Graphene Quantum Dots (GQDs): Comparison
Please note this is a comparison between Version 2 by Camila Xu and Version 3 by Camila Xu.

Graphene quantum dots (GQDs) are small fragments of graphene with lateral dimensions less than 100 nm, with properties deriving from both graphene and carbon points.

  • graphene quantum dots
  • electrochemical sensors
  • biomass
  • green synthesis

1. Introduction

Over the last thirty years, both academic and industrial chemical research has increasingly oriented towards a holistic vision focused on pollution, use of renewable sources, and waste reduction, leading to the generation of a new concept of chemistry, called Green Chemistry, which with its 12 principles aims to redirect the chemical industry along paths of eco-sustainability. Indeed, sustainable development, which has become increasingly central to scientific and technological progress in the last century, requires chemistry to play a primary role in the conversion of old technologies into new “clean” processes and in the design of new products and new processes that are more eco-friendly, breaking the old paradigms based on the generation of large amounts of waste and the wide use of petrochemicals. One of the most important goals of green chemistry and resource efficiency, as stated in the seventh principle, is the design and development of synthetic approaches with low environmental impact, without the use of harmful solvents. On this account, renewable feedstocks, such as biomasses, constituted of a multifaceted array of low and high molecular weight products, such as sugars, hydroxy and amino acids, and biopolymers such as cellulose, hemicelluloses, or other raw materials easily obtainable from natural sources represent the right direction for sustainable production of fuels and novel advanced functional materials, as opposed to unsustainable production from non-renewable fossil resources such as oil, coal and natural gas [1].

Among advanced functional materials, carbon, one of the most abundant elements in the biosphere, plays a crucial role in the development of high-performance and sustainable materials. It is well known that carbon-based materials comprise the most effective properties among all the resources on the earth, such as light weight, high porosity, high-temperature resistance, acid and alkali resistance, good structural stability, and easy conductivity. The above-mentioned characteristics, together with the small background current, the wide potential window, and good electro-catalytic performance have made carbon materials effective in many applications and devices with unlimited possibilities for development [2].

GQDs are newly emerging members of the carbon materials family. GQDs are small fragments of graphene with lateral dimensions less than 100 nm, with properties deriving from both graphene and carbon points [3]. In addition to biocompatibility [4] and low toxicity [5][6]. GQDs have characteristics that make them ideal candidates for use in various fields. The high surface area and abundance of functional groups, as well as their easy functionalization with organic, inorganic, or biological molecules [7], has led to the use of GQDs as electrode modifiers. Moreover, they are chemically stable, water-soluble, robust, inert, and photo-stable against blinking and photo-bleaching [8]. Their solubility in water-based solvents has influenced their application in the field of bio-imaging [9][10] and targeted drug delivery [11]. GQDs exhibit attractive optical absorption properties with a peak between 260 and 380 nm making them ideal candidates for the fabrication of photodetectors or optoelectronic devices [3][12]. Another important feature is the excellent photoluminescence property (PL): normally, the quantum yield PL (QY) is high thanks to the crystallinity and the presence of layers in the structure of GQDs. GQDs have high-speed electron transport due to quantum confinement and an edge effect that directly affect electrical conductivity [13][14]. GQDs can act as a good sensing material due to their high electron movement with a high-speed reaction, making them excellent candidates for sensing applications. Moreover, GQDs possess peroxidase mimetic activity originating from their aromatic structure and this explains the strong interest in the development of electrocatalytic H2O2 detectors [15]. Therefore, taking into account the above mentioned electrochemical properties, great research interest in the use of GQDs for the design of novel electrode materials, not only in the field of fuel cells [16], supercapacitors [17] and photovoltaic cells [18], but also in the field of electrochemical immunosensors for biomedical applications [8] and biosensors [19], has been recently shown. As well as other carbonaceous materials, GQDs are conventionally synthesized from fossil feedstocks such as oil, coal, and petroleum coke and often require energy-intensive synthetic routes and severe process conditions [20]. On the contrary, biomasses or their constituents, such as carbohydrate or organic acids, characterized by their high availability, biodegradability, and low cost, are the only renewable carbon sources and crucial precursors of carbonaceous materials. Moreover, although to date only a few data are available regarding the costs of producing GQDs from renewable precursors, they are expected to have a much lower economic impact than conventional feedstocks (CNts, graphite, etc.), since the various functional groups already existing in the structure of biomass makes the fragmentation easier, related to the dense well-ordered single component graphene or CNTs. On the other hand, the conventional management of biomass waste involves noticeable economic and environmental problems, since traditional disposal strategies, such as incineration or landfilling, are insufficient in terms of environmental impacts, human health, and energy efficiency [21]. Indeed, the development of green routes to obtain GQDs, derived not only from renewable resources, such as lignocellulosic biomass waste, but also from other natural products present in food/agricultural waste (i.e., carbohydrates, lignin, proteins, etc.), not in competition with food suppliers, and without the use of any passivating, reducing, oxidizing agents or organic solvents, is a hot research topic of the 21st century.

2. GQDs from Eco-Friendly Raw Materials by Green Approaches

The synthesis methods of GQDs are generally classified into two groups, based on the reaction mechanism involved: top-down and bottom-up. The top-down approach consists of cutting down large graphene sheets, carbon nanotubes, carbon fibers, or graphite into small pieces of graphene sheet. Since top-down processes involve the conversion of macromolecules using physical forces into smaller ones, the main reaction mechanism involved is oxidative cleavage, although hydrothermal process is preferred, because it is simpler and faster than oxidative methods. Other top-down processes are electrochemical oxidation, microwave irradiation, and laser ablation. The strategy of the bottom–up method is the use of small molecules as starting materials for the production of the GQDs [22]. The bottom-up technique consists of the controllable synthesis of carbon sp2 from organic polymers, or of pyrolysis/carbonization processes starting from organic molecules. Typically, polycyclic aromatic hydrocarbon molecules are the most reliable precursors to form high-quality GQDs [23]. The first method results in a complicated process but has the advantage of obtaining products that can be controlled in terms of size and morphology. Carbonization, on the other hand, is an ecological, easy method, but the structure and the morphology of the GQDs are not controllable and the yield is lower. However, both top-down and bottom-up methods involve the use of very expensive non-renewable raw materials, such as CNTs, graphene, graphene oxide, or other graphene-based precursors, which, if prepared from bulk graphite, require the use of toxic chemicals and strong acidic treatment for the disintegration of the strong and well-ordered structure of graphene into small-sized GQDs, as well as high pressure, high-temperature equipment, resulting in low yields and limited production scalability [24].

The use of green synthetic routes is an emerging area in the field of nanotechnology and offers economic and environmental benefits as an alternative to conventional methods. As is well known, the preparation of graphene quantum dots often needs strong acids or organic solvents, and their green production via sustainable strategies, involving non-toxic and biosafe reagents, still faces important challenges; therefore, eco-friendly synthetic approaches, with easy separation and without complicated post-processes, should be designed and developed.

The synthesis of carbonaceous nanomaterials and the choice of precursor materials can be considered equally relevant as, depending on the process and the feedstock, the product will have different features affecting its future applicability. Furthermore, yields that guarantee large-scale production also depend on them. As mentioned in the introduction, in recent years interest has been growing in exploiting adequate renewable resources to decrease dependence on non-renewable resources and increase energy security and environmental safety [25], leading to the development of several attempts to exploit different natural carbon sources for the production of GQDs, by combining both top-down and bottom-up processes. The real advantage of bio based GQDs is the possibility of using a wide range of precursors and several technological approaches [26]. Several biomaterials have been already proposed for a wide range of electrochemical applications to obtain biomass-derived GQDs, ranging from simple and natural molecules to complex compounds, including wheat straw, wood charcoal, rice husk, coffee ground, forestry processing residue, livestock and poultry manure, organic waste from food processing, and municipal solid waste (Figure 1) [9][27][28]. Among these, citric acid (CA), a weak organic acid, and glucose, a carbohydrate, both available in nature, are undoubtedly the most popular carbon precursors, because of their biocompatibility, low cost and ease of supply. Furthermore, carbonaceous materials obtained via green synthesis from CA and glucose, show both photoluminescence from blue to red regions [29] and extremely high QYs (more than 80%) [30].

Figure 1. Green synthesis of GQDs and their recent applications in electrochemical sensors [9][27][28][31][32][33][34].

In the following paragraphs, a selection of the main innovative and interesting synthetic approaches proposed in the last years, as summarized in Table 1, involving the use of biomass waste or other natural starting materials, by green routes for the production of graphene quantum dots, focusing attention on their eco-compatibility and their perspectives for future development, will be discussed.

Table 1. GQDs synthesized from different natural sources through green approaches by several techniques and their applications.

SourceMethodApplicationRef.
wood charcoalElectrochemical oxidationDetection of H2O2 and glucose[27]
coal tar pitchChemical oxidationFluorescent probes[35]
graphene oxideChemical oxidationFluorescent nano-probes[36]
graphene oxideHTCFluorescent probes for bio-imaging[38]
cokeElectrochemical oxidationFluorescent properties for multicolor light-emitting diode devices[40]
citric acid and sodium citrateElectrochemical oxidationTests of the mutagenicity[41]
graphite plateLaser ablationFluorescent probes[42]
graphite flakesLaser ablationProduction of sulfur-doped graphene nanosheets[43]
glucoseControllable synthesis and HTCElectrochemical luminescence devices[46]
citric acidControllable synthesisDetermination of GQDs properties[47]
honeyPyrolysisBiocompatible fluorescent ink[31]
glucosePyrolysisChemiluminescent biosensor for the detection of cholesterol[48]
Bougainvillea spectabilis flowersCarbonizationElectrodes for detention of catechin[49]
rice grainsPyrolysisFluorescent properties[50]
rice huskCarbonization and HTCTest for biocompatibility[28]
coffee groundsHTCBio-imaging[9]
durianHTCBio-imaging[52]
bamboo woodHTCfluorescence sensors[53]
corn powderHTCSolar cells[55]
glucose powderHTCDetermination of energy levels[57]
celluloseHTCCell imaging[58]
citric acidHTCDetection of doxorubicin[62]
sucroseHTCPhotocatalytic activity[56]
citric acid and ethylenediamineHTCQY of GQDs[60]
citric acidHTCFluorescent biosensor for TYR and ACP[63]
citric acidHTCFluorescent sensor of Hg2+[61]
citric acid and lignin-sulfonateHTCFluorescent sensors for Fe3+[64]
tea wasteMicrowaveSensors for the detection of the Fe3+[66]
mango leavesMicrowaveDetection of intracellular temperature[32]
cow’s milkMicrowaveDrug delivery[69]
citric acid and thioureaMicrowaveFluorescent probes for bio-imaging[70]
grape seed extractMicrowavePhotoluminescent Sensing Applications[71]
fructoseMicroplasmaSensors for silver ions[68]

2.1. Oxidative Method

Oxidative cleavage is one of the most versatile approaches frequently used for the synthesis of GQDs from larger graphitized carbon materials with relatively high yields. An interesting class of nearly uniform size (~5 nm) of graphene quantum dots (E-GQDs) was prepared via eco-friendly carbon electro-oxidation of wood charcoal by Nirala et al. [27]. Coal derived from wood has proved to be an excellent precursor for the synthesis of carbon nanomaterials as it guarantees an efficient electrochemical oxidative cleavage in multilayer graphene sheets. Electrochemical oxidation was performed in a two-electrode system by modulating the current intensity and the electrochemical cleavage was guaranteed both by the free radicals of the water and the peroxide of ammonium sulfate. Free radicals of water act like “scissors”, cutting carbonaceous macromolecules into multilayer sheets of graphene, and facilitate the easy insertion of SO4·radicals to easily insert into the sheets and, finally, reduce them to GQDs with peculiar structural and optical features. One of the disadvantages of the oxidative method is that in many cases it requires the use of strong acids or dangerous and harmful strong oxidants, i.e., non-eco-compatible approaches. Recently, the use of hydrogen peroxide as an oxidant, suggested by Lu et al., represents a valid green approach to obtain GQDs with good stability, applicable as fluorescent probes for bioimaging. Indeed, this latter process can be applied to several raw materials such as biomass wastes. Likewise, Liu et al. [35] used hydrogen peroxide in an environmentally friendly process for the synthesis of quantum dots from waste of the coke industry. Coal tar previously suspended in H2O2 was treated at 100 °C under reflux for 2 h, to obtain a monodispersed solid fluorescent GQDs (~1.7 ± 0.4 nm) with a high yield of more than 80 wt%. Similarly, Halder et al. [36] used hydrogen peroxide as a green oxidant to synthesize GQDs, starting from graphene oxide (GO) mixed with H2O2 (2–6%) at 180 °C for 2 h. The quantum dots obtained can be applied as fluorescent nanoprobes with high features for bioimaging, diagnostics, and drug delivery [37], since they showed high photostability and substantial biocompatibility as evidenced by cell viability tests. The method can be considered green, despite the fact that the pre-synthesized GO was obtained by treating synthetic graphite flakes with H2O2, concentrated sulfuric acid, concentrated hydrochloric acid, phosphorus pentoxide, potassium persulfate, potassium permanganate, and quinine sulphate. Using the same precursor but a different approach, Su et al. [38] synthesized nitrogen doped GQDs (N-GQDs) as promising probes for bio-imaging, from graphene oxide (GO), ethylenediamine and hydrogen peroxide. First, GO was synthesized from expandable graphite by the modified Hummers method [39] (Figure 2a) and then treated in an autoclave at 200 °C for 3 h. An interesting electrochemical exfoliation approach for the large-scale production of GQDs was proposed by He et al. [40], using coke obtained by pyrolysis at 1000 °C as starting material. The electrochemical process was carried out in a two-electrode system, with a piece of advanced coke as the reference electrode and a platinum plate as the counter electrode, using as electrolyte (NH4)2S2O8 dissolved in a mixture of MeOH and H2O. The authors found that the amount of water in the electrolyte solution and the applied current density affect the multi-color fluorescence and the size of the obtained GQDs, ranging from 3.02 to 4.61 nm with fluorescence emissions at 500, 530, and 560 nm, respectively. The reaction parameters also play an important role in the quantum yields allowing the production of high yields from 13.04to 42.86 wt% and 31.13 wt%, making possible eventual industrial scalability of the production process. Furthermore, GQDs were available for engineering of their solid-state GQDs/epoxy composites for advanced applications in multicolor light-emitting diode instruments. Finally, in a recent report of Duarte de-Menezes et al. [41], quantum dots were synthesized via a green electrochemical process based on the electrolysis of citric acid and sodium citrate for 24 h. Several tests of the mutagenicity in vivo of the nanoparticles performed on the obtained GQDs investigated their cytotoxicity and evidenced their possible use in human applications.

Figure 2. Four green approaches adopted to prepare GQDs. (a) Illustration of the preparative strategy for N-GQDs by electrochemical exfoliation and RGOQDs from GO with Hummers method. (Adapted with the permission of Ref. [42]). (b) Synthetic one-step process for the production of SL/GQDs used as sensing platform for Fe3+ detection by Xu et al. (Adapted with the permission of Ref. [43]). (c) The hydrothermal strategy for the functionalization of GQDs synthetized from glucose. (d) Schematic representation of the nucleation and growth of GQDs obtained from citric acid.

2.2. Laser Ablation

Chemical oxidation methods require the use of strong acids which can damage instruments in the long run and can be considered non-eco-friendly approaches. Therefore, simpler and more environmentally friendly alternatives have been developed such as pulsed laser ablation in the liquid phase. This technique was used by Narasimhan et al. [44] to set up fluorescent probes of GQDs for bio-imaging applications. GQDs were synthesized from a graphite plate immersed in an aqueous solution of polyethylene glycol submitted to laser ablation: a nanosecond pulsed laser source was optically directed in the direction of the substrate for 30 min causing the ablation of the graphite plate surface, obtaining GQDs in solution, subsequently separated by centrifugation and filtration, and larger graphene sheets settled to the bottom. The GQDs produced by this method showed good properties as fluorescent biomarkers. More recently, Kang et al. [45] employed pulsed laser ablation in the liquid phase, for the single-step synthesis of GQDs, from graphite flakes suspended in a solution of ethanol and 3-mercaptopropionic acid (MPA), pointing the pulsed laser source onto the suspension for 30 min at room temperature. The pulsed laser caused the decomposition of graphite flakes to form carbonaceous nanoparticles. C binds to S, derived from the decomposition of MPA, producing sulfur-doped graphene nanosheets. One of the main disadvantages of laser ablation is the high cost of the instruments, and until today only a few numbers of examples of GQD synthesized by laser ablation from eco-friendly raw materials have been reported.

2.3. Controllable Synthesis

The controllable synthesis process, over the years, has aroused less success because it includes complex chemical reactions in several phases, which require a long time [46]. The method starts from small molecules (derivatives of substituted benzene) to obtain quantum dots of colloidal graphene with the desired size and morphology [47]. A recent interesting report advanced by Lu et al. [42] consists of the controllable synthesis of GQDs with an average diameter of about 3.5 nm from glucose coupled with a hydrothermal treatment for 3 h at 200 °C. The main advantage of this technique is that, in addition to synthetic glucose, any natural source or biomass waste with high glucose content can easily be exploited as synthetic precursors. Previously, Naik et al. [48] produced GQDs from citric acid pyrolyzed for 25–30 min. The heating caused its decomposition and the formation of a hydronium ion acting as catalyst in the subsequent decomposition reactions, leading to the formation of GQDs from the nucleation of aromatic clusters. 1.5 M NaOH was added to the citric acid solution and the effects of pH on synthesis yield and UV-Vis absorption spectra were investigated.

2.4. Pyrolysis

Under severe reaction temperature and inert atmosphere, many organic molecules can be carbonized into graphitized materials for subsequent exfoliation of GQDs. Pyrolysis is one of the simplest carbonization processes and consists of exploiting high temperatures to convert various renewable starting materials into carbonaceous nanoparticles. A facile pyrolysis synthesis of monodisperse GQDs has been developed for the first time by Mahesh et al. [31], via emulsion-templated carbonization of carbohydrates from honey/water emulsion in the presence of butanol. The GQDs obtained from honey have been applied as transparent security ink and a component for white-light emission. Instead, Hassanzadeh et al. [49] used glucose directly for the synthesis of GQDs. They prepared a chemiluminescent biosensor to detect cholesterol using MoS2 nanosheets and graphene quantum dots synthesized by pyrolysis of glucose at 180 °C, for a few minutes. The obtained GQDs have an average diameter of 14.5 ± 4.6 nm and a maximum emission at an excitation wavelength of 360 nm, which gave a quantum yield of 46%. Veeramani et al. [50] synthesized porous graphene sheet-like carbon nanoparticles (GPACs) via carbonization from Bougainvillea spectabilis flowers. The flowers were crushed, dried, and subsequently pyrolyzed for 6 h at 200 °C. The synthesized material was exploited for the preparation of electrodes for the detection of catechin. Earlier, Kalita et al. [51] used rice grains as biomass by using a similar synthetic approach. In particular, the raw material was fried in a pan at 200 °C for different times, then dispersed in deionized water, and finally subjected to filtration. The high temperature causes the hydrolysis of the glycosidic bonds of the rice starch to decompose into glucose monomers, that subsequently undergo nucleation. The synthesis yield of GQDs from rice grains was approximately 56% and the obtained GQDs showed excellent fluorescence properties with the possibility of exploitation for the preparation of bio-imaging probes. A large scale and controllable synthesis of GQDs, consisting of a combination of two approaches, was recently proposed by Wang et al. [28]: the first belongs to the bottom-up approaches and involves the conversion of rice husk, and the second is a top-down approach, consisting of a hydrothermally assisted method. The rice husk was dried, crushed, and carbonized in a tubular stove in N2 atmosphere at 700 °C and reacted with NaOH at 900 °C for 2 h. The ash obtained was first suspended in an aqueous solution of sulfuric acid and subsequently solubilized by ultrasound for 5 h, then suspended again with the addition of nitric acid and ultrasonicated for 10 h. The solution was washed, filtered, and placed in an autoclave at 200 °C for 10 h. During this process, the silica contained in the rice husk was simultaneously used to synthesize mesoporous silica nanoparticles. This combined approach may open the door to new high-throughput syntheses of GQDs starting from new natural precursors.

2.5. Hydrothermal Method

As mentioned above, pyrolysis is the typical thermal method widely used for preparing nanoparticle carbonaceous materials starting from biomass. However, it has the disadvantage that the carbon source is progressively converted into dots via a series of heating, dehydration, degradation, and carbonization phenomena under drastic conditions requiring high temperatures and long reaction times. On the contrary, hydrothermal treatment, which consists of thermochemical degradation under mild conditions, by exploiting its high moisture content, could represent a valid top-down green technology for GQD synthesis from several natural feedstocks. In fact, the hydrothermal technique is today the most commonly used green technique, from simple precursors such as glucose, sucrose, citric acid and more complex materials, such as biomass wastes. A new interesting hydrothermal approach for converting biomass into GQDs was recently proposed by Wang et al. [52]. They synthesized GQDs, with an average size of ca. 3.9 nm with 2−3 graphene layers, by treating rice husk at 150 °C for 5 h in a Teflon-lined autoclave. As prepared, the RH-GQDs can be steadily dispersed in water, exhibiting intense photoluminescence and a highly selective quenching to Fe3+ ions, making them a promising material for Fe3+ ions sensing. Hydrazine hydrate assisted hydrothermal cutting, at 150/200 °C for 6–10 h, has been successfully applied by Wang et al. [9], for the synthesis of quantum dots starting from coffee grounds, resulting in blue luminescent GQDs. The obtained GQDs, after functionalization with polyethylenimine (PEI), showed enhanced fluorescent properties related to band-edge photoluminescence with single exponential decay, and their sensing and bioimaging applications were documented by Wang. An advancement in the hydrothermal approach was obtained by Wang et al. [53], who synthesized S-doped GQDs by hydrothermal carbonization of durian. The latter was crushed and dispersed in deionized water, then carbonized in an autoclave for 12 h at 150 °C, in the presence of platinum as a catalyst. It has been demonstrated that the low molecular weight saccharides contained in durian are the main sources of sp2 carbon. Furthermore, the high quantum yield and stable luminescence of the synthesized S-GQDs suggest that they can be successfully exploited in bio-imaging. Tade and Patil in a very recent study reported a simple approach for converting waste biomass of bamboo wood. The synthesis of GQDs was obtained by hydrothermal treatment at 180 °C for 8 h of cellulose nanocrystals (CNC), obtained from bamboo wood (Bf) and previously prepared [54]. The carbonaceous product was then subjected to ultrasound, subsequently filtered and finally lyophilized. The authors evidenced that the high temperatures and pressures required by hydrothermal treatment ensure the catalytic conversion of CNCs into one-pot GQD since the cleavage of the 1,4-glycosidic bond of cellulose, and the intramolecular polymerization leading to the formation of the graphite structure, occur almost simultaneously [55]. Indeed, the morphological and optical characterization of the synthesized Bf-GQDs encouraged their use as fluorescence sensors for the detection of curcumin. Ahmed et al. [56] used corn powder for the green synthesis of GQDs. The corn powder was dispersed in EtOH and stirred at 40 °C for 25 min and hydrothermally heated in an autoclave at 200 °C for 10 h. After one day of cooling, the product was solubilized in deionized water and then centrifuged seven times. The obtained multifunctional GQDs were efficiently used as an additive or as interlayers in perovskite solar cells (PSC) representing a new and effective way, in terms of environmental impact and economic feasibility, for PSC commercialization. Recently, Foong et al. [57] prepared several samples starting from sucrose, by varying the concentration of sucrose and solvent (mixture of EtOH and H2O). The sample was heated in an autoclave up to 190 °C for 12 h. The product obtained was dried in an oven at 80 °C for 24 h and then purified. The characterization confirmed the success of the synthesis from sucrose. Furthermore, the results showed that the addition of additives such as FeCl3 and oxalic acid significantly improve the quality of the final product. Bayat et al. [58] used glucose powder as a synthetic precursor of graphene quantum dots. Quantum dots of single-layer graphene were synthesized by hydrothermal treatment of the glucose powder in deionized water at 200 °C for 8 h. In a recent work of Chen et al. [59], polymeric cellulose was used as a synthetic precursor to obtain GQDs via an easy, eco-friendly, and one-pot hydrothermal approach. Previously, the same authors have synthesized GQDs from starch with a green method [60]. No acids or corrosive substances were used in this process, only water and cellulose. The cellulose is ultrasonicated for 30 min and the suspension obtained is subjected to HTC for 8 h at 180 °C involving a first step of hydroxylation followed by a phase of ring-closure condensation. The obtained GQDs show low cytotoxicity and good photoluminescence behavior with consequent high potential for in vitro cell imaging of human cervical carcinoma cells. Quantum dots of N-doped graphene modified with CuO/ZnO nanoarrays were synthesized by Safaei-Ghomi et al. [61] via a simple, green hydrothermal process for 9 h at 180 °C. Ethylenediamine and citric acid were dissolved in deionized water and mixed with the CuO/ZnO heterojunctions already prepared by a one-step hydrothermal process. Then, N-doped GQDs were formed by direct pyrolysis with 2-hydroxypropan-1,2,3-tricarboxylic acid and the hybrid composite generated with CuO/ZnO nanoarrays. In a recent approach, Zhu et al. [62] proposed the synthesis of GQDs by pyrolysis of citric acid, in a round bottom flask at 200 °C for 30 min. The GQDs were then functionalized with glycine, under alkaline conditions, at 120 °C (Gly-GQDs). The latter was characterized and the maximum fluorescence QY was obtained by optimizing the reaction at 120 °C for 90 min and pH 12. The Gly-GQDs were tested as highly effective fluorescence sensors for detection of Hg2+ in water because of the real quenching effect of metal ions by a non-radiative electron transfer. Again, by pyrolysis of citric acid, Hasanzadeh et al. [63] synthesized GQDs, used for the development of electrodes useful in detecting doxorubicin in the blood. Citric acid was pyrolyzed at 200 °C for 5 min until an orange liquid was obtained which was poured dropwise into an aqueous solution of NaOH. The solution thus obtained was characterized by showing a SEM graphitic morphological structure. The obtained sample was used for the preparation of electrodes, whose doxorubicin detection activity was studied by cyclic voltammetry. According to previous authors, Qu et al. [64] synthesized N-GQDs by HTC of citric acid solubilized in water and ammonia for 3 h at 200 °C. The product was then dialyzed for 8 h. The N-GQDs obtained were mixed with both tyrosinase (TYR) and acid phosphatase (ACP) and the relative fluorescence spectra were detected. The same composites were used in human blood samples, demonstrating the synthesis of a new fluorescence biosensor for detecting the activity of these enzymes. Xu et al. [43] used lignin sulfonates (SL), an uncommon biomass obtained from extraction of lignin from wood. Citric acid was firstly pyrolyzed by a green hydrothermal method at 200 °C for 15 min, transferred into a mixture of NaOH and lignin sulfonate (SL), and finally dialyzed in a bag for two days. A similar process was carried out but without the addition of SL dispersion and the obtained SL/GQD composites show excellent fluorescence revealing an emission intensity of the SL/GQDs four times higher than that of free GQDs. The peculiar features of the SL/GQDs have been exploited for the detection of Fe3+ (Figure 2b) and, to evaluate the specificity of the sensor, the PL intensities were measured in the presence of other interfering ions: the composite with Fe3+ showed the strongest fluorescence quenching efficiency. As emerged from the references reviewed, citric acid is a green precursor widely used in the synthesis of nanocarbon materials. Therefore, as previously mentioned for glucose, waste citrus fruits containing a high amount of citric acid could be exploited as interesting bio-precursors for the green synthesis of GQDs.

2.6. Microwave Irradiation Method

Microwaves are a form of electromagnetic radiation lying between infrared radiation and radio frequencies. Microwave heating is a simple, fast and economical process that is extensively used in the synthesis of different classes of materials, including GQDs [65]. Radiant energy is uniformly transferred to the substrate without direct interaction with the source, making the MW assisted approach more efficient than conventional heating. A one-pot microwave irradiation method was reported by Kumawat et al. [32] with mango leaves, exploited to synthesize GQDs, which were then used for in vivo imaging application. The mango leaves were minced, extracted in ethanol for 4 h, and mixed in water. The suspension was treated in the microwave for 5 min and, finally, centrifuged and filtered again. The obtained GQDs showed high biocompatibility and effectiveness for the detection of intracellular temperature. More recently, Abbas et al. [66] synthesized GQDs from tea waste by the microwave assisted oxidative process followed by a hydrothermal treatment in designing selective fluorescent sensors for the detection of the Fe3+ metal ion. The tea scraps were previously washed and dried for 12 h and, subsequently ground. Finally, they were subjected to pyrolysis in an oven at 500 °C for 3 h. The biochar obtained was subsequently subjected to oxidative cutting in a microwave reactor for 15–180 min. The material obtained was purified by hydrothermal treatment at 200 °C for 8 h. The prepared quantum dots showed high detection sensitivity. For the synthesis of quantum dots, plants have proved to be excellent precursors, thanks to their high carbon content. For this reason, the alcoholic extract of a climbing plant (Clitoria ternatea) was used by Tak et al. [67]. The Clitoria ternatea flower extract was mixed with HPLC water and subsequently heated to 900 W in a microwave oven for 5–10 min, then the resulting residue was distributed in absolute ethanol to form a GQD dispersion. The latter was filtered and the particles dried. The peculiar features of the GQDs obtained by this rapid synthesis were analyzed in vivo, evidencing the ability to significantly inhibit the enzyme acetylcholinesterase, and suggesting the possibility of exploiting GQDs in the treatment of Alzheimer’s disease. Dager et al. [33] have recently performed a synthesis of graphene nanoparticles using a one-step decomposition process, enhanced by microwave plasma. In a recent bottom-up method, Wu et al. [68] developed a synthetic alternative to GQDs for sensing applications by using microplasma, an innovative method in which the starting material is represented by fructose. Microplasma has already been used for the synthesis of semiconductor materials, electronic materials, or aerosols, but never for the synthesis of carbon-based quantum dots. This process does not find other sources in the bibliography, although the advantages of plasma treatment compared to other synthesis processes are already known: it increases the decomposition of the starting material, shortens the reaction time, and exploits the temperature produced during the reaction by not requiring an external power supply, therefore having excellent energy properties. The process takes place in a single step lasting 5 min. The pressure was monitored and kept constant and the internal temperature never exceeded 70 °C. A substrate holder, equipped with a halogen lamp heater, is placed under the plasma source. The carbon obtained is sonicated for 5 min, ultra-centrifuged for 10 min, and subsequently filtered. The yield of the described synthetic process was compared with that obtained with traditional synthetic methods, demonstrating its efficiency. Thakur et al. [69] proposed a microwave assisted heating one pot synthesis starting from pasteurized cow’s milk at different reaction times. The milk-derived multi-fluorescent GQDs, spherical in shape and with a lateral size of ca. 5 nm, were efficiently used in simultaneous bioimaging and drug delivery in cancer, using cysteamine hydrochloride as linker, demonstrating their possible use in drug delivery. GQDs functionalized with anti-cancer drug BHC using cysteamine hydrochloride as a linker molecule (GQDs@Cys-BHC) showed an 88% drug loading efficiency, and an in vitro drug release profile which was pH-responsive dependent. Moreover, GQDs have been demonstrated to be suitable for in vitro theranostic application in cancer therapy. By a similar approach, Li et al. [70] obtained GQDs O and S dual-doped (GCNQD) from citric acid and thiourea. The GCNQDs, with a luminescence behavior in the visible range highly dependent on the excitation wavelength and pH, denoting high fluorescence quantum yield (31.67%), strong resistance to the interference of high ionic strength environment, and good biocompatibility, were successfully used as fluorescent probes for HeLa cell imaging, suggesting a great potential in bioanalysis and related fields. Kumawat et al. [71] investigated a green method based on the use of alcoholic grape seed extract as a starting material. The extract was treated in a microwave after evaporation and dispersion in water obtaining GQDs that undergo “self-assembly” (sGQD) in the water, showing interesting cell proliferation activity in fibroblasts in vitro.

References

  1. Sheldon, R.A. Green chemistry and resource efficiency: Towards a green economy. Green Chem. 2016, 18, 3180–3183.
  2. Deng, J.; Li, M.; Wang, Y. Biomass-derived carbon: Synthesis and applications in energy storage and conversion. Green Chem. 2016, 18, 4824–4854.
  3. Sun, H.; Wu, L.; Wei, W.; Qu, X. Recent advances in graphene quantum dots for sensing. Mater. Today 2013, 16, 433–442.
  4. Li, N.; Than, A.; Wang, X.W.; Xu, S.H.; Sun, L.; Duan, H.W.; Xu, C.J.; Chen, P. Ultrasensitive profiling of metabolites using tyramine-functionalized graphene quantum dots. ACS Nano. 2016, 10, 3622–3629.
  5. Jiang, D.; Chen, Y.; Li, N.; Li, W.; Wang, Z.; Zhu, J.; Zhang, H.; Liu, B.; Xu, S. Synthesis of luminescent graphene quantum dots with high quantum yield and their toxicity study. PLoS ONE 2015, 10, e0144906.
  6. Wang, S.; Cole, I.S.; Li, Q. The toxicity of graphene quantum dots. RSC Adv. 2016, 6, 89867–89878.
  7. Mehta, J.; Bhardwaj, N.; Bhardwaj, S.; Tuteja, S.; Vinayak, P.; Paul, A.; Kim, K.; Deep, A. Graphene quantum dot modified screen printed immunosensor for the determination of parathion. Anal. Biochem. 2017, 523, 1–9.
  8. Mansuriya, B.D.; Altintas, Z. Graphene Quantum Dot-Based Electrochemical Immunosensors for Biomedical Applications. Materials 2020, 13, 96.
  9. Wang, L.; Li, W.; Wu, B.; Li, Z.; Wang, S.; Liu, Y.; Pan, D.; Wu, M. Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chem. Eng. J. 2016, 300, 75–82.
  10. Lu, H.; Li, W.; Dong, H.; Wei, M. Graphene Quantum Dots for Optical Bioimaging. Small 2019, 15, 1902136.
  11. Kumar, Y.R.; Deshmukh, K.; Sadasivuni, K.K.; Pasha, S.K.K. Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: A review. RSC Adv. 2020, 10, 23861–23898.
  12. Ghosh, D.; Kapri, S.; Bhattacharyya, S. Phenomenal Ultraviolet Photoresponsivity and Detectivity of Graphene Dots Immobilized on Zinc Oxide Nanorods. ACS Appl. Mater. Interfaces 2016, 8, 35496–35504.
  13. Ghosh, D.; Sarkar, K.; Devi, P.; Kim, K.H.; Kumar, P. Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices. Renew. Sustain. Energy Rev. 2021, 135, 110391.
  14. Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing. Nanomaterials 2019, 9, 634.
  15. Xu, Q.; Yuan, H.; Dong, X.; Zhang, Y.; Asif, M.; Dong, Z.; He, W.; Ren, J.; Sun, Y.; Xiao, F. Dual nanoenzyme modified microelectrode based on carbon fiber coated with AuPd alloy nanoparticles decorated graphene quantum dots assembly for electrochemical detection in clinic cancer samples. Biosens. Bioelectron. 2018, 107, 153–162.
  16. Islam, M.S.; Deng, Y.; Tong, L.; Roy, A.K.; Faisal, S.N.; Hassan, M.; Minett, A.I.; Gomes, V.G. In-situ direct grafting of graphene quantum dots onto carbon fibre by low temperature chemical synthesis for high performance flexible fabric supercapacitor. Mater. Today Commun. 2017, 10, 112–119.
  17. Zhang, Z.; Zhang, J.; Chen, N.; Qu, L. Graphene quantum dots: An emerging material for energy-related applications and beyond. Energy Environ. Sci. 2012, 5, 8869–8890.
  18. Zhao, J.; Tang, L.; Xiang, J.; Ji, R.; Hu, Y.; Yuan, J.; Zhao, J.; Tai, Y.; Cai, Y. Fabrication and properties of a high-performance chlorine doped graphene quantum dot based photo-voltaic detector. RSC Adv. 2015, 5, 29222–29229.
  19. Shojaei, T.R.; Mohd Salleh, M.A.; Mobli, H.; Aghbashlo, M.; Tabatabei, M. Multivariable optimization of carbon nanoparticles synthesized from waste facial tissues by artificial neural networks, new material from downstream quenching of quantum dots. J. Mater. Sci. Mater. Electron. 2019, 30, 3156–3165.
  20. Pistone, A.; Espro, C. Current trends on turning biomass wastes into carbon materials for electrochemical sensing and rechargeable battery applications. Curr. Opin. Green Sustain. Chem. 2020, 26, 100374.
  21. Wei, Y.; Li, J.; Shi, D.; Liu, G.; Zhao, Y.; Shimaoka, T. Environmental challenges impeding the composting of biodegradable municipal solid waste: A critical review. Resour. Conserv. Recycl. 2017, 122, 51–65.
  22. Abbas, A.; Mariana, L.T.; Phana, A.N. Biomass-waste derived graphene quantum dots and their applications. Carbon 2018, 140, 77–99.
  23. Ding, Z.; Li, F.; Wen, J.; Wang, X.; Sun, R. Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass. Green Chem. 2018, 20, 1383–1390.
  24. Zheng, X.T.; Ananthanarayanan, A.; Luo, K.Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015, 11, 1620–1636.
  25. Yaxuan, J.; Guo, Y.; Qineng, X.; Xiaohui, L.; Wang, Y. Catalytic Production of Value-Added Chemicals and Liquid Fuels from Lignocellulosic Biomass. Chem 2019, 5, 2520–2546.
  26. Kang, C.; Huang, Y.; Yang, H.; Yan, X.F.; Chen, Z.P. A Review of Carbon Dots Produced from Biomass Wastes. Nanomaterials 2020, 10, 2316.
  27. Nirala, N.R.; Khandelwal, G.; Kumar, B.; Vinita; Prakash, R.; Kumar, V. One step electro-oxidative preparation of graphene quantum dots from wood charcoal as a peroxidase mimetic. Talanta 2017, 173, 36–43.
  28. Wang, Z.; Yu, J.; Zhang, X.; Li, N.; Liu, B.; Li, Y.; .Wang, Y.; Wang, W.; Li, Y.; Zhang, L.; et al. Large-scale and controllable synthesis of graphene quantum dots from rice husk bio-mass: A comprehensive utilization strategy. ACS Appl. Mater. 2016, 8, 1434.
  29. Hola, K.; Sudolska, M.; Kalytchuk, S.; Nachtigallova, D.; Rogach, A.; Otyepka, M.; Zboril, R. Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano 2017, 11, 12402.
  30. Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. 2013, 52, 3953.
  31. Mahesh, S.; Lekshmi, C.L.; Renuka, K.D.; Joseph, K. Simple and Cost-Effective Synthesis Fluorescent Graphene Quantum Dots from Honey: Application as Stable Security Ink and White-Light Emission. Particle 2016, 33, 70–74.
  32. Kumawat, M.K.; Thakur, M.; Gurung, R.B.; Srivastava, R. Graphene Quantum Dots from Mangifera indica: Application in NearInfrared Bioimaging and Intracellular Nanothermometry. ACS Sustain. Chem. Eng. 2017, 5, 1382–1391.
  33. Dager, A.; Baliyan, A.; Kurosu, S.; Maekawa, T.; Tachibana, M. Ultrafast synthesis of carbon quantum dots from fenugreek seeds using microwave plasma enhanced decomposition: Application of C-QDs to grow fluorescent protein crystals. Sci. Rep. 2020, 10, 12333.
  34. Kulchitsky, V.A.; Davydov, M.; Osipov, A.N.; Kilin, S.Y. Neural network Structures:Current and Future States. OSTIS 2018, 1, 259–264.
  35. Liu, Q.; Zhang, J.; He, H.; Huang, G.; Xing, B.; Jia, J.; Zhang, C. Green preparation of high yield fluorescent graphene quantum dots from coal-tar-pitch by mild oxidation. Nanomaterials 2018, 8, 844.
  36. Halder, A.; Godoy-Gallardo, M.; Ashley, J.; Feng, X.; Zhou, T.; Hosta-Rigau, L.; Sun, Y. One-Pot Green Synthesis of Biocompatible Graphene Quantum Dots and Their Cell Uptake Studies. ACS Appl. Bio. Mater. 2018, 1, 452–461.
  37. Iravani, S.; Varma, R.S. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ. Chem. Lett. 2020, 18, 703–727.
  38. Su, J.; Zhang, X.; Tong, X.; Wang, X.; Yang, P.; Yao, F.; Guo, R.; Yuan, C. Preparation of graphene quantum dots with high quantum yield by a facile one-step method and applications for cell imaging. Mater. Lett. 2020, 271, 127806.
  39. Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.
  40. He, M.; Guo, X.; Huang, J.; Shen, H.; Zeng, Q.; Wang, L. Mass production of tunable multicolor graphene quantum dots from an energy resource of coke by a one-step electrochemical exfoliation. Carbon 2018, 140, 508–520.
  41. Duarte de Menezes, F.; dos Reis, S.R.R.; Pinto, S.R.; Portilho, F.L.; Chaves e Mello, F.; Helal-Neto, E.; da Silva de Barros, A.O.; Alencar, L.M.R.; Silva de Menez, A.; Costa dos Santos, C.; et al. Graphene quantum dots unraveling: Green synthesis, characterization, radiolabeling with 99 mTc, in vivo behavior and mutagenicity. Mater. Sci. Eng. 2019, 102, 405–414.
  42. Lu, Y.; Hao, H.; Liu, P.; Feng, Y.; Wang, J. Controllable synthesis of Graphene Quantum Dots with Tunable-Photoluminescence. Mater. Sci. Eng. 2020, 768.
  43. Xu, L.; Mao, W.; Huang, J.; Li, S.; Huang, K.; Li, M.; Xia, J.; Chen, Q. Economical, green route to highly fluorescence intensity carbon materials based on ligninsulfonate/graphene quantum dots composites: Application as excellent fluorescent sensing platform for detection of Fe3+ ions. Sens. Actuators B Chem. 2016, 230, 54–60.
  44. Narasimhan, A.K.; Lakshmi, S.B.; Santra, T.S.; Ramachandra Rao, M.S.; Krishnamurthi, G. Oxygenated graphene quantum dots (GQDs) synthesized using laser ablation for long-term real-time tracking and imaging. RSC Adv. 2017, 7, 53822–53829.
  45. Kang, S.; Jeong, Y.K.; Jung, K.H.; Son, Y.; Kim, W.R.; Ryu, J.H.; Kim, K.M. One-step synthesis of sulfur-incorporated graphene quantum dots using pulsed laser ablation for enhancing optical properties. Opt. Express 2020, 28, 21659–21667.
  46. Chen, W.; Lv, G.; Hu, W.; Li, D.; Chen, S.; Dai, Z. Synthesis and applications of graphene quantum dots: A review. Nanotech. Rev. 2018, 7, 157–185.
  47. Yan, X.; Cui, X.; Li, L. Synthesis of Large, Stable Colloidal Graphene Quantum Dots with Tunable Size. J. Am. Chem. Soc. 2010, 132, 5944–5945.
  48. Naik, J.P.; Sutradhar, P.; Saha, M. Molecular scale rapid synthesis of graphene quantum dots (GQDs). J. Nanostruct. Chem. 2017, 7, 85–89.
  49. Hassanzadeh, J.; Khataee, A. Ultrasensitive chemiluminescent biosensor for the detection of cholesterol based on synergetic peroxidase-like activity of MoS2 and graphene quantum dots. Talanta 2018, 178, 992–1000.
  50. Veeramani, V.; Sivakumar, M.; Chen, S.M.; Madhu, R.; Alamri, H.R.; Alothman, Z.A.; Hossain, S.A.; Chen, C.K.; Yamauchi, Y.; Miyamoto, N.; et al. Lignocellulosic biomass-derived, graphene sheet-like porous activated carbon for electrochemical supercapacitor and catechin sensing. RSC Adv. 2017, 7, 45668–45675.
  51. Kalita, H.; Mohapatra, J.; Pradhanb, L.; Mitraa, A.; Bahadurc, D.; Aslam, M. Efficient synthesis of rice based graphene quantum dots and their fluorescent properties. RSC Adv. 2016, 6, 23518–23524.
  52. Wang, W.; Wang, Z.; Liu, J.; Peng, Y.; Yu, X.; Wang, W. One-Pot Facile Synthesis of Graphene Quantum Dots from Rice Husks for Fe3+ Sensing. Ind. Eng. Chem. Res. 2018, 57, 9144–9150.
  53. Wang, G.; Guo, Q.; Chen, D.; Liu, Z.; Zheng, X.; Xu, A.; Yang, S. Facile and Highly Effective Synthesis of Controllable Lattice Sulfur-Doped Graphene Quantum Dots via Hydrothermal Treatment of Durian. ACS Appl. Mater. Interfaces 2018, 10, 5750–5759.
  54. Tade, R.S.; Patil, P.O. Green synthesis of fluorescent graphene quantum dots and its application in selective curcumin detection. Curr. Appl. Phys. 2020, 20, 1226–1236.
  55. Eom, Y.; Min Son, S.; Kim, Y.E.; Lee, J.E.; Hwang, S.; Cha, H.G. Structure evolution mechanism of highly ordered graphite during carbonization of cellulose nanocrystals. Carbon 2019, 150, 142–152.
  56. Ahmed, D.S.; Mohammed, M.; Majeed, S.M. Green Synthesis of Eco-Friendly Graphene Quantum Dots for Highly Efficient Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 10863–10871.
  57. Foong, L.K.; Khojasteh, H.; Amiri, M.; Heydaryan, K.; Salavati-Niasari, M.; Almasi-Kashi, M.; Lyu, Z. Environmental friendly approach for facile synthesis of graphene-like nanosheets for photocatalytic activity. J. Alloys Compd. 2020, 823, 153696.
  58. Bayat, A.; Saievar-Iranizad, E. Synthesis of green-photoluminescent single layer graphene quantum dots: Determination of HOMO and LUMO energy states. J. Lumin. 2017, 192, 180–183.
  59. Chen, W.; Shen, J.; Lv, G.; Li, D.; Hu, Y.; Zhou, C.; Liu, X.; Dai, Z. Green Synthesis of Graphene Quantum Dots from Cotton Cellulose. Chem. Sel. 2019, 4, 2898–2902.
  60. Chen, W.; Li, D.; Tian, L.; Xiang, W. Green synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green Chem. 2018, 20, 4438–4442.
  61. Safaei-Ghomi, J.; Elyasi, Z.; Babaei, P. N-doped graphene quantum dots modified with CuO (0D)/ZnO (1D) heterojunctions as a new nanocatalyst for the environmentally friendly one-pot synthesis of monospiro derivatives. New J. Chem. 2021, 45, 1269–1277.
  62. Zhu, Q.; Mao, H.; Li, J.; Hua, J.; Wang, J.; Yang, R.; Li, Z. A glycine-functionalized graphene quantum dots synthesized by a facile post-modification strategy for a sensitive and selective fluorescence sensor of mercury ions. Spectrochim Acta A Mol. Biomol. Spectrosc. 2021, 247, 119090.
  63. Hasanzadeh, M.; Hashemzadeh, N.; Shadjou, N.; Eivazi-Ziaei, J.; Khoubnasabjafari, M.; Jouyban, A. Sensing of doxorubicin hydrochloride using graphene quantum dot modified glassy carbon electrode. J. Mol. Liq. 2016, 221, 354–357.
  64. Qu, Z.; Na, W.; Liu, X.; Liu, H.; Su, X. A novel fluorescence biosensor for sensitivity detection of tyrosinase and acid phosphatase based on nitrogen-doped graphene quantum dots. Anal. Chim. Acta 2018, 997, 52–59.
  65. Singh, R.K.; Kumar, R.; Singh, D.P.; Savu, R.; Moshkalev, S.A. Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: A review. Mater. Today Chem. 2019, 12, 282–314.
  66. Abbas, A.; Tabish, T.A.; Bull, S.J.; Lim, T.M.; Phan, A.N. High yield synthesis of graphene quantum dots from biomass waste as a highly selective probe for Fe3+ sensing. Sci. Rep. 2020, 10, 21262.
  67. Tak, K.; Sharma, R.; Dave, V.; Jain, S.; Sharma, S. Clitoria ternatea Mediated Synthesis of Graphene Quantum Dots for the Treatment of Alzheimer’s Disease. ACS Chem. Neurosci. 2020, 11, 3741–3748.
  68. Wu, G.X.; Chiang, W.H. Microplasma-assisted synthesis of silver nanoparticle/graphene quantum dots nanohybrids for photoluminescence-based silver ion and biothiols detection. ACS Appl. Mater. Interfaces 2020, 12, 28550–28560.
  69. Thakur, M.; Mewada, A.; Pandey, S.; Bhori, M.; Singh, K.; Sharon, M.; Sharon, M. Milk-derived multi-fluorescent graphene quantum dot-based cancertheranostic system. Mater. Sci. Eng. C 2016, 67, 468–477.
  70. Li, H.; Shao, F.Q.; Huang, H.; Feng, J.J.; Wang, A.J. Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sens. Actuators B Chem. 2016, 226, 506–511.
  71. Kumawat, M.; Thakur, M.; Gurung, R.B.; Srivastava, R. Graphene Quantum Dots for Cell Proliferation, Nucleus Imaging, and Photoluminescent Sensing Applications. Sci. Rep. 2017, 7, 15858.
More
ScholarVision Creations