AuNPs and Fibrous Materials: Comparison
Please note this is a comparison between Version 2 by Conner Chen and Version 1 by Andrea Zille.

The use of nanoparticles is a multidisciplinary approach to provide UV blocking, antimicrobial, water repellent, colorant, flame retardant, sensing, and self-cleaning properties to textiles. Particularly, the antimicrobial textiles with improved functionalities find several applications, namely, in health and hygiene products, infection control, and barrier material. Depositing nanoparticles in textiles have been a promising strategy to achieve multifunctional materials. Particularly, antimicrobial properties are highly valuable due to the emergence of new pathogens and the spread of existing ones. Various techniques have been used by researchers to functionalize natural and synthetic fibers with AuNPs such as sputtering, electrostatic assembly, chemical reduction in solution, dip-coating, electroless plating, drop and dry, biosynthesis, and print pasting method.

  • gold nanoparticles
  • in situ
  • textiles
  • antibacterial properties
Please wait, diff process is still running!

References

  1. Zhao, P.; Li, N.; Astruc, D. State of the Art in Gold Nanoparticle Synthesis. Coord. Chem. Rev. 2013, 257, 638–665.
  2. Motitswe, M.G.; Fayemi, O.E.; Drummond, H.P. Electrochemical and Spectroscopic Properties of Green Synthesized Gold Nanoparticles Doped in Polyacrylonitrile Nanofibers. J. Clust. Sci. 2020, 32, 683–692.
  3. Stensberg, M.C.; Wei, Q.; McLamore, E.S.; Porterfield, D.M.; Wei, A.; Sepúlveda, M.S. Toxicological Studies on Silver Nanoparticles: Challenges and Opportunities in Assessment, Monitoring and Imaging. Nanomedicine 2011, 6, 879–898.
  4. Okkeh, M.; Bloise, N.; Restivo, E.; De Vita, L.; Pallavicini, P.; Visai, L. Gold Nanoparticles: Can They Be the next Magic Bullet for Multidrug-Resistant Bacteria? Nanomaterials 2021, 11, 312.
  5. Roy, S.; Das, T.K.; Maiti, G.P.; Basu, U. Microbial Biosynthesis of Nontoxic Gold Nanoparticles. Mater. Sci. Eng. B 2016, 203, 41–51.
  6. Baruah, D.; Goswami, M.; Yadav, R.N.S.; Yadav, A.; Das, A.M. Biogenic Synthesis of Gold Nanoparticles and Their Application in Photocatalytic Degradation of Toxic Dyes. J. Photochem. Photobiol. B Biol. 2018, 186, 51–58.
  7. Shamaila, S.; Zafar, N.; Riaz, S.; Sharif, R.; Nazir, J.; Naseem, S. Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen. Nanomaterials 2016, 6, 71.
  8. Andra, S.; Balu, S.; Jeevanandam, J.; Muthalagu, M. Emerging Nanomaterials for Antibacterial Textile Fabrication. Naunyn Schmiedeberg’s Arch Pharmacol. Modifying 2021, 1–28.
  9. Toma, H.E.; Zamarion, V.M.; Toma, S.H.; Araki, K. The Coordination Chemistry at Gold Nanoparticles. J. Braz. Chem. Soc. 2010, 21, 1158–1176.
  10. Bakshi, M.S. How Surfactants Control Crystal Growth of Nanomaterials. Cryst. Growth Des. 2016, 16, 1104–1133.
  11. Daruich De Souza, C.; Ribeiro Nogueira, B.; Rostelato, M.E.C.M. Review of the Methodologies Used in the Synthesis Gold Nanoparticles by Chemical Reduction. J. Alloys Compd. 2019, 798, 714–740.
  12. Zhao, J.; Stenzel, M.H. Entry of Nanoparticles into Cells: The Importance of Nanoparticle Properties. Polym. Chem. 2018, 9, 259–272.
  13. Kalimuthu, K.; Cha, B.S.; Kim, S.; Park, K.S. Eco-Friendly Synthesis and Biomedical Applications of Gold Nanoparticles: A Review. Microchem. J. 2020, 152, 104296.
  14. Fan, J.; Cheng, Y.; Sun, M. Functionalized Gold Nanoparticles: Synthesis, Properties and Biomedical Applications. Chem. Rec. 2020, 20, 1474–1504.
  15. Pereira, C.; Pereira, A.M.; Freire, C.; Pinto, T.V.; Costa, R.S.; Teixeira, J.S. Nanoengineered Textiles: From Advanced Functional Nanomaterials to Groundbreaking High-Performance Clothing. In Handbook of Functionalized Nanomaterials for Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2020.
  16. Massella, D.; Argenziano, M.; Ferri, A.; Guan, J.; Giraud, S.; Cavalli, R.; Barresi, A.A.; Salaün, F. Bio-Functional Textiles: Combining Pharmaceutical Nanocarriers with Fibrous Materials for Innovative Dermatological Therapies. Pharmaceutics 2019, 11, 403.
  17. Sanchez-Herencia, A.J. Water Based Colloidal Processing of Ceramic Laminates. Key Eng. Mater. 2007, 333, 39–48.
  18. Engates, K.E.; Shipley, H.J. Adsorption of Pb, Cd, Cu, Zn, and Ni to Titanium Dioxide Nanoparticles: Effect of Particle Size, Solid Concentration, and Exhaustion. Environ. Sci. Pollut. Res. 2011, 18, 386–395.
  19. Ribeiro, A.I.; Senturk, D.; Silva, K.S.; Modic, M.; Cvelbar, U.; Dinescu, G.; Mitu, B.; Nikiforov, A.; Leys, C.; Kuchakova, I.; et al. Efficient Silver Nanoparticles Deposition Method on DBD Plasma-Treated Polyamide 6,6 for Antimicrobial Textiles. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 460, p. 0120070.
  20. Boomi, P.; Ganesan, R.; Prabu Poorani, G.; Jegatheeswaran, S.; Balakumar, C.; Gurumallesh Prabu, H.; Anand, K.; Marimuthu Prabhu, N.; Jeyakanthan, J.; Saravanan, M. Phyto-Engineered Gold Nanoparticles (AuNPs) with Potential Antibacterial, Antioxidant, and Wound Healing Activities Under in Vitro and in Vivo Conditions. Int. J. Nanomed. 2020, 15, 7553–7568.
  21. Magura, J.; Zeleňáková, A.; Zeleňák, V.; Kaňuchová, M. Thiol-Modified Gold Nanoparticles Deposited on Silica Support Using Dip Coating. Appl. Surf. Sci. 2014, 315, 392–399.
  22. Tang, J.; Ou, Q.; Zhou, H.; Qi, L.; Man, S. Seed-Mediated Electroless Deposition of Gold Nanoparticles for Highly Uniform and Efficient SERS Enhancement. Nanomaterials 2019, 9, 185.
  23. Preda, N.; Enculescu, M.; Zgura, I.; Socol, M.; Matei, E.; Vasilache, V.; Enculescu, I. Superhydrophobic Properties of Cotton Fabrics Functionalized with ZnO by Electroless Deposition. Mater. Chem. Phys. 2013, 138, 253–261.
  24. Elmaaty, T.A.; El-Nagare, K.; Raouf, S.; Abdelfattah, K.; El-Kadi, S.; Abdelaziz, E. One-Step Green Approach for Functional Printing and Finishing of Textiles Using Silver and Gold NPs. RSC Adv. 2018, 8, 25546–25557.
  25. Dietzel, M.; Bieri, N.R.; Poulikakos, D. Dropwise Deposition and Wetting of Nanoparticle Suspensions. Int. J. Heat Fluid Flow 2008, 29, 250–262.
  26. Ranzoni, A.; Cooper, M.A. The Growing Influence of Nanotechnology in Our Lives. In Micro- and Nanotechnology in Vaccine Development; Skwarczynski, M., Toth, I., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 1–20.
  27. Basarir, F.; Yoon, T.H. Sonication-Assisted Layer-by-Layer Deposition of Gold Nanoparticles for Highly Conductive Gold Patterns. Ultrason. Sonochem. 2012, 19, 621–626.
  28. Zhong, W. Nanofibres for Medical Textiles. In Advances in Smart Medical Textiles: Treatments and Health Monitoring; van Langenhove, L., Ed.; Woodhead Publishing, Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 57–70.
  29. Jose Varghese, R.; Sakho, E.H.M.; Parani, S.; Thomas, S.; Oluwafemi, O.S.; Wu, J. Introduction to Nanomaterials: Synthesis and Applications. In Nanomaterials for Solar Cell Applications; Thomas, S., Sakho, E.H.M., Kalarikkal, N., Oluwafemi, S.O., Wu, J., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 75–95.
  30. Chan, K.L.; Fawcett, D.; Poinern, G.E.J. Gold Nanoparticle Treated Textile-Based Materials for Potential Use as Wearable Sensors. Int. J. Sci. 2016, 2, 82–89.
  31. Shanmugasundaram, O.L.; Ramkumar, M. Characterization and Study of Physical Properties and Antibacterial Activities of Human Hair Keratin–Silver Nanoparticles and Keratin–Gold Nanoparticles Coated Cotton Gauze Fabric. J. Ind. Text. 2018, 47, 798–814.
  32. Zheng, Y.; Xiao, M.; Jiang, S.; Ding, F.; Wang, J. Coating Fabrics with Gold Nanorods for Colouring, UV-Protection, and Antibacterial Functions. Nanoscale 2013, 5, 788–795.
  33. Lin, X.; Zou, F.; Chen, X.; Tang, B. Functional Modification of Nylon Fabrics Based on Noble Metal Nanoparticles. IOP Conf. Ser. Mater. Sci. Eng. 2017, 231, 012175.
  34. Silva, I.O.; Ladchumananandasivam, R.; Nascimento, J.H.O.; Silva, K.K.O.S.; Oliveira, F.R.; Souto, A.P.; Felgueiras, H.P.; Zille, A. Multifunctional Chitosan/Gold Nanoparticles Coatings for Biomedical Textiles. Nanomaterials 2019, 9, 1064.
  35. Gao, L.; Feng, J.; Xu, S.; Shi, M.; Yao, L.; Wang, L.; Yang, Z. General Strategy to Prepare Single-Layered Ag–Au–Pt Nanocrystal Ternary-Coated Biomass Textiles through Polymer-Driven Self-Assembly. Nanomaterials 2020, 10, 495.
  36. Ahmed, H.B.; El-Hawary, N.S.; Emam, H.E. Self-Assembled AuNPs for Ingrain Pigmentation of Silk Fabrics with Antibacterial Potency. Int. J. Biol. Macromol. 2017, 105, 720–729.
  37. Zhou, L.; Yu, K.; Lu, F.; Lan, G.; Dai, F.; Shang, S.; Hu, E. Minimizing Antibiotic Dosage through in Situ Formation of Gold Nanoparticles across Antibacterial Wound Dressings: A Facile Approach Using Silk Fabric as the Base Substrate. J. Clean. Prod. 2020, 243, 118604.
  38. Radić, N.; Obradović, B.M.; Kostić, M.; Dojčinović, B.; Hudcová, M.; Kuraica, M.M.; Černák, M. Deposition of Gold Nanoparticles on Polypropylene Nonwoven Pretreated by Dielectric Barrier Discharge and Diffuse Coplanar Surface Barrier Discharge. Plasma Chem. Plasma Process. 2013, 33, 201–218.
  39. Ikegami, M.; Matsumoto, T.; Kobayashi, Y.; Jikihara, Y.; Nakayama, T.; Ohashi, H.; Honma, T.; Takei, T.; Haruta, M. Air Purification by Gold Catalysts Supported on PET Nonwoven Fabric. Appl. Catal. B Environ. 2013, 134–135, 130–135.
  40. Cheng, D.; Bai, X.; He, M.; Wu, J.; Yang, H.; Ran, J.; Cai, G.; Wang, X. Polydopamine-Assisted Immobilization of on Cotton Fabrics for Sensitive and Responsive SERS Detection. Cellulose 2019, 26, 4191–4204.
  41. Liu, H.; Goh, W.; Norsten, T.B. Aqueous-Based Formation of Gold Nanoparticles on Surface-Modified Cotton Textiles. J. Mol. Eng. Mater. 2013, 1, 1250001.
  42. Baruah, B.; Downer, L.; Agyeman, D. Fabric-Based Composite Materials Containing ZnO-NRs and ZnO-NRs-AuNPs and Their Application in Photocatalysis. Mater. Chem. Phys. 2019, 231, 252–259.
  43. Ma, H.; Chi, H.; Wu, J.; Wang, M.; Li, J.; Hoshina, H.; Saiki, S.; Seko, N. A Novel Avenue to Gold Nanostructured Microtubes Using Functionalized Fiber as the Ligand, the Reductant, and the Template. ACS Appl. Mater. Interfaces 2013, 5, 8761–8765.
  44. Padbury, R.P.; Halbur, J.C.; Krommenhoek, P.J.; Tracy, J.B.; Jur, J.S. Thermal Stability of Gold Nanoparticles Embedded within Metal Oxide Frameworks Fabricated by Hybrid Modifications onto Sacrificial Textile Templates. Langmuir 2015, 31, 1135–1141.
  45. Tang, B.; Sun, L.; Kaur, J.; Yu, Y.; Wang, X. In-Situ Synthesis of Gold Nanoparticles for Multifunctionalization of Silk Fabrics. Dye. Pigment. 2014, 103, 183–190.
  46. Liu, J.; Zhou, J.; Tang, B.; Zeng, T.; Li, Y.; Li, J.; Ye, Y.; Wang, X. Surface Enhanced Raman Scattering (SERS) Fabrics for Trace Analysis. Appl. Surf. Sci. 2016, 386, 296–302.
  47. Zhang, Z.; Lv, X.; Chen, Q.; An, J. Complex Coloration and Antibacterial Functionalization of Silk Fabrics Based on Noble Metal Nanoparticles. J. Eng. Fiber. Fabr. 2019, 14.
  48. Ganesan, R.M.; Gurumallesh Prabu, H. Synthesis of Gold Nanoparticles Using Herbal Acorus Calamus Rhizome Extract and Coating on Cotton Fabric for Antibacterial and UV Blocking Applications. Arab. J. Chem. 2019, 12, 2166–2174.
  49. Ibrahim, N.A.; Eid, B.M.; Abdel-Aziz, M.S. Green Synthesis of AuNPs for Eco-Friendly Functionalization of Cellulosic Substrates. Appl. Surf. Sci. 2016, 389, 118–125.
  50. Tang, B.; Lin, X.; Zou, F.; Fan, Y.; Li, D.; Zhou, J.; Chen, W.; Wang, X. In Situ Synthesis of Gold Nanoparticles on Cotton Fabric for Multifunctional Applications. Cellulose 2017, 24, 4547–4560.
  51. Tao, J.; Tang, B.; Li, P.; He, D.; Liao, L.; Peng, Z.; Wang, X. Natural Rubber Particle Modified Fabrics with Catalytic Activity and Hydrophobicity. Compos. Sci. Technol. 2018, 162, 123–130.
  52. Boomi, P.; Ganesan, R.M.; Poorani, G.; Gurumallesh Prabu, H.; Ravikumar, S.; Jeyakanthan, J. Biological Synergy of Greener Gold Nanoparticles by Using Coleus Aromaticus Leaf Extract. Mater. Sci. Eng. C 2019, 99, 202–210.
  53. Boomi, P.; Poorani, G.P.; Selvam, S.; Palanisamy, S.; Jegatheeswaran, S.; Anand, K.; Balakumar, C.; Premkumar, K.; Prabu, H.G. Green Biosynthesis of Gold Nanoparticles Using Croton Sparsiflorus Leaves Extract and Evaluation of UV Protection, Antibacterial and Anticancer Applications. Appl. Organomet. Chem. 2020, 34, 1–13.
  54. Haslinger, S.; Ye, Y.; Rissanen, M.; Hummel, M.; Sixta, H. Cellulose Fibers for High-Performance Textiles Functionalized with Incorporated Gold and Silver Nanoparticles. ACS Sustain. Chem. Eng. 2020, 8, 649–658.
  55. Velmurugan, P.; Shim, J.; Bang, K.S.; Oh, B.T. Gold Nanoparticles Mediated Coloring of Fabrics and Leather for Antibacterial Activity. J. Photochem. Photobiol. B Biol. 2016, 160, 102–109.
  56. Yao, Y.; Tang, B.; Chen, W.; Sun, L.; Wang, X. Sunlight-Induced Coloration of Silk. Nanoscale Res. Lett. 2016, 11, 293.
  57. Tang, B.; Tao, J.; Xu, S.; Wang, J.; Hurren, C.; Xu, W.; Sun, L.; Wang, X. Using Hydroxy Carboxylate to Synthesize Gold Nanoparticles in Heating and Photochemical Reactions and Their Application in Textile Colouration. Chem. Eng. J. 2011, 172, 601–607.
  58. Pasta, M.; Hu, L.; La Mantia, F.; Cui, Y. Electrodeposited Gold Nanoparticles on Carbon Nanotube-Textile: Anode Material for Glucose Alkaline Fuel Cells. Electrochem. Commun. 2012, 19, 81–84.
  59. Ballerini, D.R.; Ngo, Y.H.; Garnier, G.; Ladeeig, B.P.; Wei, S. Gold Nanoparticle-Functionalized Thread as a Substrate for SERS Study of Analytes Both Bound and Unbound to Gold. AIChE J. 2012, 59, 215–228.
  60. Adamo, C.B.; Junger, A.S.; Bressan, L.P.; da Silva, J.A.F.; Poppi, R.J.; de Jesus, D.P. Fast and Straightforward In-Situ Synthesis of Gold Nanoparticles on a Thread-Based Microfluidic Device for Application in Surface-Enhanced Raman Scattering Detection. Microchem. J. 2020, 156, 104985.
  61. Islam, M.T.; Padilla, J.E.; Dominguez, N.; Alvarado, D.C.; Alam, M.S.; Cooke, P.; Tecklenburg, M.M.J.; Noveron, J.C. Green Synthesis of Gold Nanoparticles Reduced and Stabilized by Squaric Acid and Supported on Cellulose Fibers for the Catalytic Reduction of 4-Nitrophenol in Water. RSC Adv. 2016, 6, 91185–91191.
  62. Park, H.J.; Kim, W.J.; Ah, C.S.; Jun, Y.; Yun, Y.J. Solution-Processed Au-Ag Core-Shell Nanoparticle-Decorated Yarns for Human Motion Monitoring. RSC Adv. 2017, 7, 10539–10544.
  63. Xia, Y.; Wan, J.; Gu, Q. Silk Fibroin Fibers Supported with High Density of Gold Nanoparticles: Fabrication and Application as Catalyst. Gold Bull. 2011, 44, 171–176.
  64. Tang, B.; Yao, Y.; Li, J.; Qin, S.; Zhu, H.; Kaur, J.; Chen, W.; Sun, L.; Wang, X. Functional Application of Noble Metal Nanoparticles In Situ Synthesized on Ramie Fibers. Nanoscale Res. Lett. 2015, 10, 366.
  65. Islam, M.T.; Dominguez, N.; Ahsan, M.A.; Dominguez-Cisneros, H.; Zuniga, P.; Alvarez, P.J.J.; Noveron, J.C. Sodium Rhodizonate Induced Formation of Gold Nanoparticles Supported on Cellulose Fibers for Catalytic Reduction of 4-Nitrophenol and Organic Dyes. J. Environ. Chem. Eng. 2017, 5, 4185–4193.
  66. Emam, H.E.; El-Zawahry, M.M.; Ahmed, H.B. One-Pot Fabrication of AgNPs, AuNPs and Ag-Au Nano-Alloy Using Cellulosic Solid Support for Catalytic Reduction Application; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 166.
  67. Yun, Y.J.; Ah, C.S.; Hong, W.G.; Kim, H.J.; Shin, J.H.; Jun, Y. Highly Conductive and Environmentally Stable Gold/Graphene Yarns for Flexible and Wearable Electronics. Nanoscale 2017, 9, 11439–11445.
  68. Yu, Q.; Kong, X.; Ma, Y.; Wang, R.; Liu, Q.; Hinestroza, J.P.; Wang, A.X.; Vuorinen, T. Multi-Functional Regenerated Cellulose Fibers Decorated with Plasmonic Au Nanoparticles for Colorimetry and SERS Assays. Cellulose 2018, 25, 6041–6053.
  69. Liu, Y.; Song, T.; Jia, X.; Meng, L.; Mao, X. Gold Nanoparticles Decorated Carbon Nanotube Probe Based Immunochromatographic Assay on Cotton Thread. Sens. Actuators B Chem. 2017, 251, 1112–1118.
  70. Jia, X.; Song, T.; Liu, Y.; Meng, L.; Mao, X. An Immunochromatographic Assay for Carcinoembryonic Antigen on Cotton Thread Using a Composite of Carbon Nanotubes and Gold Nanoparticles as Reporters. Anal. Chim. Acta 2017, 969, 57–62.
  71. Ullah, N.; Odda, A.H.; Li, D.; Wang, Q.; Wei, Q. One-Pot Green Synthesis of Gold Nanoparticles and Its Supportive Role in Surface Activation of Non-Woven Fibers as Heterogeneous Catalyst. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 571, 101–109.
  72. Nolasco-Arizmendi, V.; Morales-Luckie, R.; Sánchez-Mendieta, V.; Hinestroza, J.P.; Castro-Longoria, E.; Vilchis-Nestor, A.R. Formation of Silk–Gold Nanocomposite Fabric Using Grapefruit Aqueous Extract. Text. Res. J. 2013, 83, 1229–1235.
  73. Aflori, M.; Serbezeanu, D.; Carja, I.D.; Fortunato, G. Gold Nanoparticles Incorporated into Electrospun Polyimide Fibers. Chem. Lett. 2015, 44, 1440–1442.
  74. Koga, H.; Tokunaga, E.; Hidaka, M.; Umemura, Y.; Saito, T.; Isogai, A.; Kitaoka, T. Topochemical Synthesis and Catalysis of Metal Nanoparticles Exposed on Crystalline Cellulose Nanofibers. Chem. Commun. 2010, 46, 8567–8569.
  75. Zhang, T.; Wang, W.; Zhang, D.; Zhang, X.; Yurong, M.; Zhou, Y.; Qi, L. Biotemplated Synthesis of Cold Nanoparticle-Bacteria Cellulose Nanofiber Nanocomposites and Their Application in Biosensing. Adv. Funct. Mater. 2010, 20, 1152–1160.
  76. Wang, W.; Zhang, T.J.; Zhang, D.W.; Li, H.Y.; Ma, Y.R.; Qi, L.M.; Zhou, Y.L.; Zhang, X.X. Amperometric Hydrogen Peroxide Biosensor Based on the Immobilization of Heme Proteins on Gold Nanoparticles-Bacteria Cellulose Nanofibers Nanocomposite. Talanta 2011, 84, 71–77.
  77. Zhou, B.; Li, Y.; Deng, H.; Hu, Y.; Li, B. Antibacterial Multilayer Films Fabricated by Layer-by-Layer Immobilizing Lysozyme and Gold Nanoparticles on Nanofibers. Colloids Surfaces B Biointerfaces 2014, 116, 432–438.
  78. Cheng, H.H.; Chen, F.; Yu, J.; Guo, Z.X. Gold-Nanoparticle-Decorated Thermoplastic Polyurethane Electrospun Fibers Prepared through a Chitosan Linkage for Catalytic Applications. J. Appl. Polym. Sci. 2016, 134, 1–9.
  79. Yang, X.; Yang, J.; Wang, L.; Ran, B.; Jia, Y.; Zhang, L.; Yang, G.; Shao, H.; Jiang, X. Pharmaceutical Intermediate-Modified Gold Nanoparticles: Against Multidrug-Resistant Bacteria and Wound-Healing Application via an Electrospun Scaffold. ACS Nano 2017, 11, 5737–5745.
  80. Li, Y.; Tian, Y.; Zheng, W.; Feng, Y.; Huang, R.; Shao, J.; Tang, R.; Wang, P.; Jia, Y.; Zhang, J.; et al. Composites of Bacterial Cellulose and Small Molecule-Decorated Gold Nanoparticles for Treating Gram-Negative Bacteria-Infected Wounds. Small 2017, 13, 1–10.
  81. Fang, X.; Ma, H.; Xiao, S.; Shen, M.; Guo, R.; Cao, X.; Shi, X. Facile Immobilization of Gold Nanoparticles into Electrospun Polyethyleneimine/Polyvinyl Alcohol Nanofibers for Catalytic Applications. J. Mater. Chem. 2011, 21, 4493–4501.
  82. Reyes-López, S.Y.; Cornejo-Monroy, D.; González-García, G. A Novel Route for the Preparation of Gold Nanoparticles in Polycaprolactone Nanofibers. J. Nanomater. 2015, 2015.
  83. Subair, R.; Tripathi, B.P.; Formanek, P.; Simon, F.; Uhlmann, P.; Stamm, M. Polydopamine Modified Membranes with in Situ Synthesized Gold Nanoparticles for Catalytic and Environmental Applications. Chem. Eng. J. 2016, 295, 358–369.
  84. Abedalwafa, M.A.; Li, Y.; Ni, C.; Yang, G.; Wang, L. Non-Enzymatic Colorimetric Sensor Strip Based on Melamine-Functionalized Gold Nanoparticles Assembled on Polyamide Nanofiber Membranes for the Detection of Metronidazole. Anal. Methods 2019, 11, 3706–3713.
  85. Chen, Y.; Chen, S.; Wang, B.; Yao, J.; Wang, H. TEMPO-Oxidized Bacterial Cellulose Nanofibers-Supported Gold Nanoparticles with Superior Catalytic Properties. Carbohydr. Polym. 2016, 160, 34–42.
  86. Wu, X.; Lu, C.; Zhou, Z.; Yuan, G.; Xiong, R.; Zhang, X. Green Synthesis and Formation Mechanism of Cellulose Nanocrystal-Supported Gold Nanoparticles with Enhanced Catalytic Performance. Environ. Sci. Nano 2014, 1, 71–79.
  87. Liu, Z.; Zhou, C.; Zheng, B.; Qian, L.; Mo, Y.; Luo, F.; Shi, Y.; Choi, M.M.F.; Xiao, D. In Situ Synthesis of Gold Nanoparticles on Porous Polyacrylonitrile Nanofibers for Sensing Applications. Analyst 2011, 136, 4545–4551.
  88. Senthamizhan, A.; Celebioglu, A.; Balusamy, B.; Uyar, T. Immobilization of Gold Nanoclusters inside Porous Electrospun Fibers for Selective Detection of Cu(II): A Strategic Approach to Shielding Pristine Performance. Sci. Rep. 2015, 5, 15608.
  89. Chen, X.; Li, D.; Li, G.; Luo, L.; Ullah, N.; Wei, Q.; Huang, F. Facile Fabrication of Gold Nanoparticle on Zein Ultrafine Fibers and Their Application for Catechol Biosensor. Appl. Surf. Sci. 2014, 328, 444–452.
  90. Zhu, H.; Du, M.; Zhang, M.; Zou, M.; Yang, T.; Wang, L.; Yao, J.; Guo, B. Probing the Unexpected Behavior of AuNPs Migrating through Nanofibers: A New Strategy for the Fabrication of Carbon Nanofiber-Noble Metal Nanocrystal Hybrid Nanostructures. J. Mater. Chem. A 2014, 2, 11728–11741.
  91. Serbezeanu, D.; Popa, A.M.; Sava, I.; Carja, I.D.; Amberg, M.; Rossi, R.M.; Fortunato, G. Design and Synthesis of Polyimide—Gold Nanofibers with Tunable Optical Properties. Eur. Polym. J. 2015, 64, 10–20.
  92. Niu, T.; Xu, J.; Xiao, W.; Huang, J. Cellulose-Based Catalytic Membranes Fabricated by Deposition of Gold Nanoparticles on Natural Cellulose Nanofibres. RSC Adv. 2014, 4, 4901–4904.
  93. Sakai, S.; Kawa, S.; Sawada, K.; Taya, M. Electrospun Polystyrene Fiber-Templating Ultrafine Gold Hollow Fiber Production. Gold Bull. 2013, 46, 97–101.
  94. Anka, F.H.; Perera, S.D.; Ratanatawanate, C.; Balkus, K.J. Polyacrylonitrile Gold Nanoparticle Composite Electrospun Fibers Prepared by in Situ Photoreduction. Mater. Lett. 2012, 75, 12–15.
  95. Sawada, K.; Sakai, S.; Taya, M. Polyacrylonitrile-Based Electrospun Nanofibers Carrying Gold Nanoparticles in Situ Formed by Photochemical Assembly. J. Mater. Sci. 2014, 49, 4595–4600.
  96. Zhou, X.; Zhao, Z.; He, Y.; Ye, Y.; Zhou, J.; Zhang, J.; Ouyang, Q.; Tang, B.; Wang, X. Photoinduced Synthesis of Gold Nanoparticle–Bacterial Cellulose Nanocomposite and Its Application for in-Situ Detection of Trace Concentration of Dyes in Textile and Paper. Cellulose 2018, 25, 3941–3953.
  97. Shamsabadi, A.S.; Ranjbar, M.; Tavanai, H.; Farnood, A. Electrospinning of Gold Nanoparticles Incorporated PAN Nanofibers via In-Situ Laser Ablation of Gold in Electrospinning Solution. Mater. Res. Express 2019, 6, 055051.
More