diff process is still running!

References

  1. Negroponte, N. Toward a Theory of Architecture Machines. J. Archit. Educ. 1969, 23, 9–12.
  2. Sterk, T.d.E. Building upon Negroponte: A hybridized model of control suitable for responsive architecture. Autom. Constr. 2005, 14, 225–232.
  3. Brodey, W.M. The Design of Intelligent Environments: Soft Architecture. Landscape 1967, 17, 8–12.
  4. Negroponte, N. Soft Architecture Machines; MIT Press: Cambridge, MA, USA, 1975.
  5. Senagala, M. Rethinking Smart Architecture: Some Strategic Design Frameworks. Int. J. Archit. Comput. 2006, 4, 33–46.
  6. Velikov, K.; Thün, G.; Ripley, C. Thick Air. J. Archit. Educ. 2012, 65, 69–79.
  7. Lee, J.H.; Lee, H.; Kim, M.J.; Wang, X.; Love, P.E.D. Context-aware inference in ubiquitous residential environments. Comput. Ind. 2014, 65, 148–157.
  8. Lee, J.H.; Gu, N.; Mark, T.; Ostwald, M. Rethinking and Designing the Key Behaviors of Architectural Responsiveness in the Digital Age. In Learning, Adapting and Prototyping, Proceedings of the 23rd International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA) 2018, Beijing, China, 17–19 May 2018; Fukuda, T., Huang, W., Janssen, P., Crolla, K., Alhadidi, S., Eds.; Tsinghua University: Beijing, China, 2018; pp. 359–368.
  9. Rajan, K.; Saffiotti, A. Towards a science of integrated AI and Robotics. Artif. Intell. 2017, 247, 1–9.
  10. Zuk, W. Kinetic Architecture; Van Nostrand Reinhold: New York, NY, USA, 1970.
  11. Meagher, M. Designing for change: The poetic potential of responsive architecture. Front. Archit. Res. 2015, 4, 159–165.
  12. Mitchell, W.J. Beyond the Ivory Tower: Constructing Complexity in the Digital Age. Science 2004, 303, 1472–1473.
  13. Chung, K.-Y.; Yoo, J.; Kim, K.J. Recent trends on mobile computing and future networks. Pers. Ubiquitous Comput. 2014, 18, 489–491.
  14. Menges, A.; Reichert, S. Material Capacity: Embedded Responsiveness. Archit. Des. 2012, 82, 52–59.
  15. Wigginton, M.; Harris, J. Intelligent Skins; Butterworth-Heinemann: Oxford, UK, 2002.
  16. Addington, D.M.; Schodek, D.L. Smart Materials and New Technologies: For the Architecture and Design Professions; Architectural Press: Oxford, UK, 2005.
  17. Khoo, C.K.; Salim, F.; Burry, J. Designing Architectural Morphing Skins with Elastic Modular Systems. Int. J. Archit. Comput. 2011, 9, 397–419.
  18. Sung, D. Smart Geometries for Smart Materials: Taming Thermobimetals to Behave. J. Archit. Educ. 2016, 70, 96–106.
  19. Trubiano, F. Nanomaterial + Super-Insulator = Aerogel. In Design and Construction of High-Performance Homes: Building Envelopes, Renewable Energies and Integrated Practice; Trubiano, F., Ed.; Routledge: New York, NY, USA, 2013; pp. 93–104.
  20. Kroner, W.M. An intelligent and responsive architecture. Autom. Constr. 1997, 6, 381–393.
  21. Yoon, M.J. Public Works. J. Archit. Educ. 2008, 61, 59–68.
  22. Hosseini, S.M.; Mohammadi, M.; Rosemann, A.; Schröder, T.; Lichtenberg, J. A morphological approach for kinetic façade design process to improve visual and thermal comfort: Review. Build. Environ. 2019, 153, 186–204.
  23. Oungrinis, K.-A.; Liapi, M. Spatial Elements Imbued with Cognition: A possible step toward the “Architecture Machine”. Int. J. Archit. Comput. 2014, 12, 419–438.
  24. Ramzy, N.; Fayed, H. Kinetic systems in architecture: New approach for environmental control systems and context-sensitive buildings. Sustain. Cities Soc. 2011, 1, 170–177.
  25. Sutherland, I.E. A head-mounted three dimensional display. In Proceedings of the December 9–11, 1968, Fall Joint Computer Conference, Part I; ACM: San Francisco, CA, USA, 1968; pp. 757–764.
  26. Rauschnabel, P.A.; Brem, A.; Ivens, B.S. Who will buy smart glasses? Empirical results of two pre-market-entry studies on the role of personality in individual awareness and intended adoption of Google Glass wearables. Comput. Hum. Behav. 2015, 49, 635–647.
  27. Creagh, H. Cave Automatic Virtual Environment. In Proceedings of the Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Technology Conference (Cat. No.03CH37480), Indianapolis, IN, USA, 25 September 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 499–504.
  28. Kuchelmeister, V.; Shaw, J.; McGinity, M.; Del Favero, D.; Hardjono, A. Immersive Mixed Media Augmented Reality Applications and Technology. In Advances in Multimedia Information Processing—PCM 2009; Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1112–1118.
  29. Kim, M.J.; Lee, J.H.; Wang, X.; Kim, J.T. Health Smart Home Services incorporating a MAR-based Energy Consumption Awareness System. J. Intell. Robot. Syst. 2015, 79, 523–535.
  30. Ricci, A.; Ponzio, C.; Fabbri, K.; Gaspari, J.; Naboni, E. Development of a self-sufficient dynamic façade within the context of climate change. Archit. Sci. Rev. 2020, 64, 103450.
  31. Holstov, A.; Bridgens, B.; Farmer, G. Hygromorphic materials for sustainable responsive architecture. Constr. Build. Mater. 2015, 98, 570–582.
  32. Pesenti, M.; Masera, G.; Fiorito, F.; Sauchelli, M. Kinetic Solar Skin: A Responsive Folding Technique. Energy Procedia 2015, 70, 661–672.
  33. Andreozzi, S.; Bessone, G.I.; Poala, M.B.; Bovo, M.; Amador, S.F.D.A.; Giargia, E.; Niccolai, A.; Papetti, V.; Mariani, S. Self-adaptive Multi-purpose Modular Origami Structure. Procedia Eng. 2016, 161, 1423–1427.
  34. Loonen, R.C.G.M.; Trčka, M.; Cóstola, D.; Hensen, J.L.M. Climate adaptive building shells: State-of-the-art and future challenges. Renew. Sustain. Energy Rev. 2013, 25, 483–493.
  35. Yi, H.; Kim, D.; Kim, Y.; Kim, D.; Koh, J.-s.; Kim, M.-J. 3D-printed attachable kinetic shading device with alternate actuation: Use of shape-memory alloy (SMA) for climate-adaptive responsive architecture. Autom. Constr. 2020, 114, 103151.
  36. Barozzi, M.; Lienhard, J.; Zanelli, A.; Monticelli, C. The Sustainability of Adaptive Envelopes: Developments of Kinetic Architecture. Procedia Eng. 2016, 155, 275–284.
  37. Park, J.W. Interactive Kinetic Media Facades: A Pedagogical Design System to Support an Integrated Virtual-Physical Prototyping Environment in the Design Process of Media Facades. J. Asian Archit. Build. Eng. 2013, 12, 237–244.
  38. Megahed, N.A. An exploration of the control strategies for responsive umbrella-like structures. Indoor Built Environ. 2018, 27, 7–18.
  39. Araji, M.T.; Darragh, S.P.; Boyer, J.L. Paradigm in Sustainability and Environmental Design: Lighting Utilization Contributing to Surplus-Energy Office Buildings. LEUKOS 2012, 9, 25–45.
  40. Meyboom, A.; Johnson, G.; Wojtowicz, J. Architectronics: Towards a Responsive Environment. Int. J. Archit. Comput. 2011, 9, 77–98.
  41. Bitterman, N.; Shach-Pinsly, D. Smart home—A challenge for architects and designers. Archit. Sci. Rev. 2015, 58, 266–274.
  42. Premier, A. Solar shading devices integrating smart materials: An overview of projects, prototypes and products for advanced façade design. Archit. Sci. Rev. 2019, 62, 455–465.
  43. Al-Masrani, S.M.; Al-Obaidi, K.M. Dynamic shading systems: A review of design parameters, platforms and evaluation strategies. Autom. Constr. 2019, 102, 195–216.
  44. Nagy, Z.; Svetozarevic, B.; Jayathissa, P.; Begle, M.; Hofer, J.; Lydon, G.; Willmann, A.; Schlueter, A. The Adaptive Solar Facade: From concept to prototypes. Front. Archit. Res. 2016, 5, 143–156.
  45. Manu, S.; Brager, G.; Rawal, R.; Geronazzo, A.; Kumar, D. Performance evaluation of climate responsive buildings in India—Case studies from cooling dominated climate zones. Build. Environ. 2019, 148, 136–156.
  46. Naboni, R.; Breseghello, L.; Kunic, A. Multi-scale design and fabrication of the Trabeculae Pavilion. Addit. Manuf. 2019, 27, 305–317.
  47. Reichert, S.; Menges, A.; Correa, D. Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness. Comput. Aided Des. 2015, 60, 50–69.
  48. Thomsen, M.R.; Bech, K. Suggesting the Unstable: A Textile Architecture. Textile 2012, 10, 276–289.
  49. Vazquez, E.; Gürsoy, B.; Duarte, J.P. Formalizing shape-change: Three-dimensional printed shapes and hygroscopic material transformations. Int. J. Archit. Comput. 2020, 18, 67–83.
  50. Zhang, V.; Rosenwasser, D.; Sabin, J.E. PolyTile 2.0: Programmable microtextured ceramic architectural tiles embedded with environmentally responsive biofunctionality. Int. J. Archit. Comput. 2020.
  51. Megahed, N.A. Understanding kinetic architecture: Typology, classification, and design strategy. Archit. Eng. Des. Manag. 2017, 13, 130–146.
  52. Holden, S. The kinetic architecture of Jean Tinguely’s culture stations. J. Archit. 2019, 24, 51–72.
  53. Akgün, Y.; Gantes, C.J.; Kalochairetis, K.E.; Gkagka, E.E. A proposal for a convertible stadium roof structure derived from Watt-I linkage. Mech. Based Des. Struct. Mach. 2017, 45, 271–279.
  54. Aviv, D.; Meggers, F. Cooling oculus for desert climate—dynamic structure for evaporative downdraft and night sky cooling. Energy Procedia 2017, 122, 1123–1128.
  55. Beatini, V. Translational Method for Designing Folded Plate Structures. Int. J. Space Struct. 2015, 30, 85–97.
  56. Korkmaz, K.; Akgün, Y.; Maden, F. Design of a 2-DOF 8R Linkage for Transformable Hypar Structure. Mech. Based Des. Struct. Mach. 2012, 40, 19–32.
  57. Phocas, M.C.; Kontovourkis, O.; Matheou, M. Kinetic Hybrid Structure Development and Simulation. Int. J. Archit. Comput. 2012, 10, 67–86.
  58. Vergauwen, A.; Laet, L.D.; Temmerman, N.D. Computational modelling methods for pliable structures based on curved-line folding. Comput. Aided Des. 2017, 83, 51–63.
  59. Beatini, V.; Korkmaz, K. Shapes of Miura Mesh Mechanism with Mobility One. Int. J. Space Struct. 2013, 28, 101–114.
  60. Jayathissa, P.; Caranovic, S.; Hofer, J.; Nagy, Z.; Schlueter, A. Performative design environment for kinetic photovoltaic architecture. Autom. Constr. 2018, 93, 339–347.
  61. Eilouti, B. Scenario-based design: New applications in metamorphic architecture. Front. Archit. Res. 2018, 7, 530–543.
  62. Orhon, A.V. Adaptive building shells. In Developments in Science and Engineering; Efe, R., Matchavariani, L., Yaldır, A., Lévai, L., Eds.; St. Kliment Ohridski University Press: Sofia, Bulgaria, 2016; pp. 555–567.
  63. Abdullah, Y.S.; Al-Alwan, H.A.S. Smart material systems and adaptiveness in architecture. Ain Shams Eng. J. 2019, 10, 623–638.
  64. Pelliccia, G.; Baldinelli, G.; Bianconi, F.; Filippucci, M.; Fioravanti, M.; Goli, G.; Rotili, A.; Togni, M. Characterisation of wood hygromorphic panels for relative humidity passive control. J. Build. Eng. 2020, 32, 101829.
  65. Wood, D.; Vailati, C.; Menges, A.; Rüggeberg, M. Hygroscopically actuated wood elements for weather responsive and self-forming building parts—Facilitating upscaling and complex shape changes. Constr. Build. Mater. 2018, 165, 782–791.
  66. López, M.; Rubio, R.; Martín, S.; Ben, C. How plants inspire façades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes. Renew. Sustain. Energy Rev. 2017, 67, 692–703.
  67. Sher, E.; Chronis, A.; Glynn, R. Adaptive behavior of structural systems in unpredictable changing environments by using self-learning algorithms: A case study. Simulation 2014, 90, 991–1006.
  68. Phocas, M.C.; Christoforou, E.G.; Dimitriou, P. Kinematics and control approach for deployable and reconfigurable rigid bar linkage structures. Eng. Struct. 2020, 208, 110310.
  69. Christoforou, E.G.; Phocas, M.C.; Matheou, M.; Müller, A. Experimental implementation of the ‘effective 4-bar method’ on a reconfigurable articulated structure. Structures 2019, 20, 157–165.
  70. Kabošová, L.; Foged, I.; Kmeť, S.; Katunský, D. Hybrid design method for wind-adaptive architecture. Int. J. Archit. Comput. 2019, 17, 307–322.
  71. Leistner, S.; Honold, C.; Maierhofer, M.; Haase, W.; Blandini, L.; Sobek, W.; Roth, D.; Binz, H.; Menges, A. Research on integral design and planning processes for adaptive buildings. Archit. Eng. Des. Manag. 2020, 1–20.
  72. Pruitt, L.N.D.; Kramer, S.W. How Historical Solutions to Thermal Comfort Influenced Modern Construction Efforts. Procedia Eng. 2017, 196, 880–887.
  73. Schnädelbach, H.; Slovák, P.; Fitzpatrick, G.; Jäger, N. The immersive effect of adaptive architecture. Pervasive Mob. Comput. 2016, 25, 143–152.
  74. De Paz, J.F.; Bajo, J.; Rodríguez, S.; Villarrubia, G.; Corchado, J.M. Intelligent system for lighting control in smart cities. Inf. Sci. 2016, 372, 241–255.
  75. Naboni, E.; Malcangi, A.; Zhang, Y.; Barzon, F. Defining The Energy Saving Potential of Architectural Design. Energy Procedia 2015, 83, 140–146.
  76. Mofidi, F.; Akbari, H. Intelligent buildings: An overview. Energy Build. 2020, 223, 110192.
  77. Ding, Z.; Li, Z.; Fan, C. Building energy savings: Analysis of research trends based on text mining. Autom. Constr. 2018, 96, 398–410.
  78. Chen, Z.; Wang, F.; Feng, Q. Cost-benefit evaluation for building intelligent systems with special consideration on intangible benefits and energy consumption. Energy Build. 2016, 128, 484–490.
  79. Dong, B.; Prakash, V.; Feng, F.; O’Neill, Z. A review of smart building sensing system for better indoor environment control. Energy Build. 2019, 199, 29–46.
  80. Nguyen, T.A.; Aiello, M. Energy intelligent buildings based on user activity: A survey. Energy Build. 2013, 56, 244–257.
  81. Ahmed, A.; Korres, N.E.; Ploennigs, J.; Elhadi, H.; Menzel, K. Mining building performance data for energy-efficient operation. Adv. Eng. Inform. 2011, 25, 341–354.
  82. Habibi, S. Micro-climatization and real-time digitalization effects on energy efficiency based on user behavior. Build. Environ. 2017, 114, 410–428.
  83. Kar, P.; Shareef, A.; Kumar, A.; Harn, K.T.; Kalluri, B.; Panda, S.K. ReViCEE: A recommendation based approach for personalized control, visual comfort & energy efficiency in buildings. Build. Environ. 2019, 152, 135–144.
  84. Cheng, X.; Yang, B.; Hedman, A.; Olofsson, T.; Li, H.; Van Gool, L. NIDL: A pilot study of contactless measurement of skin temperature for intelligent building. Energy Build. 2019, 198, 340–352.
  85. Mokhtar, M.; Liu, X.; Howe, J. Multi-agent Gaussian Adaptive Resonance Theory Map for building energy control and thermal comfort management of UCLan’s WestLakes Samuel Lindow Building. Energy Build. 2014, 80, 504–516.
  86. Pombeiro, H.; Santos, R.; Carreira, P.; Silva, C.; Sousa, J.M.C. Comparative assessment of low-complexity models to predict electricity consumption in an institutional building: Linear regression vs. fuzzy modeling vs. neural networks. Energy Build. 2017, 146, 141–151.
  87. Shaker, H.R.; Lazarova-Molnar, S. A new data-driven controllability measure with application in intelligent buildings. Energy Build. 2017, 138, 526–529.
  88. Yoganathan, D.; Kondepudi, S.; Kalluri, B.; Manthapuri, S. Optimal sensor placement strategy for office buildings using clustering algorithms. Energy Build. 2018, 158, 1206–1225.
  89. Georgievski, I.; Nguyen, T.A.; Nizamic, F.; Setz, B.; Lazovik, A.; Aiello, M. Planning meets activity recognition: Service coordination for intelligent buildings. Pervasive Mob. Comput. 2017, 38, 110–139.
  90. Chou, J.-S.; Truong, N.-S. Cloud forecasting system for monitoring and alerting of energy use by home appliances. Appl. Energy 2019, 249, 166–177.
  91. Peng, Y.; Nagy, Z.; Schlüter, A. Temperature-preference learning with neural networks for occupant-centric building indoor climate controls. Build. Environ. 2019, 154, 296–308.
  92. Li, R.; Zhang, X.; Liu, L.; Li, Y.; Xu, Q. Application of neural network to building environmental prediction and control. Build. Serv. Eng. Res. Technol. 2019, 41, 25–45.
  93. Aftab, M.; Chen, C.; Chau, C.-K.; Rahwan, T. Automatic HVAC control with real-time occupancy recognition and simulation-guided model predictive control in low-cost embedded system. Energy Build. 2017, 154, 141–156.
  94. Mofidi, F.; Akbari, H. Integrated optimization of energy costs and occupants’ productivity in commercial buildings. Energy Build. 2016, 129, 247–260.
  95. Park, S.-y.; Cho, S.; Ahn, J. Improving the quality of building spaces that are planned mainly on loads rather than residents: Human comfort and energy savings for warehouses. Energy Build. 2018, 178, 38–48.
  96. Luzi, M.; Vaccarini, M.; Lemma, M. A tuning methodology of Model Predictive Control design for energy efficient building thermal control. J. Build. Eng. 2019, 21, 28–36.
  97. Whiffen, T.R.; Naylor, S.; Hill, J.; Smith, L.; Callan, P.A.; Gillott, M.; Wood, C.J.; Riffat, S.B. A concept review of power line communication in building energy management systems for the small to medium sized non-domestic built environment. Renew. Sustain. Energy Rev. 2016, 64, 618–633.
  98. Ahn, J.; Cho, S. Development of an intelligent building controller to mitigate indoor thermal dissatisfaction and peak energy demands in a district heating system. Build. Environ. 2017, 124, 57–68.
  99. Ahn, J.; Chung, D.H.; Cho, S. Energy cost analysis of an intelligent building network adopting heat trading concept in a district heating model. Energy 2018, 151, 11–25.
  100. Latif, M.; Nasir, A. Decentralized stochastic control for building energy and comfort management. J. Build. Eng. 2019, 24, 100739.
  101. Homod, R.Z. Analysis and optimization of HVAC control systems based on energy and performance considerations for smart buildings. Renew. Energy 2018, 126, 49–64.
  102. Li, W.; Koo, C.; Cha, S.H.; Lai, J.H.K.; Lee, J. A conceptual framework for the real-time monitoring and diagnostic system for the optimal operation of smart building: A case study in Hotel ICON of Hong Kong. Energy Procedia 2019, 158, 3107–3112.
  103. Cociorva, S.; Iftene, A. Indoor Air Quality Evaluation in Intelligent Building. Energy Procedia 2017, 112, 261–268.
  104. Isikdag, U.; Zlatanova, S.; Underwood, J. A BIM-Oriented Model for supporting indoor navigation requirements. Comput. Environ. Urban Syst. 2013, 41, 112–123.
  105. Moreno-Cano, M.V.; Zamora-Izquierdo, M.A.; Santa, J.; Skarmeta, A.F. An indoor localization system based on artificial neural networks and particle filters applied to intelligent buildings. Neurocomputing 2013, 122, 116–125.
  106. Panchalingam, R.; Chan, K.C. A state-of-the-art review on artificial intelligence for Smart Buildings. Intell. Build. Int. 2019, 1–24.
  107. Atis, S.; Ekren, N. Development of an outdoor lighting control system using expert system. Energy Build. 2016, 130, 773–786.
  108. Yaseen, S.; Al-Habaibeh, A.; Su, D.; Otham, F. Real-time crowd density mapping using a novel sensory fusion model of infrared and visual systems. Saf. Sci. 2013, 57, 313–325.
  109. Pertzborn, A. Using distributed agents to optimize thermal energy storage. J. Energy Storage 2019, 23, 89–97.
  110. Howard, B.; Acha, S.; Shah, N.; Polak, J. Implicit Sensing of Building Occupancy Count with Information and Communication Technology Data Sets. Build. Environ. 2019, 157, 297–308.
  111. Zeng, Z.; Zhao, R.; Yang, H. Micro-sources design of an intelligent building integrated with micro-grid. Energy Build. 2013, 57, 261–267.
  112. Aduda, K.O.; Zeiler, W.; Boxem, G.; Labeodan, T. On Defining Information and Communication Technology Requirements and Associated Challenges for ‘Energy and Comfort Active’ Buildings. Procedia Comput. Sci. 2014, 32, 979–984.
  113. Liu, Z.; Liu, Y.; He, B.-J.; Xu, W.; Jin, G.; Zhang, X. Application and suitability analysis of the key technologies in nearly zero energy buildings in China. Renew. Sustain. Energy Rev. 2019, 101, 329–345.
  114. Clements-Croome, D. Sustainable intelligent buildings for people: A review. Intell. Build. Int. 2011, 3, 67–86.
  115. Wong, J.K.W.; Leung, J.; Skitmore, M.; Buys, L. Technical requirements of age-friendly smart home technologies in high-rise residential buildings: A system intelligence analytical approach. Autom. Constr. 2017, 73, 12–19.
  116. Bonino, D.; Corno, F. Modeling, simulation and emulation of Intelligent Domotic Environments. Autom. Constr. 2011, 20, 967–981.
  117. Böke, J.; Knaack, U.; Hemmerling, M. Automated adaptive façade functions in practice—Case studies on office buildings. Autom. Constr. 2020, 113, 103113.
  118. Luna-Navarro, A.; Loonen, R.; Juaristi, M.; Monge-Barrio, A.; Attia, S.; Overend, M. Occupant-Facade interaction: A review and classification scheme. Build. Environ. 2020, 177, 106880.
  119. Ghadamian, H.; Ghadimi, M.; Shakouri, M.; Moghadasi, M.; Moghadasi, M. Analytical solution for energy modeling of double skin façades building. Energy Build. 2012, 50, 158–165.
  120. Egolf, P.W.; Amacker, N.; Gottschalk, G.; Courret, G.; Noume, A.; Hutter, K. A translucent honeycomb solar collector and thermal storage module for building façades. Int. J. Heat Mass Transf. 2018, 127, 781–795.
  121. Lei, Y.; Rao, Y.; Wu, J.; Lin, C.-H. BIM based cyber-physical systems for intelligent disaster prevention. J. Ind. Inf. Integr. 2020, 20, 100171.
  122. Xu, J.; Lu, W.; Xue, F.; Chen, K. ‘Cognitive facility management’: Definition, system architecture, and example scenario. Autom. Constr. 2019, 107, 102922.
  123. López, J.; Pérez, D.; Paz, E.; Santana, A. WatchBot: A building maintenance and surveillance system based on autonomous robots. Robot. Auton. Syst. 2013, 61, 1559–1571.
More
Video Production Service