Along with the penetration of outside air pollutants, contaminants are produced in indoor environments due to different activities such as heating, cooling, cooking, and emissions from building products and the materials used. As people spend most of their lives in indoor environments, this has a significant influence on human health and productivity. Despite the two decades of indoor air quality (IAQ) research from different perspectives, there is still a lack of comprehensive evaluation of peer-reviewed IAQ studies that specifically covers the relationship between the internal characteristics of different types of building environments with IAQ to help understand the progress and limitations of IAQ research worldwide.
Research on the urban population has confirmed that people spend more than 90% of their daily lifespan in indoor environments. Apart from residential indoor environments, people spend a large proportion of their time in offices, educational institutes, and other different commercial and industrial buildings. Specific research in North America has shown that adults tend to spend 87% of their time in buildings, and the remainder of their time is spent in vehicles (6%) and outdoors (7%) [1]. As people spend a majority of their time in indoor environments, exposure to indoor air pollutants has a significant impact on both human health and effectiveness in the workplace. However, research on air quality has mostly focused on the outdoors, whereas indoor air quality (IAQ) and its impacts have received considerably less attention until the last decade [2]. Recently, both scientists and the public have focused on risks associated with IAQ because research has established that indoor air is more contaminated than outdoor air [3]. Due to continuous changes in living style and the materials used in indoor environments, there have been significant changes in terms of the nature and complex compositions of indoor air pollutants, which opens up avenues that need to be investigated in detail.
The quality of indoor air is crucial because people spend a significant portion of their time in different indoor spaces and also because of the presence of numerous pollution sources in indoor spaces, such as traditional and newly developed building materials, finishing products, furniture, cooking systems, and cleaning agents. Therefore, several international organizations worldwide, such as the WHO, have set guidelines and threshold values to maintain an optimal IAQ (Table 1). Apart from the WHO, the most recognized organizations involved in IAQ regulations include the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), US EPA, National Health and Medical Research Council in Australia, Health Canada, State Environment Protection Agency in China, Hong Kong Indoor Air Quality Objectives, Danish Society of Indoor Climate, Finnish Society of Indoor Air Quality and Climate, and Singapore Indoor Air Quality Guidelines [4].
Table 1. Standards for indoor air quality (IAQ) by international organizations/Government.
Parameters | CAS | WHO | [5] | Singapore | [6] | NIOSH | [7] | Canada | [8] | China | [9] | UK | [10] | Australia | [11] | US EPA | [12] |
---|
Common IAQ measurement techniques.
Health problems due to IAQ, which are more commonly respiratory-related diseases and allergies, have increased the importance of IAQ measuring techniques and associated tools. Therefore, device types and monitoring systems of different indoor air pollutants were extensively reviewed. Table 2 shows a summarized list of identified indoor pollutants and devices used for pollutant detection.
Table 2.
Most of the developed countries consider and follow IAQ regulations during the design and maintenance phase of building environments through appropriate measures. However, this scenario is not similar in developing or underdeveloped countries, where poor IAQ disproportionately affects children, women, and elderly persons [32]. Despite the severe impact of exposure to indoor air pollutants, there is still a lack of proper scientific research on IAQ in most developing and underdeveloped countries/regions. Analysis of peer-reviewed journals during this review indicated that primarily developed and a few developing countries are more interested in exploring IAQ in terms of the human health impact, whereas underdeveloped countries still lack IAQ-focused research. The pattern of indoor air pollutants in developing and underdeveloped countries and the consequences to health should be studied more, which can provide a baseline to determine more beneficial IAQ policies in these regions. Therefore, more research is needed in these regions to ensure healthy and sustainable building environments worldwide. Along with indoor pollution sources, the situation of IAQ is worse in some regions because of outdoor climatic conditions, such as high humidity, temperature, and dust intensity, such as in GCC countries. However, studies that have focused on the IAQ situation in GCC countries have mostly excluded detailed VOC evaluations.
The reviewed studies commonly examined some parameters, such as PM, volatile matters, carbon dioxide, and carbon monoxide; however, most have focused on selected VOCs. Although a few studies have analyzed VOCs in detail, most limited their studies to estimating TVOC, benzene, toluene, xylene, and ethylbenzene. Most studies have preferred to use gas chromatography-mass spectrometry to analyze VOCs, showing that it is the most popular detection method for VOCs. Analysis of carcinogenic air pollutants, such as radon, was rare. Additionally, few studies have clearly reported the building materials in walls or floors, whereas others did not mention the finishing type, furniture material, cleaning agent, household activities, which are highly critical elements for analyzing IAQ. Similarly, most studies focusing on commercial building’s IAQ have not specified the specific detail of the indoor materials that has the most impact on the air pollution. However, building structure and/or materials, surface finishes, and resident’s activity in general have been indicated as the major reasons for the elevated VOC concentration in the reviewed commercial buildings. Similarly, outside PM level and/or nearby construction process, tobacco smoke, presence of carpet, human movement have been identified for rise in indoor PM level where concrete additives has been indicated as the responsible element for higher indoor NH3 concentration. Moreover, inter-relation model or equation between pollutants concentration and pollution source inside building environment was not clearly presented in the reviewed studies. Therefore, this study recommends more studies focusing on detailed assessment of exposure concentration along with the identification of responsible sources in each type of building environment.
Of note, direct comparison of indoor air pollutant levels is difficult and not straightforward because evaluations have been conducted over different time periods, using different instruments and sampling techniques, and in different indoor environments. Thus, it is highly recommended that more detailed scientific studies be conducted by following standardized regulations, which will allow for an inter-comparison of IAQ from studies in the future to close the existing knowledge gaps regarding IAQ.