Polysaccharides Edible Films and Coatings: Comparison
Please note this is a comparison between Version 2 by Conner Chen and Version 1 by Ewa Szpunar-Krok.

There has been a significant increase in the development of edible films and coatings in recent times, and this is expected to have a significant impact on the quality of fruit and vegetables in the coming years. Consumers expect fresh fruit and vegetables free from pesticide residues, with high quality, nutritional value and an extended shelf life. The application of coatings and edible films to fruits and vegetables represents an environmentally friendly approach to an innovative solution to this problem. Coatings and edible films can act as ecological and biodegradable packaging. The coating strategy involves a combination of natural biopolymers and appropriate preservation methods. Numerous studies show that natural polysaccharides are well suited for use as packaging material for fresh fruit and vegetables and can often be an important alternative to synthetic compounds. Natural polymer materials are a good barrier to oxygen and carbon dioxide; however, they are characterised by excessive solubility in the water environment, water vapour permeability and low extensibility.

  • cellulose derivatives
  • chitosan and chitin
  • edible films and coatings
Please wait, diff process is still running!

References

  1. Erkmen, O.; Barazi, A.O. General characteristics of edible flms. J. Food Biotechnol. Res. 2018, 2, 1–4.
  2. Mahajan, B.V.C.; Tandon, R.; Kapoor, S.; Sidhu, M.K. Natural Coatings for Shelf-Life Enhancement and Quality Maintenance of Fresh Fruits and Vegetables—A Review. J. Postharvest Technol. 2018, 6, 12–26.
  3. Okcu, Z.; Yavuz, Y.; Kerse, S. Edible films and coatings application in fruits and vegetables. Alinteri J. Agric. Sci. 2018, 33, 221–226.
  4. Oms-Oliu, G.; Rojas-Graü, M.A.; González, L.A.; Varela, P.; Soliva-Fortuny, R.; Hernando, M.I.H.; Munuera, I.P.; Fiszman, S.; Martín-Belloso, O. Recent approaches using chemical treatments to preserve quality of fresh-cut fruit: A review. Postharvest Biol. Technol. 2010, 57, 139–148.
  5. Radev, R.; Pashova, S. Application of Edible Films and Coatings for Fresh Fruit and Vegetables. Qual. Access Success 2020, 21, 108–112.
  6. Galus, S.; Kibar, E.A.A.; Gniewosz, M.; Kraśniewska, K. Novel Materials in the Preparation of Edible Films and Coatings—A Review. Coatings 2020, 10, 674.
  7. Shukla, P.; Bhise, S.; Thind, S.S. Role of biodegradable edible films and coatings in food industry. Acta Sci. Nutr. Health 2019, 3, 138–147.
  8. Salgado, P.R.; Ortiz, C.M.; Musso, Y.S.; Di Giorgio, L.; Mauri, A.N. Edible films and coatings containing bioactives. Curr. Opin. Food Sci. 2015, 5, 86–92.
  9. Tharantharn, R.N. Biodegradable films and composite coatings: Past, present and future. Trends Food Sci. Technol. 2003, 14, 71–78.
  10. Mohamed, A.Y.E.; Aboul, A.H.E.; Hassan, A.M. Utilisation of edible coating in extending the shelf life of minimally processed prickly pear. J. Appl. Sci. Res. 2013, 9, 1202–1208.
  11. Vaishali Sharma, H.P.; Shami, V.; Samsher; Chandhary, V.; Sunil; Kumar, M. Importance of edible coating on fruits and vegetables: A review. J. Pharmacogn. Phytochem. 2019, 8, 4104–4110.
  12. Fu, Z.; Wang, L.; Li, D.; Wei, Q.; Adhikari, B. Effects of high-pressure homogenization on the properties of starch-plasticizer dispersions and their films. Carbohydr. Polym. 2011, 86, 202–207.
  13. Basiak, E.; Galus, E.; Lenart, E. Starch films and coatings for food. Food Ind. 2012, 66, 28–30.
  14. Galus, S.; Lenart, A. Effect of coating on food quality. Technol. Prog. Food Process. 2019, 2, 106–114.
  15. Skurtys, O.; Acevedo, C.; Pedreschi, F.; Enrione, J.; Osorio, F.; Aguilera, J.M. Food Hydrocolloid Edible Films and Coatings; Nova Science Publishers Inc.: New York, NY, USA, 2010.
  16. Coma, V.; Martial–Gros, S.; Gareau, S.; Copinet, A.; Salin, F.; Dechamps, A. Edible antimicrobial films based on chitosan matrix. J. Food Sci. 2002, 67, 1162–1169.
  17. Cisneros-Zevallos, L.; Krochta, J.M. Dependence of coating thickness on viscosity of coating solution applied to fruits and vegetables by dipping method. J. Food Sci. 2003, 68, 503–510.
  18. Falguera, V.; Quintero, J.P.; Jimenez, A.; Munoz, A.; Ibarz, A. Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci. Technol. 2011, 22, 291–303.
  19. Ghanbarzadeh, B.; Almasi, H.; Entezami, A.A. Physical properties of edible modified starch/carboxymethyl cellulose films. Innov. Food Sci. Emerg. Tech. 2010, 11, 697–702.
  20. Fishman, M.L.; Coffin, D.R.; Onwulata, C.I.; Konstance, R.P. Extrusion of pectin and glycerol with various combinations of orange albedo and starch. Carbohydr. Polym. 2004, 57, 401–413.
  21. Liu, Z. Edible films and coatings from starches. In Innovations in Food Packaging; Han, J.H., Ed.; Academic Press: London, UK, 2005; pp. 318–337.
  22. Basiak, E.; Lenart, A. Starch coatings used in food packaging industry. Food Sci. Technol. Qual. 2013, 1, 21–31.
  23. Espitia, P.J.P.; Avena-Bustillos, R.J.; Du, W.-X.; Chiou, B.-S.; Williams, T.G.; Wood, D.; McHugh, T.H.; Soares, N.F.F. Physical and antibacterial properties of acai edible films formulated with thyme essential oil and apple skin polyphenols. J. Food Sci. 2014, 79, M903–M910.
  24. Hall, D.J. Edible coatings from lipids, waxes, and resins. In Edible Coatings and Films to Improve Food Quality, 2nd ed.; Baldwin, E.A., Hagenmaier, R., Bai, J., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 79–101.
  25. Araujo-Farro, P.C.; Podadera, G.; Sobral, P.J.A.; Menegalli, F.C. Development of films based on Quinna (Chenopodium quinoa, Willdenow) starch. Carbohyd. Polym. 2010, 81, 839–848.
  26. Tavassoli-Kafrani, E.; Shekarchizadeh, H.; Masoudpour-Behabadi, M. Development of edible films and coatings from alginates and carrageenans. Carbohydr. Polym. 2016, 137, 360–374.
  27. Glicksman, M. Utilization of seaweed hydrocolloids in the food industry. Hydrobiologia 1987, 151–152, 31–47.
  28. Lin, D.; Zhao, Y. Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Fruits and Vegetables. Compr. Rev. Food Sci. Food Saf. 2007, 6, 60–75.
  29. King, A.H. Brown seaweed extracts (alginates). In Food Hydrocolloids; Glicksman, E., Ed.; CRC Press: Boca Raton, FL, USA, 1983; pp. 115–188.
  30. Draget, K.I.; Smidsrod, O.; Skjak-Braek, G. Alginates from Algae. In Polysaccharides and Polyamides in the Food Industry. Properties, Production, and Patents; Steinbüchel, A., Rhee, S.K., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2005; pp. 1–30.
  31. Borchard, W.; Kenning, A.; Kapp, A.; Mayer, C. Phase diagram of the system sodium alginate/water: A model for biofilms. Int. J. Boil. Macromol. 2005, 35, 247–256.
  32. Dhanapal, A.; Sasikala, P.; Rajamani, L.; Kavitha, V.; Yazhini, G.; Banu, M.S. Edible films from polysaccharides. Food Sci. Qual. Manag. 2012, 3, 9–18.
  33. Stabler, C.; Wilks, K.; Sambanis, A.; Constantinidis, I. The effects of alginate composition on encapsulated βTC3 cells. Biomaterials 2001, 22, 1301–1310.
  34. Klöck, G.; Pfeffermann, A.; Ryser, C.; Gröhn, P.; Kuttler, B.; Hahn, H.J.; Zimmermann, U.J.B. Biocompatibility of mannuronic acid-rich alginates. Biomaterials 1997, 18, 707–713.
  35. Draget, K.I.; Taylor, C. Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocoll. 2011, 25, 251–256.
  36. Blanco-Pascual, N.; Montero, M.P.; Gómez-Guillén, M.C. Antioxidant film development from unrefined extracts of brown seaweeds Laminaria digitate and Ascophyllum nodosum. Food Hydrocoll. 2014, 37, 100–110.
  37. Haug, A.; Larsen, B. Quantitative determination of the uronic acid composition of alginates. Acta Chem. Scan. 1962, 16, 1908–1918.
  38. Grasdalen, H.; Larsen, B.; Smidsrød, O. A p.m.r. Study of the Composition and Sequence of Uronate Residues in Alginates. Carbohydr. Res. 1979, 68, 23–31.
  39. Penman, A.; Sanderson, G.R. A method for the determination of uronic acid sequence in alginates. Carbohydr. Res. 1972, 25, 273–282.
  40. Ji, M.; Wang, Y.; Xu, Z.; Guo, Y. Studies on the M:G ratios in alginate. Hydrobiologia 1984, 116/117, 554–556.
  41. Kim, D.S. Uronic Acid Composition, Block Structure and Some Related Properties of Alginic Acid. Master’s Thesis, Pusan Commercial (San Eup) University, Pusan, Korea, 1984.
  42. Draget, K.I.; Skjak, G.; Smidsrød, O. Alginic acid gels: The effect of alginate chemical composition and molecular weight. Carbohydr. Polym. 1994, 25, 31–38.
  43. Kim, D.S.; Park, Y.H. Uronic acid composition, block structure and some related properties of alginic acid. On alginic acid prepared from Sargassum ringgoldianum. Korean J. Fish. Aquat. Sci. 1985, 18, 29–36.
  44. Laroche, C.; Michaud, P. A novel alginate from the brown seaweed Sargassum turbinaroides (Sargassae). In Current Topics on Bioprocesses in Food Industry; Larroche, C., Pandey, A., Dussap, C.G., Eds.; Asiatech Publisher, Inc.: New Delhi, India, 2009; Volume 2, pp. 71–92.
  45. Davis, T.A.; Ramirez, M.; Mucci, A.; Larsen, B. Extraction, isolation and calcium binding of alginate from Sargassum spp. J. Appl. Physiol. 2004, 16, 275–284.
  46. Davis, T.A.; Llanes, F.; Volesky, B.; Mucci, A. Metal selectivity of Sargassum spp. and their alginates in relation to their a-L-guluronic acid content and conformation. Environ. Sci. Technol. 2003, 37, 261–267.
  47. Rosell, K.G.; Srivastava, L.M. Seasonal variation in the chemical constituents of the brown algae Macrocystis integrifolia and Nereocystis luetkeana. Can. J. Bot. 1984, 62, 2229–2236.
  48. Haug, A.; Larsen, B.; Smidsrød, O. Uronic acid sequence in alginate from different sources. Carbohydr. Res. 1974, 32, 217–225.
  49. Rhim, J.W. Physical and mechanical properties of water resistant sodium alginate films. LWT Food Sci. Technol. 2004, 37, 323–330.
  50. Kester, J.J.; Fennema, O.R. Edible films and coatings: A review. Food Technol. 1986, 40, 47–59.
  51. Han, J.H. Edible Films and Coatings: A Review. In Innovations in Food Packaging, 2nd ed.; Han, J.H., Ed.; Academic Press; Elsevier: Amsterdam, The Netherlands, 2014; Chapter 9; pp. 213–255.
  52. Bonilla, J.; Atarés, L.; Vargas, M.; Chiralt, A. Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. J. Food Eng. 2012, 110, 208–213.
  53. Conca, K.R.; Yang, T.C.S. Edible food barrier coatings. In Biodegradable Polymers and Packaging; Ching, C., Kaplan, D., Thomas, D., Eds.; Technomic Publishing Co. Inc.: Lancaster, PA, USA, 1993; pp. 357–369.
  54. Al-Tayyar, N.A.; Youssef, A.M.; Al-Hindi, R.R. Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: A review. Sustain. Mater. Technol. 2020, 26, e00215.
  55. McHugh, D.J. A guide to the seaweed industry. In FAO Fisheries Technical Paper 441; FAO: Rome, Italy, 2003.
  56. Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int. J. Biol. Macromol. 2018, 109, 1095–1107.
  57. McHugh, D.J. Production and utilization of products from commercial seaweeds. In FAO Fisheries Technical Paper 288; FAO: Rome, Italy, 1987.
  58. Osorio, F.A.; Molina, P.; Matiacevich, S.; Enrione, J.; Skurtys, O. Characteristics of hydroxy propyl methyl cellulose (HPMC) based edible film developed for blueberry coatings. Proc. Food Sci. 2011, 1, 287–293.
  59. Campos, C.A.; Gerschenson, L.N.; Flores, S.K. Development of edible films and coatings with antimicrobial activity. Food Bioproc. Tech. 2011, 4, 849–875.
  60. Cosenza, V.A.; Navarro, D.A.; Fissore, E.N.; Rojas, A.M.; Stortz, C.A. Chemical and rheological characterization of the carrageenans from Hypnea musciformis (Wulfen) Lamoroux. Carbohydr. Polym. 2014, 102, 780–789.
  61. Kapetanakou, A.E.; Manios, S.G.; Skandamis, P.N. Application of Edible Films and Coatings on Food. In Novel Food Preservation and Microbial Assessment Techniques; Boziaris, I.S., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Abingdon, UK, 2014; pp. 237–273.
  62. Hambleton, A.; Perpinan-Saiz, N.; Fabra, M.J.; Voilley, A.; Debeaufort, F. The schroeder paradox or how the state of water affects the moisture transfer through edible films. Food Chem. 2012, 132, 1671–1678.
  63. De Araújo, I.W.F.; de Sousa Oliveira Vanderlei, E.; Rodrigues, J.A.G.; Coura, C.O.; Quinderé, A.L.G.; Fontes, B.P.; Queiroz, I.N.L.; Jorge, R.J.B.; Bezerra, M.M.; de Silva, A.A.R.; et al. Effects of a sulfated polysaccharide isolated from the red seaweed Solieria filiformis on models of nociception and inflammation. Carbohydr. Polym. 2011, 86, 1207–1215.
  64. Lopez-Pena, C.L.; McClements, D.J. Optimizing delivery systems for cationic biopolymers: Competitive interactions of cationic polylysine with anionic kappa-carrageenan and pectin. Food Chem. 2014, 153, 9–14.
  65. Schmidt, É.C.; Dos Santos, R.; Horta, P.A.; Maraschin, M.; Bouzon, Z.L. Effects of UVB radiation on the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales): Changes in cell organization, growth and photosynthetic performance. Micron 2010, 41, 919–930.
  66. Rhim, J.W. Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr. Polym. 2011, 86, 691–699.
  67. Li, L.; Ni, R.; Shao, Y.; Mao, S. Carrageenan and its applications in drug delivery. Carbohydr. Polym. 2014, 103, 1–11.
  68. Motlagh, S.; Ravines, P.; Karamallah, K.A.; Ma, Q. The analysis of Acacia gums using electrophoresis. Food Hydrocol. 2006, 20, 848–854.
  69. Murmu, S.B.; Mishra, H.N. Optimization of the arabic gum based edible coating formulations with sodium caseinate and tulsi extract for guava. LWT Food Sci. Technol. 2017, 80, 271–279.
  70. Elmanan, M.; Al-Assaf, S.; Philips, G.O.; Williams, P.A. Studies of Acacia exudates gums: Part IV. Interfacial rheology of Acacia senegal and Acacia seyal. Food Hydrocol. 2008, 22, 682–689.
  71. Ali, A.; Maqbool, M.; Ramachandran, S.; Alderson, P.G. Gum arabic as a novel edible coating for enhancing shelf-life and improving postharvest quality of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 2010, 58, 42–47.
  72. Ali, A.; Maqbool, M.; Alderson, P.G.; Zahid, N. Effect of gum arabic as an edible coating on antioxidant capacity of tomato (Solanum lycopersicum L.) fruit during storage. Postharvest Biol. Technol. 2013, 76, 119–124.
  73. Antoniou, J.; Liu, F.; Majeed, H.; Qazi, H.J.; Zhong, F. Physicochemical and thermomechanical characterization of tara gum edible films: Effect of polyols as plasticizers. Carbohydr. Polym. 2014, 111, 359–365.
  74. Chen, Y.; Xu, L.; Wang, Y.; Chen, Z.; Zhang, M.; Chen, X. Characterization and functional properties of a pectin/tara gum based edible film with ellagitannins from the unripe fruits of Rubus chingii Hu. Food Chem. 2020, 325, 126964.
  75. Antoniou, J.; Liu, F.; Majeed, H.; Zhong, F. Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study. Food Hydrocol. 2015, 44, 309–319.
  76. Aydogdu, A.; Radkea, C.J.; Bezci, S.; Kirtil, E. Characterization of curcumin incorporated guar gum/orange oil antimicrobial emulsion films. Int. J. Biol. Macromol. 2020, 148, 110–120.
  77. Banegas, R.S.; Zornio, C.F.; Borges, A.M.G.; Porto, L.C.; Soldi, V. Preparation, Characterization and Properties of Films Obtained from Cross-linked Guar Gum. Polimeros 2013, 23, 182–188.
  78. Arismendi, C.; Chillo, S.; Conte, A.; Del Nobile, M.A.; Flores, S.; Gerschenson, L.N. Optimization of physical properties of xanthan gum/tapioca starch edible matrices containing potassium sorbate and evaluation of its antimicrobial effectiveness. LWT Food Sci. Technol. 2013, 53, 290–296.
  79. Ge, L.; Li, X.; Zhang, R.; Yang, R.; Ye, X.; Li, D.; Mu, D. Development and characterization of dialdehyde xanthan gum crosslinked gelatin based edible films incorporated with amino-functionalized montmorillonite. Food Hydrocol. 2015, 51, 129–135.
  80. Guo, J.M.; Ge, L.M.; Li, X.Y.; Mu, C.D.; Li, D.F. Periodate oxidation of xanthan gum and its crosslinking effects on gelatin-based edible films. Food Hydrocol. 2014, 39, 243–250.
  81. Gahruie, H.H.; Mostaghimi, M.; Ghiasi, F.; Tavakoli, S.; Naseri, M.; Hosseini, S.M.H. The effects of fatty acids chain length on the techno-functional properties of basil seed gum-based edible films. Inter. J. Biol. Macromol. 2020, 160, 245–251.
  82. Khazaei, N.; Esmaiili, M.; Djomeh, Z.E.; Ghasemlou, M.; Jouki, M. Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydr. Polym. 2014, 102, 199–206.
  83. Otoni, C.G.; Avena-Bustillos, R.J.; Azeredo, H.M.C.; Lorevice, M.V.; Moura, M.R.; Mattoso, L.H.C.; McHugh, T.H. Recent advances on edible films based on fruits and vegetables—A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1151–1169.
  84. Dhall, R.K. Advances in Edible Coatings for Fresh Fruits and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450.
  85. Jahromi, M.; Niakousari, M.; Golmakani, M.T.; Mohammadifar, M.A. Physicochemical and structural characterization of sodium caseinate based film-forming solutions and edible films as affected by high methoxyl pectin. Int. J. Biol. Macromol. 2020, 165, 1949–1959.
  86. Coffin, D.R.; Fishman, M.L. Physical and mechanical properties of highly plasticized pectin/starch films. J. Appl. Polym. Sci. 1994, 54, 1311–1320.
  87. Bourtoom, T. Edible films and coatings: Characteristics and properties. Int. Food Res. J. 2008, 15, 237–248.
  88. Šuput, D.Z.; Lazić, V.L.; Popović, S.Z.; Hromiš, N.M. Edible films and coatings—Sources, properties and application. Food Feed Res. 2015, 42, 11–22.
  89. Kalkan, S.; Otağ, M.R.; Engin, M.S. Physicochemical and bioactive properties of edible methylcellulose films containing Rheum ribes L. extract. Food Chem. 2020, 307, 125524.
  90. Krochta, J.M.; Mulder-Johnson, C. Edible and biodegradable polymer films challenges and opportunities. Food Tech. 1997, 52, 661–674.
  91. Li, H.; Shi, H.; He, Y.; Fei, X.; Peng, L. Preparation and characterization of carboxymethyl cellulose-based composite films reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications. Int. J. Biol. Macromol. 2020, 164, 4104–4112.
  92. Ebrahimi, B.; Mohammadi, R.; Rouhi, M.; Mortazavian, A.M.; Shojaee-Aliabadi, S.; Koushki, M.R. Survival of probiotic bacteria in carboxymethyl cellulose based edible film and assessment of quality parameters. LWT Food Sci. Technol. 2018, 87, 54–60.
  93. Zillo, R.R.; da Silva, P.P.M.; de Oliveira, J.; da Glória, E.M.; Spoto, M.H.F. Carboxymethylcellulose coating associated with essential oil can increase papaya shelf life. Sci. Hortic. 2018, 239, 70–77.
  94. Choi, W.S.; Singh, S.; Lee, Y.S. Characterization of edible film containing essential oils in hydroxypropyl methylcellulose and its effect on quality attributes of ‘Formosa’ plum (Prunus salicina L.). LWT Food Sci. Technol. 2016, 70, 213–222.
  95. Wani, A.A.; Singh, P.; Shah, M.A.; Schweiggert-Weisz, U.; Gul, K.; Wani, I.A. Rice starch diversity: Effects on structural, Morphological, Thermal, and Physicochemical Properties—A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 417–436.
  96. Copeland, L.; Blazek, J.; Salman, H.; Tang, M.C. Form and functionality of starch. Food Hydrocoll. 2009, 23, 1527–1534.
  97. Tester, R.F.; Karkalas, J.; Qi, X. Starch—composition, fine structure and architecture. J. Cereal Sci. 2004, 39, 151–165.
  98. Guimarãesac, I.C.; Cristina dos Reis, K.; Galvão, E.; Menezes, E.G.T.; Rodrigues, A.C.; Ferreira da Silva, T.; Nolasco de Oliveira, I.R.; Vilas Boas, E.V.B. Cellulose microfibrillated suspension of carrots obtained by mechanical defibrillation and their application in edible starch films. Ind. Crop. Prod. 2016, 89, 285–294.
  99. Zhu, F. Modifications of starch by electric field based techniques. Trends Food Sci. Technol. 2018, 75, 158–169.
  100. Matignon, A.; Tecante, A. Starch retrogradation: From starch components to cereal products. Food Hydrocol. 2017, 68, 43–52.
  101. Torres, F.G.; Troncoso, O.P.; Torres, C.; Diaz, D.A.; Amaya, E. Biodegradability and mechanical properties of starch films from Andean crops. Int. J. Biol. Macromol. 2011, 48, 603–606.
  102. Zavareze, E.R.; Pinto, V.Z.; Klein, B.; Halal, S.L.M.E.; Elias, M.C.; Prentice-Hernández, C.; Dias, A.R.G. Development of oxidised and heat-moisture treated potato starch film. Food Chem. 2012, 132, 344–350.
  103. Li, Y.; Shoemaker, C.F.; Ma, J.; Shen, X.; Zhong, F. Paste viscosity of rice starches of different amylose content and carboxymethylcellulose formed by dry heating and the physical properties of their films. Food Chem. 2008, 109, 616–623.
  104. Mali, S.; Grossmann, M.V.E.; Garcia, M.A.; Martino, M.N.; Zaritzky, N.E. Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. J. Food Eng. 2006, 75, 453–460.
  105. Thakur, R.; Pristijono, P.; Scarlett, C.J.; Bowyer, M.; Singh, S.P.; Vuong, Q.V. Starch-based films: Major factors affecting their properties. Int. J. Biol. Macromol. 2019, 132, 1079–1089.
  106. Januszewska-Jóźwiak, K.; Synowiecki, J. Characteristics and suitability of amaranth components in food biotechnology. Biotechnologia 2008, 3, 89–102.
  107. Pietrzyk, S.; Fortuna, T. Impact of starch type and its oxidation conditions on retrogradation properties. Food Sci. Technol. Qual. 2005, 2, 23–32.
  108. Pająk, P.; Fortuna, T.; Przetaczek-Rożnowska, I. Protein and polysaccharide-based edible packagings: Profile and applications. Food Sci. Technol. Qual. 2013, 2, 5–18.
  109. Shah, U.; Naqash, F.; Gani, A.; Masoodi, F.A. Art and Science behind Modified Starch Edible Films and Coatings: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 568–580.
  110. Rodríguez, M.; Osés, J.; Ziani, K.; Maté, J.I. Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Res. Int. 2006, 39, 840–846.
  111. Ryu, S.Y.; Rhim, J.W.; Roh, H.J.; Kim, S.S. Preparation and physical properties of zein-coated high amylose corn starch film. LWT Food Sci. Technol. 2002, 35, 680–686.
  112. de Moraes, J.O.; Scheibe, A.S.; Sereno, A.; Laurindo, J.B. Scale-up of the production of cassava starch based films using tape-casting. J. Food Eng. 2013, 119, 800–808.
  113. Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch retrogradation: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585.
  114. Ratnayake, W.S.; Jackson, D.S. Starch gelatinization. Adv. Food Nutr. Res. 2009, 55, 221–268.
  115. Shanks, R.; Kong, I. Thermoplastic Starch. In Thermoplastic Elastomers; El-Sonbati, A.Z., Ed.; InTechOpen: London, UK, 2012; Available online: (accessed on 11 February 2021).
  116. Ivanič, F.; Jochec-Mošková, D.; Janigová, I.; Chodák, I. Physical properties of starch plasticized by a mixture of plasticizers. Eur. Polym. J. 2017, 93, 843–849.
  117. Zhang, M.; Haga, A.; Sekiguchi, H.; Hirano, S. Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. Int. J. Biol. Macromol. 2000, 27, 99–105.
  118. Majtan, J.; Bilikora, K.; Markowiec, O.; Grof, J.; Kogan, G.; Simuth, J. Isolation and characterization of chitin from bumblebee (Bombus terrestris). Int. J. Biol. Macromol. 2007, 40, 237–241.
  119. Sajomsang, W.; Gonil, P. Preparation and characterization of α-chitin from cicada sloughs. Mater. Sci. Eng. C 2010, 30, 357–363.
  120. Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 2013, 33, 1819–1841.
  121. Tyliszczak, B.; Bialik-Wąs, K.; Drabczyk, A.; Kudłacik, S.; Sobczak-Kupiec, A. Animal-derived chitosans. Characteristics, comparison, application. Przem. Chem. 2016, 95, 2059–2062.
  122. Butola, B.S. Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. Int. J. Biol. Macromol. 2019, 121, 905–912.
  123. Domard, A.; Domard, M. Chitosan: Structure–properties relationship and biomedical applications. In Polymeric Biomaterials; Severian, D., Ed.; Marcel Decker Incorporated: New York, NY, USA, 2001; pp. 187–212.
  124. Youssef, A.M.; Abdel-Aziz, M.S.; El-Sayed, S.M. Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus subtilis as packaging materials. Int. J. Biol. Macromol. 2014, 69, 185–191.
  125. Chaudhary, S.; Kumar, S.; Kumar, V.; Sharma, R. Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. Int. J. Biol. Macromol. 2020, 152, 154–170.
  126. Hajji, S.; Younes, I.; Affes, S.; Boufi, S.; Nasri, M. Optimization of the formulation of chitosan edible coatings supplemented with carotenoproteins and their use for extending strawberries postharvest life. Food Hydrocoll. 2018, 83, 375–392.
  127. Candir, E.; Ozdemir, A.E.; Aksoy, M.C. Effects of chitosan coating and modified atmosphere packaging on postharvest quality and bioactive compounds of pomegranate fruit cv. ‘Hicaznar’. Sci. Hortic. 2018, 235, 235–243.
  128. Elsabee, M.Z. Chitosan-Based Edible Films. In Polysaccharides; Ramawat, K., Mérillon, J.M., Eds.; Springer: Cham, Switzerland, 2014; pp. 1–37.
  129. Kim, K.W.; Thomas, R.L.; Lee, C.; Park, H.J. Antimicrobial Activity of Native Chitosan, Degraded Chitosan, and O-Carboxymethylated Chitosan. J. Food Prot. 2003, 66, 1495–1498.
  130. Tsai, G.; Su, W.; Chen, H.; Pan, C. Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fish. Sci. 2002, 68, 70–177.
  131. Liu, H.; Du, Y.; Wang, X.; Sun, L. Chitosan kills bacteria through cell membrane damage. Int. J. Food Microbiol. 2004, 95, 147–155.
  132. Goy, R.C.; Morais, S.T.; Assis, O.B. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev. Bras. Farm. 2016, 26, 122–127.
  133. Singh, R.; Shitiz, K.; Singh, A. Chitin and chitosan: Biopolymers for wound management. Int. Wound J. 2017, 14, 1276–1289.
  134. Pavinatto, A.V.; de Almeida Mattos, A.C.G.; Malpass, M.H.; Okura, D.T.; Balogh, R.C.; Sanfelice, A. Coating with chitosan-based edible films for mechanical/biological protection of strawberries. Int. J. Biol. Macromol. 2020, 151, 1004–1011.
  135. Sharaf, O.M.; Al-Gamal, M.S.; Ibrahim, G.A.; Dabiza, N.M.; Salem, S.S.; El-Ssayad, M.F.; Youssef, A.M. Evaluation and characterization of some protective culture metabolites in free and nano-chitosan-loaded forms against common contaminants of Egyptian cheese. Carbohydr. Polym. 2019, 223, 115094.
  136. Bakshia, P.S.; Selvakumara, D.; Kadirvelub, K.; Kumara, N.S. Chitosan as an environment friendly biomaterial—A review on recent modifications and applications. Int. J. Biol. Macromol. 2019, 150, 1072–1083.
  137. Kaczmarek, M.B.; Struszczyk-Swita, K.; Li, X.; Szczęsna-Antczak, M.; Daroch, M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front. Bioeng. Biotechnol. 2019, 7, 243.
  138. Tsigos, I.; Martinou, A.; Kafetzopoulos, D.; Bouriotis, V. Chitin deacetylases: New, versatile tools in biotechnology. Trends Biotechnol. 2000, 18, 305–312.
  139. Jaworska, M.M. Kinetics of enzymatic deacetylation of chitosan. Cellulose 2012, 19, 363–369.
More
Video Production Service