Big Data Analytics in COVID-19: Comparison
Please note this is a comparison between Version 2 by Bruce Ren and Version 1 by Abdullah M. Almuhaideb.

The COVID-19 epidemic has caused a large number of human losses and havoc in the economic, social, societal, and health systems around the world. Controlling such epidemic requires understanding its characteristics and behavior, which can be identified by collecting and analyzing the related big data. Big data analytics tools play a vital role in building knowledge required in making decisions and precautionary measures. However, due to the vast amount of data available on COVID-19 from various sources, there is a need to review the roles of big data analysis in controlling the spread of COVID-19, presenting the main challenges and directions of COVID-19 data analysis, as well as providing a framework on the related existing applications and studies to facilitate future research on COVID-19 analysis.

  • artificial intelligence (AI)
  • big data
  • big data analytics
  • 2019 novel coronavirus disease (COVID-19)
  • healthcare
Please wait, diff process is still running!

References

  1. Lee, I.-K.; Wang, C.-C.; Lin, M.-C.; Kung, C.-T.; Lan, K.-C.; Lee, C.-T. Effective Strategies to Prevent Coronavirus Disease-2019 (COVID-19) Outbreak in Hospital. J. Hosp. Infect. 2020, 105, 102–103.
  2. Iacobucci, G. Covid-19: Emergency Departments Lack Proper Isolation Facilities, Senior Medic Warns. BMJ 2020, 368, m953.
  3. Worldometers Coronavirus Cases. Available online: (accessed on 30 December 2020).
  4. Da’Ar, O.B.; Haji, M.; Jradi, H. Coronavirus Disease 2019 (COVID -19): Potential Implications for Weak Health Systems and Conflict Zones in the Middle East and North Africa region. Int. J. Health Plan. Manag. 2020, 35, 1240–1245.
  5. Ajah, I.A.; Nweke, H.F. Big Data and Business Analytics: Trends, Platforms, Success Factors and Applications. Big Data Cogn. Comput. 2019, 3, 32.
  6. White, T. Hadoop: The Definitive Guide, 3rd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2012; ISBN 9781449311520.
  7. Andreu-Perez, J.; Poon, C.C.Y.; Merrifield, R.D.; Wong, S.T.C.; Yang, G.-Z. Big Data for Health. IEEE J. Biomed. Health Inform. 2015, 19, 1193–1208.
  8. Hagar, Y.; Albers, D.; Pivovarov, R.; Chase, H.S.; Dukic, V.; Elhadad, N. Survival Analysis with Electronic Health Record Data: Experiments with Chronic Kidney Disease. Stat. Anal. Data Min. ASA Data Sci. J. 2014, 7, 385–403.
  9. Wang, Y.; Kung, L.; Wang, W.Y.C.; Cegielski, C.G. An Integrated Big Data Analytics-Enabled Transformation Model: Application to Health Care. Inf. Manag. 2018, 55, 64–79.
  10. Wong, H.T.; Yin, Q.; Guo, Y.Q.; Murray, K.A.; Zhou, D.H.; Slade, D. Big Data as a New Approach in Emergency Medicine Research. J. Acute Dis. 2015, 4, 178–179.
  11. Viceconti, M.; Hunter, P.; Hose, R. Big Data, Big Knowledge: Big Data for Personalized Healthcare. IEEE J. Biomed. Health Inform. 2015, 19, 1209–1215.
  12. Erekson, E.A.; Iglesia, C.B. Improving Patient Outcomes in Gynecology: The Role of Large Data Registries and Big Data Analytics. J. Minim. Invasive Gynecol. 2015, 22, 1124–1129.
  13. Nadkarni, G.N.; Coca, S.G.; Wyatt, C.M. Big Data in Nephrology: Promises and Pitfalls. Kidney Int. 2016, 90, 240–241.
  14. Davis, R. Integrating Digital Technologies and Data-driven Telemedicine into Smart Healthcare during the COVID-19 Pandemic. Am. J. Med. Res. 2020, 7, 22.
  15. Valenzuela, S. Unpacking the Use of Social Media for Protest Behavior. Am. Behav. Sci. 2013, 57, 920–942.
  16. Sheng, J.; Amankwah-Amoah, J.; Wang, X.; Khan, Z. Managerial Responses to Online Reviews: A Text Analytics Approach. Br. J. Manag. 2019, 30, 315–327.
  17. Rehman, A.; Naz, S.; Razzak, M.I. Writer Identification using Machine Learning Approaches: A Comprehensive Review. Multimed. Tools Appl. 2019, 78, 10889–10931.
  18. Wang, Y.; Kung, L.; Byrd, T.A. Big Data Analytics: Understanding its Capabilities and Potential Benefits for Healthcare Organizations. Technol. Forecast. Soc. Chang. 2018, 126, 3–13.
  19. Agbehadji, I.E.; Awuzie, B.O.; Ngowi, A.B.; Millham, R.C. Review of Big Data Analytics, Artificial Intelligence and Nature-Inspired Computing Models towards Accurate Detection of COVID-19 Pandemic Cases and Contact Tracing. Int. J. Environ. Res. Public Health 2020, 17, 5330.
  20. Ponikowski, P.; Anker, S.D.; Alhabib, K.F.; Cowie, M.R.; Force, T.L.; Hu, S.; Jaarsma, T.; Krum, H.; Rastogi, V.; Rohde, L.E.; et al. Heart Failure: Preventing Disease and Death Worldwide. ESC Hear. Fail. 2014, 1, 4–25.
  21. Vaishya, R.; Javaid, M.; Khan, I.H.; Haleem, A. Artificial Intelligence (AI) Applications for COVID-19 Pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 337–339.
  22. PEX Process Excellence Network 6 Ways Pharmaceutical Companies are Using Big Data to Drive Innovation & Value. Available online: (accessed on 28 December 2020).
  23. Abdel-Basst, M.; Mohamed, R.; Elhoseny, M. A Model for the Effective COVID-19 Identification in Uncertainty enVironment using Primary Symptoms and CT Scans. Heath Inform. J. 2020, 1–18.
  24. Stojanovic, R.; Skraba, A.; Lutovac, B. A Headset Like Wearable Device to Track COVID-19 Symptoms. In Proceedings of the 2020 9th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 8–11 July 2020; pp. 1–4.
  25. Gordon, W.J.; Henderson, D.; DeSharone, A.; Fisher, H.N.; Judge, J.; Levine, D.M.; MacLean, L.; Sousa, D.; Su, M.Y.; Boxer, R. Remote Patient Monitoring Program for Hospital Discharged COVID-19 Patients. Appl. Clin. Inform. 2020, 11, 792–801.
  26. Mishra, T.; Wang, M.; Metwally, A.A.; Bogu, G.K.; Brooks, A.W.; Bahmani, A.; Alavi, A.; Celli, A.; Higgs, E.; Dagan-Rosenfeld, O.; et al. Pre-Symptomatic Detection of COVID-19 from Smartwatch Data. Nat. Biomed. Eng. 2020, 4, 1208–1220.
  27. Lan, F.-Y.; Filler, R.; Mathew, S.; Buley, J.; Iliaki, E.; Bruno-Murtha, L.A.; Osgood, R.; Christophi, C.A.; Fernandez-Montero, A.; Kales, S.N. COVID-19 Symptoms Predictive of Healthcare Workers’ SARS-CoV-2 PCR Results. PLoS ONE 2020, 15, e0235460.
  28. Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; The Northwell COVID-19 Research Consortium. Presenting Characteristics, Comorbidities, and Outcomes among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059.
  29. Brown, C.; Chauhan, J.; Grammenos, A.; Han, J.; Hasthanasombat, A.; Spathis, D.; Xia, T.; Cicuta, P.; Mascolo, C. Exploring Automatic Diagnosis of COVID-19 from Crowdsourced Respiratory Sound Data. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 2020. Exploring Automatic Diagnosis of COVID-19 from Crowdsourced Respiratory Sound Data (ACM), New York, NY, USA, 25–27 August 2020; pp. 3474–3484.
  30. Jeong, H.; Rogers, J.A.; Xu, S. Continuous on-Body Sensing for the COVID-19 Pandemic: Gaps and Opportunities. Sci. Adv. 2020, 6, eabd4794.
  31. Alsofayan, Y.M.; Althunayyan, S.M.; Khan, A.A.; Hakawi, A.M.; Assiri, A.M. Clinical Characteristics of COVID-19 in SAUDI Arabia: A National Retrospective Study. J. Infect. Public Heal. 2020, 13, 920–925.
  32. Khan, M.A.; Karim, R.; Kim, Y. A Two-Stage Big Data Analytics Framework with Real World Applications Using Spark Machine Learning and Long Short-Term Memory Network. Symmetry 2018, 10, 485.
  33. Riaz, H.; Park, J.; Choi, H.; Kim, H.; Kim, J. Deep and Densely Connected Networks for Classification of Diabetic Retinopathy. Diagn. 2020, 10, 24.
  34. Xiong, S.; Liu, L.; Lin, F.; Shi, J.; Han, L.; Liu, H.; He, L.; Jiang, Q.; Wang, Z.; Fu, W.; et al. Clinical Characteristics of 116 Hospitalized Patients with COVID-19 in Wuhan, China: A single-Centered, Retrospective, Observational Study. BMC Infect. Dis. 2020, 20, 1–11.
  35. Chen, Q.; Xu, L.; Dai, Y.; Ling, Y.; Mao, J.; Qian, J.; Zhu, W.; Di, W.; Ge, J. Cardiovascular Manifestations in Severe and Critical Patients with COVID -19. Clin. Cardiol. 2020, 43, 796–802.
  36. Sharp, A.L.; Huang, B.Z.; Broder, B.; Smith, M.; Yuen, G.; Subject, C.; Nau, C.; Creekmur, B.; Tartof, S.; Gould, M.K. Identifying Patients with Symptoms Suspicious for COVID-19 at Elevated Risk of Adverse Events: The COVAS Score. Am. J. Emerg. Med. 2020.
  37. Benreguia, B.; Moumen, H.; Merzoug, M.A. Tracking COVID-19 by Tracking Infectious Trajectories. IEEE Access 2020, 8, 145242–145255.
  38. Xie, C.; Zhao, H.; Li, K.; Zhang, Z.; Lu, X.; Peng, H.; Wang, D.; Chen, J.; Zhang, X.; Wu, D.; et al. The Evidence of Indirect Transmission of SARS-CoV-2 Reported in Guangzhou, China. BMC Public Health 2020, 20, 1–9.
  39. Khan, A.H.; Sultana, M.S.; Hossain, S.; Hasan, M.T.; Ahmed, H.U.; Sikder, T. The Impact of COVID-19 Pandemic on Mental Health & Wellbeing Among Home-Quarantined Bangladeshi Students: A Cross-Sectional Pilot Study. J. Affect. Disord. 2020, 277, 121–128.
  40. Horsburgh, C.R. Priorities for the Treatment of Latent Tuberculosis Infection in the United States. N. Engl. J. Med. 2004, 350, 2060–2067.
  41. Giordano, G.; Blanchini, F.; Bruno, R.; Colaneri, P.; Di Filippo, A.; Di Matteo, A.; Colaneri, M. Modelling the COVID-19 Epidemic and Implementation of Population-Wide Interventions in Italy. Nat. Med. 2020, 26, 855–860.
  42. Chen, B.; Shi, M.; Ni, X.; Ruan, L.; Jiang, H.; Yao, H.; Wang, M.; Song, Z.; Zhou, Q.; Ge, T. Visual Data Analysis and Simulation Prediction for COVID-19. IJEE 2020, 6, 95–114.
  43. Kricke, G.E.; Roemer, P.; Barnard, C.; Peipert, J.D.; Henschen, B.L.A.; Bierman, J.; Blahnik, D.; Grant, M.; Linder, J.A. Rapid Implementation of an Outpatient Covid-19 Monitoring Program. NEJM Catal. Innov. Care Deliv. 2020, 1.
  44. Drew, D.A.; Nguyen, L.H.; Steves, C.J.; Menni, C.; Freydin, M.; Varsavsky, T.; Sudre, C.H.; Cardoso, M.J.; Ourselin, S.; Wolf, J.; et al. Rapid Implementation of Mobile Technology for Real-Time Epidemiology of COVID-19. Science 2020, 368, 1362–1367.
  45. Timmers, T.; Janssen, L.; Stohr, J.; Murk, J.L.; Berrevoets, M. Using eHealth to Support COVID-19 Education, Self-Assessment, and Symptom Monitoring in the Netherlands: Observational Study. JMIR mHealth uHealth 2020, 8, e19822.
  46. Epstein, R.H.; Dexter, F. A Predictive Model for Patient Census and Ventilator Requirements at Individual Hospitals During the Coronavirus Disease 2019 (COVID-19) Pandemic: A Preliminary Technical Report. Cureus 2020, 12, e8501.
  47. IHME. COVID-19 Health Service Utilization Forecasting Team Forecasting COVID-19 Impact on Hospital Bed-Days, ICU-Days, Ventilator-Days and Deaths by US State in the Next 4 Months [PRE-PRINT]. Medrxiv 2020.
  48. Izquierdo, J.L.; Ancochea, J.; Soriano, J.B. Savana COVID-19 Research Group Clinical Characteristics and Prognostic Factors for Intensive Care Unit Admission of Patients With COVID-19: Retrospective Study Using Machine Learning and Natural Language Processing. J. Med. Internet Res. 2020, 22, e21801.
  49. Medrano, I.H.; Guijarro, J.T.; Belda, C.; Ureña, A.; Salcedo, I.; Espinosa-Anke, L.; Saggion, H. Savana. Re-using Electronic Health Records with Artificial Intelligence. Int. J. Interact. Multimed. Artif. Intell. 2018, 4, 1.
  50. Pluchino, A.; Biondo, A.E.; Giuffrida, N.; Inturri, G.; Latora, V.; Moli, R.L.; Rapisarda, A.; Russo, G.; Zappala’, C. A Novel Methodology for Epidemic Risk Assessment: The case of COVID-19 outbreak in Italy. Arx. Prepr. Arx. 2020, 2004, 1–37.
  51. Weissman, G.E.; Crane-Droesch, A.; Chivers, C.; Luong, T.; Hanish, A.; Levy, M.Z.; Lubken, J.; Becker, M.; Draugelis, M.E.; Anesi, G.L.; et al. Locally Informed Simulation to Predict Hospital Capacity Needs During the COVID-19 Pandemic. Ann. Intern. Med. 2020, 173, 21–28.
More