Inverse Design for Silicon Photonics: Comparison
Please note this is a comparison between Version 2 by Conner Chen and Version 1 by Simei Mao.

Silicon photonics enables massive fabrication of integrated photonic devices at low cost, due to its compatibility with complementary metal oxide semiconductor (CMOS) process. It has emerged as one of the most important technologies for data communication and computations, as integrated electronic circuits are reaching their limits as well as incurring high energy costs. Recently, it has also shown the potential for other applications such as sensing and light detection and ranging (LiDAR). For miscellaneous silicon photonic devices, their versatile functions mainly come from design of device geometry. Intuitively, the design of single component with specific function is fulfilled by physics-based methods like analytical models, prior practical experiences and scientific intuitions. However, the physics-based methods are laborious and have high requirements on designers’ experience. Furthermore, the performance evaluation of light-material interaction with complicated geometries has to rely on numerical electromagnetic (EM) simulations, as the computation for irregular geometry is often non-intuitive. To make the design process more efficient, inverse design approaches have been introduced, which are assisted by various iterative optimization methods and deep neural networks (DNNs).

  • silicon photonics
  • inverse design
  • deep neural networks
  • optical neural networks
Please wait, diff process is still running!

References

  1. Paz, A.; Moran, S. Non deterministic polynomial optimization problems and their approximations. Theor. Comput. Sci. 1981, 15, 251–277.
  2. Ma, L.; Li, J.; Liu, Z.; Zhang, Y.; Zhang, N.; Zheng, S.; Lu, C. Intelligent algorithms: New avenues for designing nanophotonic devices. Chin. Opt. Lett. 2021, 19, 011301.
  3. Jensen, J.S.; Sigmund, O. Topology optimization for nano-photonics. Laser Photonics Rev. 2011, 5, 308–321.
  4. Tu, X.; Xie, W.; Chen, Z.; Ge, M.-F.; Huang, T.; Song, C.; Fu, H.Y. Analysis of Deep Neural Network Models for Inverse Design of Silicon Photonic Grating Coupler. J. Lightwave Technol. 2021.
  5. Jiang, J.; Chen, M.; Fan, J.A. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater. 2020.
  6. Otto, A.; Marais, N.; Lezar, E.; Davidson, D. Using the FEniCS package for FEM solutions in electromagnetics. IEEE Antennas Propag. Mag. 2012, 54, 206–223.
  7. Gedney, S.D. Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Synth. Lect. Comput. Electromagn. 2011, 6, 1–250.
  8. Bienstman, P. Rigorous and efficient modelling of wavelenght scale photonic components. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2001.
  9. Moharam, M.; Grann, E.B.; Pommet, D.A.; Gaylord, T. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. JOSA a 1995, 12, 1068–1076.
  10. Luo, L.W.; Ophir, N.; Chen, C.P.; Gabrielli, L.H.; Poitras, C.B.; Bergmen, K.; Lipson, M. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun 2014, 5, 3069.
  11. Guan, H.; Ma, Y.; Shi, R.; Novack, A.; Tao, J.; Fang, Q.; Lim, A.E.; Lo, G.Q.; Baehr-Jones, T.; Hochberg, M. Ultracompact silicon-on-insulator polarization rotator for polarization-diversified circuits. Opt. Lett. 2014, 39, 4703–4706.
  12. Wang, Q.; Ho, S.T. Ultracompact Multimode Interference Coupler Designed by Parallel Particle Swarm Optimization With Parallel Finite-Difference Time-Domain. J. Lightwave Technol. 2010, 28, 1298–1304.
  13. Chen, W.; Zhang, B.; Wang, P.; Dai, S.; Liang, W.; Li, H.; Fu, Q.; Li, J.; Li, Y.; Dai, T.; et al. Ultra-compact and low-loss silicon polarization beam splitter using a particle-swarm-optimized counter-tapered coupler. Opt. Express 2020, 28, 30701–30709.
  14. Mao, S.; Cheng, L.; Mu, X.; Wu, S.; Fu, H. Ultra-Broadband Compact Polarization Beam Splitter Based on Asymmetric Etched Directional Coupler. In Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim, Sydney, Australia, 3 August 2020; p. C12H_11.
  15. Zhu, L.; Sun, J. Silicon-based wavelength division multiplexer by exploiting mode conversion in asymmetric directional couplers. OSA Contin. 2018, 1.
  16. Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73.
  17. Fu, P.-H.; Huang, T.-Y.; Fan, K.-W.; Huang, D.-W. Optimization for Ultrabroadband Polarization Beam Splitters Using a Genetic Algorithm. IEEE Photonics J. 2019, 11, 1–11.
  18. Dai, D.; Bowers, J.E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Opt. Express 2011, 19, 18614–18620.
  19. AlTaha, M.W.; Jayatilleka, H.; Lu, Z.; Chung, J.F.; Celo, D.; Goodwill, D.; Bernier, E.; Mirabbasi, S.; Chrostowski, L.; Shekhar, S. Monitoring and automatic tuning and stabilization of a 2 × 2 MZI optical switch for large-scale WDM switch networks. Opt. Express 2019, 27, 24747–24764.
  20. Mao, S.; Cheng, L.; Wu, S.; Mu, X.; Tu, X.; Li, Q.; Fu, H. Compact Five-mode De-multiplexer based on Grating Assisted Asymmetric Directional Couplers. In Proceedings of the Asia Communications and Photonics Conference, Beijing, China, 24–27 October 2020; p. M4A-128.
  21. Wu, S.; Mao, S.; Zhou, L.; Liu, L.; Chen, Y.; Mu, X.; Cheng, L.; Chen, Z.; Tu, X.; Fu, H.Y. A compact and polarization-insensitive silicon waveguide crossing based on subwavelength grating MMI couplers. Opt. Express 2020, 28, 27268–27276.
  22. Majumder, A.; Shen, B.; Polson, R.; Menon, R. Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials. Opt. Express 2017, 25, 19721–19731.
  23. Chang, W.; Lu, L.; Ren, X.; Li, D.; Pan, Z.; Cheng, M.; Liu, D.; Zhang, M. Ultra-compact mode (de) multiplexer based on subwavelength asymmetric Y-junction. Opt. Express 2018, 26, 8162–8170.
  24. Xu, P.; Zhang, Y.; Zhang, S.; Chen, Y.; Yu, S. Scaling and cascading compact metamaterial photonic waveguide filter blocks. Opt. Lett. 2020, 45, 4072–4075.
  25. Lu, C.; Liu, Z.; Wu, Y.; Xiao, Z.; Yu, D.; Zhang, H.; Wang, C.; Hu, X.; Liu, Y.C.; Liu, X.; et al. Nanophotonic Polarization Routers Based on an Intelligent Algorithm. Adv. Opt. Mater. 2020, 8.
  26. Shen, B.; Polson, R.; Menon, R. Metamaterial-waveguide bends with effective bend radius < λ0/2. Opt. Lett. 2015, 40, 5750–5753.
  27. Lu, L.; Liu, D.; Zhou, F.; Li, D.; Cheng, M.; Deng, L.; Fu, S.; Xia, J.; Zhang, M. Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures. Opt. Lett. 2016, 41, 5051–5054.
  28. Jia, H.; Zhou, T.; Fu, X.; Ding, J.; Yang, L. Inverse-Design and Demonstration of Ultracompact Silicon Meta-Structure Mode Exchange Device. ACS Photonics 2018, 5, 1833–1838.
  29. Shen, B.; Wang, P.; Polson, R.; Menon, R. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photonics 2015, 9, 378–382.
  30. Xu, K.; Liu, L.; Wen, X.; Sun, W.; Zhang, N.; Yi, N.; Sun, S.; Xiao, S.; Song, Q. Integrated photonic power divider with arbitrary power ratios. Opt. Lett. 2017, 42, 855–858.
  31. Liu, Z.; Liu, X.; Xiao, Z.; Lu, C.; Wang, H.-Q.; Wu, Y.; Hu, X.; Liu, Y.-C.; Zhang, H.; Zhang, X. Integrated nanophotonic wavelength router based on an intelligent algorithm. Optica 2019, 6.
  32. Shen, B.; Polson, R.; Menon, R. Integrated digital metamaterials enables ultra-compact optical diodes. Opt. Express 2015, 23, 10847–10855.
  33. Yu, Z.; Cui, H.; Sun, X. Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt. Lett. 2017, 42, 3093–3096.
  34. Mak, J.C.; Sideris, C.; Jeong, J.; Hajimiri, A.; Poon, J.K. Binary particle swarm optimized 2 × 2 power splitters in a standard foundry silicon photonic platform. Opt. Lett. 2016, 41, 3868–3871.
  35. Frandsen, L.H.; Elesin, Y.; Sigmund, O.; Jensen, J.S.; Yvind, K. Wavelength selective 3D topology optimized photonic crystal devices. In Proceedings of the CLEO, San Jose, CA, USA, 9–14 June 2013; pp. 1–2.
  36. Sell, D.; Yang, J.; Wang, E.W.; Phan, T.; Doshay, S.; Fan, J.A. Ultra-High-Efficiency Anomalous Refraction with Dielectric Metasurfaces. ACS Photonics 2018, 5, 2402–2407.
  37. Frellsen, L.F.; Ding, Y.; Sigmund, O.; Frandsen, L.H. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt. Express 2016, 24, 16866–16873.
  38. Frandsen, L.H.; Elesin, Y.; Frellsen, L.F.; Mitrovic, M.; Ding, Y.; Sigmund, O.; Yvind, K. Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material. Opt. Express 2014, 22, 8525–8532.
  39. Jensen, J.S.; Sigmund, O. Topology optimization of photonic crystal structures: A high-bandwidth low-loss T-junction waveguide. JOSA B 2005, 22, 1191–1198.
  40. Lu, J.; Vučković, J. Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes. Opt. Express 2012, 20, 7221–7236.
  41. Su, L.; Vercruysse, D.; Skarda, J.; Sapra, N.V.; Petykiewicz, J.A.; Vučković, J. Nanophotonic inverse design with SPINS: Software architecture and practical considerations. Appl. Phys. Rev. 2020, 7.
  42. Sell, D.; Yang, J.; Doshay, S.; Yang, R.; Fan, J.A. Large-Angle, Multifunctional Metagratings Based on Freeform Multimode Geometries. Nano Lett. 2017, 17, 3752–3757.
  43. Adibi, A.; Lin, S.-Y.; Scherer, A.; Frandsen, L.H.; Sigmund, O. Inverse design engineering of all-silicon polarization beam splitters. In Proceedings of the Photonic and Phononic Properties of Engineered Nanostructures VI, San Francisco, CA, USA, 15–18 February 2016.
  44. Su, L.; Piggott, A.Y.; Sapra, N.V.; Petykiewicz, J.; Vučković, J. Inverse Design and Demonstration of a Compact on-Chip Narrowband Three-Channel Wavelength Demultiplexer. ACS Photonics 2017, 5, 301–305.
  45. Piggott, A.Y.; Lu, J.; Lagoudakis, K.G.; Petykiewicz, J.; Babinec, T.M.; Vučković, J. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics 2015, 9, 374–377.
  46. Borel, P.I.; Bilenberg, B.; Frandsen, L.H.; Nielsen, T.; Fage-Pedersen, J.; Lavrinenko, A.V.; Jensen, J.S.; Sigmund, O.; Kristensen, A. Imprinted silicon-based nanophotonics. Opt. Express 2007, 15, 1261–1266.
  47. Elesin, Y.; Lazarov, B.S.; Jensen, J.S.; Sigmund, O. Design of robust and efficient photonic switches using topology optimization. Photonics Nanostruct.-Fundam. Appl. 2012, 10, 153–165.
  48. Frandsen, L.H.; Borel, P.I.; Zhuang, Y.; Harpøth, A.; Thorhauge, M.; Kristensen, M.; Bogaerts, W.; Dumon, P.; Baets, R.; Wiaux, V. Ultralow-loss 3-dB photonic crystal waveguide splitter. Opt. Lett. 2004, 29, 1623–1625.
  49. Zetie, K.; Adams, S.; Tocknell, R. How does a Mach-Zehnder interferometer work? Phys. Educ. 2000, 35, 46.
  50. Liao, L.; Samara-Rubio, D.; Morse, M.; Liu, A.; Hodge, D.; Rubin, D.; Keil, U.D.; Franck, T. High speed silicon Mach-Zehnder modulator. Opt. Express 2005, 13, 3129–3135.
  51. Cheben, P.; Halir, R.; Schmid, J.H.; Atwater, H.A.; Smith, D.R. Subwavelength integrated photonics. Nature 2018, 560, 565–572.
  52. Cheng, L.; Mao, S.; Zhao, C.; Tu, X.; Li, Q.; Fu, H.Y. Three-Port Dual-Wavelength-Band Grating Coupler for WDM-PON Applications. IEEE Photonics Technol. Lett. 2021, 33, 159–162.
  53. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85.
  54. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.
  55. Xu, P.; Zhang, Y.; Shao, Z.; Yang, C.; Liu, L.; Chen, Y.; Yu, S. 5 × 5 μm Compact Waveguide Crossing Optimized by Genetic Algorithm. In Proceedings of the 2017 Asia Communications and Photonics Conference (ACP), Guangzhou, China, 10–13 November 2017; pp. 1–3.
  56. Shen, B.; Wang, P.; Polson, R.; Menon, R. Integrated metamaterials for efficient and compact free-space-to-waveguide coupling. Opt. Express 2014, 22, 27175–27182.
  57. Minkov, M.; Savona, V. Automated optimization of photonic crystal slab cavities. Sci Rep. 2014, 4, 5124.
  58. Seldowitz, M.A.; Allebach, J.P.; Sweeney, D.W. Synthesis of digital holograms by direct binary search. Appl. Opt. 1987, 26, 2788–2798.
  59. Lalau-Keraly, C.M.; Bhargava, S.; Miller, O.D.; Yablonovitch, E. Adjoint shape optimization applied to electromagnetic design. Opt. Express 2013, 21, 21693–21701.
  60. Mao, S.; Cheng, L.; Wu, S.; Mu, X.; Xin, T.; Fu, H. Inverse Design of Ultra-broadband and Ultra-compact Polarization Beam Splitter via B-spline Surface. In Proceedings of the Laser Science, Washington, DC USA, 14–17 September 2020; p. JTu1B-6.
  61. Miller, O.D. Photonic design: From fundamental solar cell physics to computational inverse design. arXiv 2013, arXiv:1308.0212.
  62. Vercruysse, D.; Sapra, N.V.; Su, L.; Trivedi, R.; Vuckovic, J. Analytical level set fabrication constraints for inverse design. Sci. Rep. 2019, 9, 8999.
  63. Zhou, M.; Lazarov, B.S.; Wang, F.; Sigmund, O. Minimum length scale in topology optimization by geometric constraints. Comput. Methods Appl. Mech. Eng. 2015, 293, 266–282.
  64. Sigmund, O. On the Design of Compliant Mechanisms Using Topology Optimization*. Mech. Struct. Mach. 1997, 25, 493–524.
  65. Piggott, A.Y.; Petykiewicz, J.; Su, L.; Vuckovic, J. Fabrication-constrained nanophotonic inverse design. Sci. Rep. 2017, 7, 1786.
  66. Sigmund, O. Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 2007, 33, 401–424.
  67. Khoram, E.; Qian, X.; Yuan, M.; Yu, Z. Controlling the minimal feature sizes in adjoint optimization of nanophotonic devices using b-spline surfaces. Opt. Express 2020, 28, 7060–7069.
  68. Chen, D.; Xiao, X.; Wang, L.; Yu, Y.; Liu, W.; Yang, Q. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers. Opt. Express 2015, 23, 11152–11159.
  69. Qu, Y.; Zhu, H.; Shen, Y.; Zhang, J.; Tao, C.; Ghosh, P.; Qiu, M. Inverse design of an integrated-nanophotonics optical neural network. Sci. Bull. 2020, 65, 1177–1183.
  70. Xie, Z.; Lei, T.; Li, F.; Qiu, H.; Zhang, Z.; Wang, H.; Min, C.; Du, L.; Li, Z.; Yuan, X. Ultra-broadband on-chip twisted light emitter for optical communications. Light Sci. Appl. 2018, 7, 18001.
  71. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.
  72. Blum, A.; Hopcroft, J.; Kannan, R. Foundations of Data Science; Cambridge University Press: Cambridge, UK, 2016; Volume 5.
  73. Da Silva Ferreira, A.; da Silva Santos, C.H.; Gonçalves, M.S.; Hernández Figueroa, H.E. Towards an integrated evolutionary strategy and artificial neural network computational tool for designing photonic coupler devices. Appl. Soft Comput. 2018, 65, 1–11.
  74. Gostimirovic, D.; Ye, W.N. An Open-Source Artificial Neural Network Model for Polarization-Insensitive Silicon-on-Insulator Subwavelength Grating Couplers. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–5.
  75. Tahersima, M.H.; Kojima, K.; Koike-Akino, T.; Jha, D.; Wang, B.; Lin, C.; Parsons, K. Nanostructured photonic power splitter design via convolutional neural networks. In Proceedings of the 2019 Conference on Lasers and Electro-Optics (CLEO), Washington, DC, USA, 10–15 May 2019; pp. 1–2.
  76. Alagappan, G.; Png, C.E. Modal classification in optical waveguides using deep learning. J. Mod. Opt. 2018, 66, 557–561.
  77. Hammond, A.M.; Camacho, R.M. Designing integrated photonic devices using artificial neural networks. Opt. Express 2019, 27, 29620–29638.
  78. Gabr, A.M.; Featherston, C.; Zhang, C.; Bonfil, C.; Zhang, Q.-J.; Smy, T.J. Design and optimization of optical passive elements using artificial neural networks. J. Opt. Soc. Am. B 2019, 36.
  79. Miyatake, Y.; Sekine, N.; Toprasertpong, K.; Takagi, S.; Takenaka, M. Computational design of efficient grating couplers using artificial intelligence. Jpn. J. Appl. Phys. 2020, 59.
  80. Tang, Y.; Kojima, K.; Koike-Akino, T.; Wang, Y.; Wu, P.; Xie, Y.; Tahersima, M.H.; Jha, D.K.; Parsons, K.; Qi, M. Generative Deep Learning Model for Inverse Design of Integrated Nanophotonic Devices. Laser Photonics Rev. 2020, 14.
  81. Tahersima, M.H.; Kojima, K.; Koike-Akino, T.; Jha, D.; Wang, B.; Lin, C.; Parsons, K. Deep Neural Network Inverse Design of Integrated Photonic Power Splitters. Sci. Rep. 2019, 9, 1368.
  82. Singh, R.; Agarwal, A.; Anthony, B.W. Mapping the design space of photonic topological states via deep learning. Opt. Express 2020, 28, 27893–27902.
  83. Hegde, R.S. Photonics Inverse Design: Pairing Deep Neural Networks With Evolutionary Algorithms. IEEE J. Sel. Top. Quantum Electron. 2020, 26, 1–8.
  84. Tao, Z.; Zhang, J.; You, J.; Hao, H.; Ouyang, H.; Yan, Q.; Du, S.; Zhao, Z.; Yang, Q.; Zheng, X.; et al. Exploiting deep learning network in optical chirality tuning and manipulation of diffractive chiral metamaterials. Nanophotonics 2020, 9, 2945–2956.
  85. Wiecha, P.R.; Muskens, O.L. Deep Learning Meets Nanophotonics: A Generalized Accurate Predictor for Near Fields and Far Fields of Arbitrary 3D Nanostructures. Nano Lett. 2020, 20, 329–338.
  86. Nadell, C.C.; Huang, B.; Malof, J.M.; Padilla, W.J. Deep learning for accelerated all-dielectric metasurface design. Opt. Express 2019, 27, 27523–27535.
  87. An, S.; Fowler, C.; Zheng, B.; Shalaginov, M.Y.; Tang, H.; Li, H.; Zhou, L.; Ding, J.; Agarwal, A.M.; Rivero-Baleine, C.; et al. A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design. ACS Photonics 2019, 6, 3196–3207.
  88. Jiang, J.; Fan, J.A. Simulator-based training of generative neural networks for the inverse design of metasurfaces. Nanophotonics 2019, 9, 1059–1069.
  89. Jiang, J.; Fan, J.A. Global Optimization of Dielectric Metasurfaces Using a Physics-Driven Neural Network. Nano Lett. 2019, 19, 5366–5372.
  90. Sajedian, I.; Badloe, T.; Rho, J. Finding the best design parameters for optical nanostructures using reinforcement learning. arXiv 2018, arXiv:1810.10964.
  91. Gao, L.; Li, X.; Liu, D.; Wang, L.; Yu, Z. A Bidirectional Deep Neural Network for Accurate Silicon Color Design. Adv. Mater. 2019, 31, e1905467.
  92. Jiang, J.; Sell, D.; Hoyer, S.; Hickey, J.; Yang, J.; Fan, J.A. Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks. ACS Nano 2019, 13, 8872–8878.
  93. Debao, C. Degree of approximation by superpositions of a sigmoidal function. Approx. Theory Appl. 1993, 9, 17–28.
  94. Sharma, S. Activation functions in neural networks. Data Sci. 2017, 6, 310–316.
  95. Qi, X.; Wang, T.; Liu, J. Comparison of support vector machine and softmax classifiers in computer vision. In Proceedings of the 2017 Second International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, 8 December 2017; pp. 151–155.
  96. Melati, D.; Grinberg, Y.; Kamandar Dezfouli, M.; Janz, S.; Cheben, P.; Schmid, J.H.; Sanchez-Postigo, A.; Xu, D.X. Mapping the global design space of nanophotonic components using machine learning pattern recognition. Nat. Commun. 2019, 10, 4775.
  97. Liu, Z.; Zhu, Z.; Cai, W. Topological encoding method for data-driven photonics inverse design. Opt. Express 2020, 28, 4825–4835.
  98. O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458.
  99. Turhan, C.G.; Bilge, H.S. Recent trends in deep generative models: A review. In Proceedings of the 2018 3rd International Conference on Computer Science and Engineering (UBMK), Sarajevo, Bosnia and Herzegovina, 20–23 September 2018; pp. 574–579.
  100. Coen, T.; Greener, H.; Mrejen, M.; Wolf, L.; Suchowski, H. Deep learning based reconstruction of directional coupler geometry from electromagnetic near-field distribution. OSA Contin. 2020, 3.
  101. Sohn, K.; Lee, H.; Yan, X. Learning structured output representation using deep conditional generative models. Adv. Neural Inf. Process. Syst. 2015, 28, 3483–3491.
  102. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. arXiv 2014, arXiv:1406.2661.
  103. Liu, Z.; Zhu, D.; Rodrigues, S.P.; Lee, K.T.; Cai, W. Generative Model for the Inverse Design of Metasurfaces. Nano Lett. 2018, 18, 6570–6576.
More
Video Production Service