Use of Chitosan in Fish Biotechnology: Comparison
Please note this is a comparison between Version 2 by Catherine Yang and Version 1 by Isidoro Metón.

Chitosan is increasingly used for safe drug and nucleic acid delivery due to well-known properties such as bioadhesion, low toxicity, biodegradability and biocompatibility. Furthermore, chitosan derivatization can be easily performed to improve solubility and stability of chitosan-nucleic acid polyplexes, and enhance efficient target cell drug delivery, cell uptake, intracellular endosomal escape, unpacking and nuclear import of expression plasmids. This review focus attention on recent advances in chitosan-mediated gene delivery for fish biotechnology applications such as fish vaccination against bacterial and viral infection, control of gonadal development, and gene overexpression and silencing for overcoming metabolic limitations such as dependence on protein-rich diets and low glucose tolerance of farmed fish.

  • chitosan
  • gene delivery
  • gene overxpression
  • gene silencing
  • fish biotechnology
Please wait, diff process is still running!

References

  1. Ahmed, F.; Soliman, F.M.; Adly, M.A.; Soliman, H.A.M.; El-Matbouli, M.; Saleh, M. Recent progress in biomedical applications of chitosan and its nanocomposites in aquaculture: A review. Res. Vet. Sci. 2019, 126, 68–82.
  2. Abdel-Ghany, H.M.; Salem, M.E. Effects of dietary chitosan supplementation on farmed fish; a review. Rev. Aquac. 2020, 12, 438–452.
  3. Kono, M.; Matsui, T.; Shimizu, C.; Effect of chitin, chitosan, and cellulose as deit supplements on the growth of cultured fish. Bull. Jpn. Soc. Sci. Fish. 1987, 53, 125–129.
  4. Shiau, S.-Y.; Yu, Y.-P.; Dietary supplementation of chitin and chitosan depresses growth in tilapia, Oreochromis niloticus×O. aureus. Aquaculture 1999, 179, 439–446.
  5. Shengjun Wu; The growth performance, body composition and nonspecific immunity of Tilapia (Oreochromis niloticus) affected by chitosan. International Journal of Biological Macromolecules 2020, 145, 682-685, 10.1016/j.ijbiomac.2019.12.235.
  6. Sabreen E. Fadl; Ghada A. El-Gammal; Walied S. Abdo; Mohamed Barakat; Osama A. Sakr; Eldsokey Nassef; Doaa M. Gad; Hamdy S. El-Sheshtawy; Evaluation of dietary chitosan effects on growth performance, immunity, body composition and histopathology of Nile tilapia ( Oreochromis niloticus ) as well as the resistance to Streptococcus agalactiae infection. Aquaculture Research 2019, 51, 1120-1132, 10.1111/are.14458.
  7. Y. Chen; X. Zhu; Y. Yang; D. Han; J. Jin; S. Xie; Effect of dietary chitosan on growth performance, haematology, immune response, intestine morphology, intestine microbiota and disease resistance in gibel carp (Carassius auratus gibelio). Aquaculture Nutrition 2014, 20, 532-546, 10.1111/anu.12106.
  8. Heba S. El-Sayed; Khouloud M. Barakat; Effect of dietary chitosan on challenged Dicentrarchus labrax post larvae with Aeromonas hydrophila. Russian Journal of Marine Biology 2016, 42, 501-508, 10.1134/s1063074016060043.
  9. J. Yan; C. Guo; Mahmoud A. O. Dawood; J. Gao; Effects of dietary chitosan on growth, lipid metabolism, immune response and antioxidant-related gene expression inMisgurnus anguillicaudatus. Beneficial Microbes 2017, 8, 439-449, 10.3920/bm2016.0177.
  10. Jing Chen; Li Chen; Effects of chitosan-supplemented diets on the growth performance, nonspecific immunity and health of loach fish (Misgurnus anguillicadatus).. Carbohydrate Polymers 2019, 225, 115227, 10.1016/j.carbpol.2019.115227.
  11. Masume Kamali Najafabad; Mohammad Reza Imanpoor; Vahid Taghizadeh; Alireza Alishahi; Effect of dietary chitosan on growth performance, hematological parameters, intestinal histology and stress resistance of Caspian kutum (Rutilus frisii kutum Kamenskii, 1901) fingerlings. Fish Physiology and Biochemistry 2016, 42, 1063-1071, 10.1007/s10695-016-0197-3.
  12. Kalpa W. Samarakoon; Seon-Heui Cha; Ji-Hyeok Lee; You-Jin Jeon; The Growth, Innate Immunity and Protection against H2O2-Induced Oxidative Damage of a Chitosan-Coated Diet in the Olive Flounder Paralichthys olivaceus. Fisheries and aquatic sciences 2013, 16, 149-158, 10.5657/fas.2013.0149.
  13. Ritesh Ranjan; Kurcheti Pani Prasad; T Vani; Rajesh Kumar; Effect of dietary chitosan on haematology, innate immunity and disease resistance of Asian seabass Lates calcarifer (Bloch). Aquaculture Research 2012, 45, 983-993, 10.1111/are.12050.
  14. Shanthi Mari, L.S.; Jagruthi, C.; Anbazahan, S.M.; Yogeshwari, G.; Thirumurugan, R.; Arockiaraj, J.; Mariappan, P.; Balasundaram, C.; Harikrishnan, R. Protective effect of chitin and chitosan enriched diets on immunity and disease resistance in Cirrhina mrigala against Aphanomyces invadans. Fish Shellfish Immunol. 2014, 39, 378–385. [Google Scholar] [CrossRef]
  15. Harikrishnan, R.; Kim, J.-S.; Balasundaram, C.; Heo, M.-S. Immunomodulatory effects of chitin and chitosan enriched diets in Epinephelus bruneus against Vibrio alginolyticus infection. Aquaculture 2012, 326–329, 46–52. [Google Scholar] [CrossRef]
  16. Harikrishnan, R.; Kim, J.-S.; Balasundaram, C.; Heo, M.-S. Dietary supplementation with chitin and chitosan on haematology and innate immune response in Epinephelus bruneus against Philasterides dicentrarchi. Exp. Parasitol. 2012, 131, 116–124.
  17. Yanbo Wang; Jianrong Li; Effects of chitosan nanoparticles on survival, growth and meat quality of tilapia, Oreochromis nilotica. Nanotoxicology 2010, 5, 425-431, 10.3109/17435390.2010.530354.
  18. Abdel-Tawwab, M.; Razek, N.A.; Abdel-Rahman, A.M. Immunostimulatory effect of dietary chitosan nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.). Fish Shellfish Immunol. 2019, 88, 254–258.
  19. Abd El-Naby, F.S.; Naiel, M.A.E.; Al-Sagheer, A.A.; Negm, S.S. Dietary chitosan nanoparticles enhance the growth, production performance, and immunity in Oreochromis niloticus. Aquaculture 2019, 501, 82–89.
  20. Naiel, M.A.E.; Ismael, N.E.M.; Abd El-hameed, S.A.A.; Amer, M.S.; The antioxidative and immunity roles of chitosan nanoparticle and vitamin C-supplemented diets against imidacloprid toxicity on Oreochromis niloticus. Aquaculture 2020, 523, 735219.
  21. Asmaa S. Abd El-Naby; Adham Al-Sagheer; Samar S. Negm; Mohammed A.E. Naiel; Dietary combination of chitosan nanoparticle and thymol affects feed utilization, digestive enzymes, antioxidant status, and intestinal morphology of Oreochromis niloticus. Aquaculture 2020, 515, 734577, 10.1016/j.aquaculture.2019.734577.
  22. Gao, J.-Q.; Hu, Y.L.; Wang, Q.; Han, F.; Shao, J.Z. Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int. J. Nanomed. 2011, 6, 3351–3359.
  23. Nikapitiya, C.; Dananjaya, S.H.S.; De Silva, B.C.J.; Heo, G.-J.; Oh, C.; De Zoysa, M.; Lee, J. Chitosan nanoparticles: A positive immune response modulator as display in zebrafish larvae against Aeromonas hydrophila infection. Fish Shellfish Immunol. 2018, 76, 240–246.
  24. Qin, C.; Zhang, Y.; Liu, W.; Xu, L.; Yang, Y.; Zhou, Z. Effects of chito-oligosaccharides supplementation on growth performance, intestinal cytokine expression, autochthonous gut bacteria and disease resistance in hybrid tilapia Oreochromis niloticus ♀ × Oreochromis aureus ♂. Fish Shellfish Immunol. 2014, 40, 267–274.
  25. Gopalakannan, A.; Arul, V. Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture 2006, 255, 179–187.
  26. Karlsen, Ø.; Amlund, H.; Berg, A.; Olsen, R.E. The effect of dietary chitin on growth and nutrient digestibility in farmed Atlantic cod, Atlantic salmon and Atlantic halibut. Aquac. Res. 2017, 48, 123–133.
  27. Shi-Mei Lin; Yu Jiang; Yong-Jun Chen; Li Luo; Sompong Doolgindachbaporn; Bundit Yuangsoi; Effects of Astragalus polysaccharides (APS) and chitooligosaccharides (COS) on growth, immune response and disease resistance of juvenile largemouth bass, Micropterus salmoides. Fish & Shellfish Immunology 2017, 70, 40-47, 10.1016/j.fsi.2017.08.035.
  28. Ngoc Duy Nguyen; Phu Van Dang; Anh Quoc Le; Thi Kim Lan Nguyen; Duy Hai Pham; Nguyen Van Nguyen; Quoc Hien Nguyen; Effect of oligochitosan and oligo-β-glucan supplementation on growth, innate immunity, and disease resistance of striped catfish (Pangasianodon hypophthalmus). Biotechnology and Applied Biochemistry 2017, 64, 564-571, 10.1002/bab.1513.
  29. Xiao Meng; Jiting Wang; Wenju Wan; Mengmeng Xu; Tingting Wang; Influence of low molecular weight chitooligosaccharides on growth performance and non-specific immune response in Nile tilapia Oreochromis niloticus. Aquaculture International 2017, 25, 1265-1277, 10.1007/s10499-017-0112-7.
  30. P. Su; Y. Han; C. Jiang; Y. Ma; J. Pan; S. Liu; T. Zhang; Effects of chitosan-oligosaccharides on growth performance, digestive enzyme and intestinal bacterial flora of tiger puffer (Takifugu rubripesTemminck et Schlegel, 1850). Journal of Applied Ichthyology 2017, 33, 458-467, 10.1111/jai.13282.
  31. Shimei Lin; Shuhong Mao; Yong Guan; Lin Luo; Li Luo; Yu Pan; Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth, innate immunity and resistance of koi (Cyprinus carpio koi). Aquaculture 2012, 342, 36-41, 10.1016/j.aquaculture.2012.02.009.
  32. Lin, S.; Mao, S.; Guan, Y.; Lin, X.; Luo, L.; Dietary administration of chitooligosaccharides to enhance growth, innate immune response and disease resistance of Trachinotus ovatus. Fish Shellfish Immunol. 2012, 32, 909–913.
  33. Liu, Y.; Xing, R.; Liu, S.; Qin, Y.; Li, K.; Yu, H.; Li, P.; Effects of chitooligosaccharides supplementation with different dosages, molecular weights and degrees of deacetylation on growth performance, innate immunity and hepatopancreas morphology in Pacific white shrimp (Litopenaeus vannamei). Carbohydr. Polym. 2019, 226, 115254.
  34. Lichun Liu; Yang Zhou; Xiaoheng Zhao; Hong Wang; Li Wang; Gailing Yuan; Muhammad Asim; Weimin Wang; Lingbing Zeng; Xiaoling Liu; et al.Li Lin Oligochitosan stimulated phagocytic activity of macrophages from blunt snout bream (Megalobrama amblycephala) associated with respiratory burst coupled with nitric oxide production. Developmental & Comparative Immunology 2014, 47, 17-24, 10.1016/j.dci.2014.06.005.
  35. Luo, L.; Cai, X.; He, C.; Xue, M.; Wu, X.; Cao, H.; Immune response, stress resistance and bacterial challenge in juvenile rainbow trouts Oncorhynchus mykiss fed diets containing chitosan-oligosaccharides. Curr. Zool. 2009, 55, 416–422.
  36. Fernández-Díaz, C.; Coste, O.; Malta, E. Polymer chitosan nanoparticles functionalized with Ulva ohnoi extracts boost in vitro ulvan immunostimulant effect in Solea senegalensis macrophages. Algal Res. 2017, 26, 135–142.
  37. Wisdom, K.S.; Bhat, I.A.; Chanu, T.I.; Kumar, P.; Pathakota, G.-B.; Nayak, S.K.; Walke, P.; Sharma, R. Chitosan grafting onto single-walled carbon nanotubes increased their stability and reduced the toxicity in vivo (catfish) model. Int. J. Biol. Macromol. 2020, 155, 697–707.
  38. Alishahi, A.; Mirvaghefi, A.; Tehrani, M.R.; Farahmand, H.; Koshio, S.; Dorkoosh, F.A.; Elsabee, M.Z.; Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss)Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydr. Polym. 2011, 86, 142–146.
  39. Eduardo Jiménez Fernández; Angels Ruyra; Nerea Roher; Eugenia Zuasti; Carlos Infante; Catalina Fernández-Díaz; Nanoparticles as a novel delivery system for vitamin C administration in aquaculture. Aquaculture 2014, 432, 426-433, 10.1016/j.aquaculture.2014.03.006.
  40. Bhat, I.A.; Nazir, M.I.; Ahmad, I.; Pathakota, G.-B.; Chanu, T.I.; Goswami, M.; Sundaray, J.K.; Sharma, R. Fabrication and characterization of chitosan conjugated eurycomanone nanoparticles: In vivo evaluation of the biodistribution and toxicity in fish. Int. J. Biol. Macromol. 2018, 112, 1093–1103.
  41. Wisdom, K.S.; Bhat, I.A.; Kumar, P.; Pathan, M.K.; Chanu, T.I.; Walke, P.; Sharma, R. Fabrication of chitosan nanoparticles loaded with aromatase inhibitors for the advancement of gonadal development in Clarias magur (Hamilton, 1822). Aquaculture 2018, 497, 125–133.
  42. Bhat, I.A.; Ahmad, I.; Mir, I.N.; Yousf, D.J.; Ganie, P.A.; Bhat, R.A.H.; Gireesh-Babu, P.; Sharma, R. Evaluation of the in vivo effect of chitosan conjugated eurycomanone nanoparticles on the reproductive response in female fish model. Aquaculture 2019, 510, 392–399.
  43. Bhat, I.A.; Ahmad, I.; Mir, I.N.; Bhat, R.A.H.; P, G.-B.; Goswami, M.; Sundaray, J.K.; Sharma, R. Chitosan-eurycomanone nanoformulation acts on steroidogenesis pathway genes to increase the reproduction rate in fish. J. Steroid Biochem. Mol. Biol. 2019, 185, 237–247.
  44. Khouloud M. Barakat; Heba S. El-Sayed; Yousry M. Gohar; Protective effect of squilla chitosan–silver nanoparticles for Dicentrarchus labrax larvae infected with Vibrio anguillarum. International Aquatic Research 2016, 8, 179-189, 10.1007/s40071-016-0133-2.
  45. R.M.C. Udayangani; S.H.S. Dananjaya; Chamilani Nikapitiya; Gang-Joon Heo; Jehee Lee; Mahanama De Zoysa; Metagenomics analysis of gut microbiota and immune modulation in zebrafish ( Danio rerio ) fed chitosan silver nanocomposites. Fish & Shellfish Immunology 2017, 66, 173-184, 10.1016/j.fsi.2017.05.018.
  46. Xia, I.F.; Cheung, J.S.; Wu, M.; Wong, K.-S.; Kong, H.-K.; Zheng, X.-T.; Wong, K.-H.; Kwok, K.W. Dietary chitosan-selenium nanoparticle (CTS-SeNP) enhance immunity and disease resistance in zebrafish. Fish Shellfish Immunol. 2019, 87, 449–459.
  47. Victor, H.; Zhao, B.; Mu, Y.; Dai, X.; Wen, Z.; Gao, Y.; Chu, Z. Effects of Se-chitosan on the growth performance and intestinal health of the loach Paramisgurnus dabryanus (Sauvage). Aquaculture 2019, 498, 263–270.
  48. Zhang, J.; Fu, X.; Zhang, Y.; Zhu, W.; Zhou, Y.; Yuan, G.; Liu, X.; Ai, T.; Zeng, L.; Su, J. Chitosan and anisodamine improve the immune efficacy of inactivated infectious spleen and kidney necrosis virus vaccine in Siniperca chuatsi. Fish Shellfish Immunol. 2019, 89, 52–60.
  49. Zhu, W.; Zhang, Y.; Zhang, J.; Yuan, G.; Liu, X.; Ai, T.; Su, J. Astragalus polysaccharides, chitosan and poly(I:C) obviously enhance inactivated Edwardsiella ictaluri vaccine potency in yellow catfish Pelteobagrus fulvidraco. Fish Shellfish Immunol. 2019, 87, 379–385.
  50. Xiaohong Liu; Hua Zhang; Yuan Gao; Yang Zhang; Haizhen Wu; Yuanxing Zhang; Efficacy of chitosan oligosaccharide as aquatic adjuvant administrated with a formalin-inactivated Vibrio anguillarum vaccine. Fish & Shellfish Immunology 2015, 47, 855-860, 10.1016/j.fsi.2015.10.012.
  51. Guangben Wei; Shuanghu Cai; Yuanzhi Wu; Shaohong Ma; Yucong Huang; Immune effect of Vibrio harveyi formalin-killed cells vaccine combined with chitosan oligosaccharide and astragalus polysaccharides in ♀Epinephelus fuscoguttatus×♂Epinephelus lanceolatus. Fish & Shellfish Immunology 2020, 98, 186-192, 10.1016/j.fsi.2020.01.015.
  52. Mostafa Halimi; Mojtaba Alishahi; Mohammadreza Abbaspour; Masoud Ghorbanpoor; Mohammad Reza Tabandeh; Valuable method for production of oral vaccine by using alginate and chitosan against Lactococcus garvieae/Streptococcus iniae in rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology 2019, 90, 431-439, 10.1016/j.fsi.2019.05.020.
  53. Sajal Kole; Syed Shariq Nazir Qadiri; Su-Mi Shin; Wi-Sik Kim; Jehee Lee; Sung-Ju Jung; Nanoencapsulation of inactivated-viral vaccine using chitosan nanoparticles: Evaluation of its protective efficacy and immune modulatory effects in olive flounder (Paralichthys olivaceus) against viral haemorrhagic septicaemia virus (VHSV) infection.. Fish & Shellfish Immunology 2019, 91, 136-147, 10.1016/j.fsi.2019.05.017.
  54. Julia Tandberg; Leidy Lagos; Erik Ropstad; Gro Smistad; Marianne Hiorth; Hanne C. Winther-Larsen; The Use of Chitosan-Coated Membrane Vesicles for Immunization Against Salmonid Rickettsial Septicemia in an Adult Zebrafish Model. Zebrafish 2018, 15, 372-381, 10.1089/zeb.2017.1556.
  55. Saurabh Dubey; Kiran Avadhani; Srinivas Mutalik; Sangeetha Madambithara Sivadasan; Biswajit Maiti; Shivani Kallappa Girisha; Moleyur Nagarajappa Venugopal; Stephen Mutoloki; Øystein Evensen; Indrani Karunasagar; et al.Hetron Mweemba Munang’Andu Edwardsiella tarda OmpA Encapsulated in Chitosan Nanoparticles Shows Superior Protection over Inactivated Whole Cell Vaccine in Orally Vaccinated Fringed-Lipped Peninsula Carp (Labeo fimbriatus). Vaccines 2016, 4, 40, 10.3390/vaccines4040040.
  56. Erlong Wang; Xingli Wang; Kaiyu Wang; Jie He; Ling Zhu; Yang He; Defang Chen; Ping Ouyang; Yi Geng; Xiaoli Huang; et al.Weimin Lai Preparation, characterization and evaluation of the immune effect of alginate/chitosan composite microspheres encapsulating recombinant protein of Streptococcus iniae designed for fish oral vaccination. Fish & Shellfish Immunology 2018, 73, 262-271, 10.1016/j.fsi.2017.12.034.
  57. Tong Chen; Yazhen Hu; Jiancheng Zhou; Shengbiao Hu; Xun Xiao; Xiaoling Liu; Jianguo Su; Gailing Yuan; Chitosan reduces the protective effects of IFN-γ2 on grass carp (Ctenopharyngodon idella) against Flavobacterium columnare infection due to excessive inflammation. Fish & Shellfish Immunology 2019, 95, 305-313, 10.1016/j.fsi.2019.10.034.
  58. Deepak Sharma; Dipika Maheshwari; Gilphy Philip; Ravish Rana; Shanu Bhatia; Manisha Singh; Reema Gabrani; Sanjeev Sharma; Javed Ali; Rakesh Kumar Sharma; et al.Shweta Dang Formulation and Optimization of Polymeric Nanoparticles for Intranasal Delivery of Lorazepam Using Box-Behnken Design: In Vitro and In Vivo Evaluation. BioMed Research International 2014, 2014, 1-14, 10.1155/2014/156010.
  59. M.A. Rather; I.A. Bhat; P. Gireesh-Babu; A. Chaudhari; J.K. Sundaray; Rupam Sharma; G.B. Pathakota; Molecular characterization of kisspeptin gene and effect of nano–encapsulted kisspeptin-10 on reproductive maturation in Catla catla. Domestic Animal Endocrinology 2016, 56, 36-47, 10.1016/j.domaniend.2016.01.005.
  60. Jiyuan Tian; Juan Yu; Xiuqin Sun; Chitosan microspheres as candidate plasmid vaccine carrier for oral immunisation of Japanese flounder (Paralichthys olivaceus). Veterinary Immunology and Immunopathology 2008, 126, 220-229, 10.1016/j.vetimm.2008.07.002.
  61. S. Vimal; G. Taju; K.S.N. Nambi; S. Abdul Majeed; V. Sarath Babu; M. Ravi; A. S. Sahul Hameed; Synthesis and characterization of CS/TPP nanoparticles for oral delivery of gene in fish. Aquaculture 2012, 358, 14-22, 10.1016/j.aquaculture.2012.06.012.
  62. L Li; S-L Lin; Z-G Liu; L Deng; Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in black seabreamAcanthopagrus schlegeliiBleeker to protect fromVibrio parahaemolyticus. Journal of Fish Diseases 2013, 36, 987-995, 10.1111/jfd.12032.
  63. S. Vimal; S. Abdul Majeed; K.S.N. Nambi; N. Madan; M.A. Farook; C. Venkatesan; G. Taju; S. Venu; R. Subburaj; A.R. Thirunavukkarasu; et al.A. S. Sahul Hameed Delivery of DNA vaccine using chitosan–tripolyphosphate (CS/TPP) nanoparticles in Asian sea bass, Lates calcarifer (Bloch, 1790) for protection against nodavirus infection. Aquaculture 2014, 420, 240-246, 10.1016/j.aquaculture.2013.11.017.
  64. Juan D. González; Jonás Ismael Silva Marrero; Isidoro Metón; Albert Caballero-Solares; Ivan Viegas; Felipe Fernandez; Montserrat Miñarro; Anna Fàbregas; Josep R. Ticó; John G. Jones; et al.Isabel V. Baanante Chitosan-Mediated shRNA Knockdown of Cytosolic Alanine Aminotransferase Improves Hepatic Carbohydrate Metabolism. Marine Biotechnology 2015, 18, 85-97, 10.1007/s10126-015-9670-8.
  65. Fengrong Zheng; Hongzhan Liu; Xiuqin Sun; Yongqiang Zhang; Baiyu Zhang; Zhaojun Teng; Yongjiang Hou; Bo Wang; Development of oral DNA vaccine based on chitosan nanoparticles for the immunization against reddish body iridovirus in turbots ( Scophthalmus maximus ). Aquaculture 2016, 452, 263-271, 10.1016/j.aquaculture.2015.11.013.
  66. Irfan Ahmad Bhat; Mohd Ashraf Rather; Ratnadeep Saha; Gireesh Babu Pathakota; Annam Pavan-Kumar; Rupam Sharma; Anam Pavan Kumar; Expression analysis of Sox9 genes during annual reproductive cycles in gonads and after nanodelivery of LHRH in Clarias batrachus. Research in Veterinary Science 2016, 106, 100-106, 10.1016/j.rvsc.2016.03.022.
  67. Yulema Valero; Elham Awad; Francesco Buonocore; Marta Arizcun; M. Ángeles Esteban; J. Meseguer; Elena Chaves-Pozo; Alberto Cuesta; An oral chitosan DNA vaccine against nodavirus improves transcription of cell-mediated cytotoxicity and interferon genes in the European sea bass juveniles gut and survival upon infection. Developmental & Comparative Immunology 2016, 65, 64-72, 10.1016/j.dci.2016.06.021.
  68. M.I. Sáez; A.J. Vizcaíno; F.J. Alarcón; T.F. Martínez; Comparison of lacZ reporter gene expression in gilthead sea bream (Sparus aurata) following oral or intramuscular administration of plasmid DNA in chitosan nanoparticles. Aquaculture 2017, 474, 1-10, 10.1016/j.aquaculture.2017.03.023.
  69. Pravesh Kumar Rathor; Irfan Ahmad Bhat; Mohd Ashraf Rather; P. Gireesh-Babu; Kundan Kumar; Suresh Babu Padinhate Purayil; Rupam Sharma; Steroidogenic acute regulatory protein (StAR) gene expression construct: Development, nanodelivery and effect on reproduction in air-breathing catfish, Clarias batrachus. International Journal of Biological Macromolecules 2017, 104, 1082-1090, 10.1016/j.ijbiomac.2017.06.104.
  70. Sohrab Ahmadivand; Mehdi Soltani; Mahdi Behdani; Øystein Evensen; Ehsan Alirahimi; Reza Hassanzadeh; Ellahe Soltani; Oral DNA vaccines based on CS-TPP nanoparticles and alginate microparticles confer high protection against infectious pancreatic necrosis virus (IPNV) infection in trout. Developmental & Comparative Immunology 2017, 74, 178-189, 10.1016/j.dci.2017.05.004.
  71. Carlos Gaspar; Jonás Ismael Silva Marrero; Anna Fàbregas; Montserrat Miñarro; Josep R. Ticó; Isabel V. Baanante; Isidoro Metón; Administration of chitosan-tripolyphosphate-DNA nanoparticles to knockdown glutamate dehydrogenase expression impairs transdeamination and gluconeogenesis in the liver. Journal of Biotechnology 2018, 286, 5-13, 10.1016/j.jbiotec.2018.09.002.
  72. M.I. Sáez; A.J. Vizcaíno; F.J. Alarcón; T.F. Martínez; Feed pellets containing chitosan nanoparticles as plasmid DNA oral delivery system for fish: In vivo assessment in gilthead sea bream ( Sparus aurata ) juveniles. Fish & Shellfish Immunology 2018, 80, 458-466, 10.1016/j.fsi.2018.05.055.
  73. Sajal Kole; Ranjeeta Kumari; Deepika Anand; Saurav Kumar; Rupam Sharma; Gayatri Tripathi; M. Makesh; K.V. Rajendran; Megha Kadam Bedekar; Nanoconjugation of bicistronic DNA vaccine against Edwardsiella tarda using chitosan nanoparticles: Evaluation of its protective efficacy and immune modulatory effects in Labeo rohita vaccinated by different delivery routes. Vaccine 2018, 36, 2155-2165, 10.1016/j.vaccine.2018.02.099.
  74. Jonás Ismael Silva Marrero; Juliana Villasante; Ania Rashidpour; Mariana Palma; Anna Fàbregas; María Pilar Almajano; Ivan Viegas; John G. Jones; Montserrat Miñarro; Josep R. Ticó; et al.Isabel V. BaananteIsidoro Metón The Administration of Chitosan-Tripolyphosphate-DNA Nanoparticles to Express Exogenous SREBP1a Enhances Conversion of Dietary Carbohydrates into Lipids in the Liver of Sparus aurata.. Biomolecules 2019, 9, 297, 10.3390/biom9080297.
  75. B. Madhusudhana Rao; Sajal Kole; P. Gireesh-Babu; Rupam Sharma; Gayatri Tripathi; Megha Kadam Bedekar; Evaluation of persistence, bio-distribution and environmental transmission of chitosan/PLGA/pDNA vaccine complex against Edwardsiella tarda in Labeo rohita. Aquaculture 2019, 500, 385-392, 10.1016/j.aquaculture.2018.10.042.
  76. Erwin A. Ramos; Jenne Liza V. Relucio; Celia Aurora T. Torres-Villanueva; Gene Expression in Tilapia Following Oral Delivery of Chitosan-Encapsulated Plasmid DNA Incorporated into Fish Feeds. Marine Biotechnology 2005, 7, 89-94, 10.1007/s10126-004-3018-0.
  77. Parameswaran Vijayakumar; V.P. Ishaq Ahmed; V. Parameswaran; R. Sudhakaran; V. Sarath Babu; A. S. Sahul Hameed; Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio (Listonella) anguillarum. Fish & Shellfish Immunology 2008, 25, 47-56, 10.1016/j.fsi.2007.12.004.
  78. Rakhi Kumari; Subodh Gupta; Arvind R. Singh; Shajahan Ferosekhan; Dushyant Kothari; Asim Kumar Pal; Sanjay Balkrishna Jadhao; Chitosan Nanoencapsulated Exogenous Trypsin Biomimics Zymogen-Like Enzyme in Fish Gastrointestinal Tract. PLOS ONE 2013, 8, e74743, 10.1371/journal.pone.0074743.
  79. Rosamond L. Naylor; Ronald W. Hardy; Dominique Bureau; Alice Chiu; Matthew Elliott; Anthony P. Farrell; Ian Forster; Delbert M. Gatlin; Rebecca J. Goldburg; Katheline Hua; et al.Peter D. Nichols Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences 2009, 106, 15103-15110, 10.1073/pnas.0905235106.
  80. Polakof, S.; Panserat, S.; Soengas, J.L.; Moon, T.W. Glucose metabolism in fish: A review. J. Comp. Physiol. B. 2012, 182, 1015–1045.
  81. Rashidpour, A.; Silva-Marrero, J.I.; Seguí, L.; Baanante, I.V.; Metón, I. Metformin counteracts glucose-dependent lipogenesis and impairs transdeamination in the liver of gilthead sea bream (Sparus aurata). Am. J. Physiol. Integr. Comp. Physiol. 2019, 316, R265–R273.
  82. Metón, I.; Egea, M.; Anemaet, I.G.; Fernández, F.; Baanante, I.V. Sterol regulatory element binding protein-1a transactivates 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene promoter. Endocrinology 2006, 147, 3446–3456.
  83. Egea, M.; Metón, I.; Córdoba, M.; Fernández, F.; Baanante, I.V. Role of Sp1 and SREBP-1a in the insulin-mediated regulation of glucokinase transcription in the liver of gilthead sea bream (Sparus aurata). Gen. Comp. Endocrinol. 2008, 155, 359–367.
More
Video Production Service