Please note this is a comparison between Version 2 by Bruce Ren and Version 1 by Petru Ilea.
Lithium manganese oxide is regarded as a capable cathode material for lithium-ion batteries, but it suffers from relative low conductivity, manganese dissolution in electrolyte and structural distortion from cubic to tetragonal during elevated temperature tests.
lithium manganese oxide
surface modification
doping
stability
long cycling ability
discharge capacity
Please wait, diff process is still running!
References
Han, Z.; Jia, X.; Zhan, H.; Zhou, Y. LiMn2O4/LiNi0.5Mn1.5O4 composite with improved electrochemical property. Electrochim. Acta 2013, 114, 772–778.
Li, C.; Zhang, H.; Fu, L.; Liu, H.; Wu, Y.; Rahm, E.; Holze, R.; Wu, H. Cathode materials modified by surface coating for lithium ion batteries. Electrochim. Acta 2006, 51, 3872–3883.
Zhao, Q.; Wu, Y.; Ma, X.; Wang, R.; Xu, X.; Cao, C. Mn oxidation state controllable spinel manganese-based intergrown cathode for excellent reversible lithium storage. J. Power Source 2017, 359, 295–302.
Li, X.; Shao, Z.; Liu, K.; Liu, G.; Xu, B. Synthesis and electrochemical characterizations of LiMn2O4 prepared by high temperature ball milling combustion method with citric acid as fuel. J. Electroanal. Chem. 2018, 818, 204–209.
Wang, Y.; Liu, B.; Li, Q.; Cartmell, S.; Ferrara, S.; Deng, Z.D.; Xiao, J. Lithium and lithium ion batteries for applications in microelectronic devices: A review. J. Power Source 2015, 286, 330–345.
Dai, X.; Zhou, A.; Xu, J.; Lu, Y.; Wang, L.; Fan, C.; Li, J. Extending the high-voltage capacity of LiCoO2 cathode by direct coating of the composite electrode with Li2CO3 via magnetron sputtering. J. Phys. Chem. C 2015, 120, 422–430.
Wang, G.; Qu, Q.; Wang, B.; Shi, Y.; Tian, S.; Wu, Y.; Holze, R. Electrochemical behavior of LiCoO2 in a saturated aqueous Li2SO4 solution. Electrochim. Acta 2009, 54, 1199–1203.
Chen, J.-M.; Cho, Y.-D.; Hsiao, C.-L.; Fey, G.T.-K. Electrochemical studies on LiCoO2 surface coated with Y3Al5O12 for lithium-ion cells. J. Power Source 2009, 189, 279–287.
Satyavani, T.; Kumar, A.S.; Rao, P.S. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review. Eng. Sci. Technol. Int. J. 2016, 19, 178–188.
Hou, Y.; Wang, X.; Zhu, Y.; Hu, C.; Chang, Z.; Wu, Y.; Holze, R. Macroporous LiFePO4 as a cathode for an aqueous rechargeable lithium battery of high energy density. J. Mater. Chem. A 2013, 1, 14713.
Li, Z.; Zhang, D.; Yang, F. Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material. J. Mater. Sci. 2009, 44, 2435–2443.
Yu, H.; Dong, X.; Pang, Y.; Wang, Y.; Xia, Y. High power lithium-ion battery based on spinel cathode and hard carbon anode. Electrochim. Acta 2017, 228, 251–258.
Liu, Q.; Wang, S.; Tan, H.; Yang, Z.; Zeng, J. Preparation and doping mode of doped LiMn2O4 for Li-ion batteries. Energies 2013, 6, 1718–1730.
Lv, W.; Li, Z.; Deng, Y.; Yang, Q.-H.; Kang, F. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Mater. 2016, 2, 107–138.
Ozanam, F.; Rosso, M. Silicon as anode material for Li-ion batteries. Mater. Sci. Eng. B 2016, 213, 2–11.
Dash, R.; Pannala, S. The potential of silicon anode based lithium ion batteries. Mater. Today 2016, 19, 483–484.
Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ. 2016, 1, 18–42.
Michalska, M.; Ziolkowska, D.A.; Jasinski, J.B.; Lee, P.H.; Lawniczak, P.; Andrzejewski, B.; Ostrowski, A.; Bednarski, W.; Wu, S.H.; Lin, J.Y. Improved electrochemical performance of LiMn2O4 cathode material by Ce doping. Electrochim. Acta 2018, 276, 37–46.
Kiani, M.A.; Mousavi, M.F.; Rahmanifar, M.S. Synthesis of nano- and micro-particles of LiMn2O4: Electrochemical investigation and assessment as a cathode in Li battery. Int. J. Electrochem. Sci. 2011, 6, 2581–2595.
Han, C.-G.; Zhu, C.; Saito, G.; Akiyama, T. Improved electrochemical properties of LiMn2O4with the Bi and La co-doping for lithium-ion batteries. RSC Adv. 2015, 5, 73315–73322.
Wang, J.-G.; Jin, D.; Liu, H.; Zhang, C.; Zhou, R.; Shen, C.; Xie, K.; Wei, B. All-manganese-based Li-ion batteries with high rate capability and ultralong cycle life. Nano Energy 2016, 22, 524–532.
Thackeray, M.M.; Picciotto, L.A.; de Kock, A.; Johnson, P.J.; Nicholas, V.A.; Adendorff, K.T. Spinel electrodes for Lithium batteries—A review. J. Power Source 1987, 21, 1–8.
Zuo, D.; Tian, G.; Li, X.; Chen, D.; Shu, K. Recent progress in surface coating of cathode materials for lithium ion secondary batteries. J. Alloys Compd. 2017, 706, 24–40.
Peng, Z.; Li, Y.; Du, K.; Cao, Y.; Hu, G. Improved elevated temperature performance of spinel LiMn2O4 via surface-modified by Li-rich Li1.2Ni0.2Mn0.6O2 for lithium-ion batteries. J. Alloys Compd. 2017, 728, 1209–1216.
He, X.; Li, J.; Cai, Y.; Wang, Y.; Ying, J.; Jiang, C.; Wan, C. Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries. J. Power Source 2005, 150, 216–222.
Chung, K.Y.; Ryu, C.-W.; Kim, K.-B. Onset mechanism of Jahn-Teller distortion in 4 V LiMn2O4 and its suppression by LiM0.05Mn1.95O4 (M = Co, Ni) coating. J. Electrochem. Soc. 2005, 152, A791.
Liang, X.; Zeng, S.; Liu, Y.; Shi, L.; Liu, T. Enhance cycling performance of LiMn2O4 cathode by Sr2+ and Cr3+ doping. Mater. Sci. Technol. 2014, 31, 443–447.
Feng, X.; Zhang, J.; Yin, L. Effect of AlP coating on electrochemical properties of LiMn2O4 cathode material for lithium ion battery. Mater. Res. Bull. 2016, 74, 421–424.
Thirunakaran, R.; Sivashanmugam, A.; Gopukumar, S.; Dunnill, C.W.; Gregory, D.H. Electrochemical behaviour of nano-sized spinel LiMn2O4 and LiAlxMn2−xO4 (x = Al: 0.00–0.40) synthesized via fumaric acid-assisted sol-gel synthesis for use in lithium rechargeable batteries. J. Phys. Chem. Solids 2008, 69, 2082–2090.
Wang, M.; Yang, M.; Zhao, X.; Ma, L.; Shen, X.; Cao, G. Spinel LiMn2−xSiO4 (x < 1) through Si4+ substitution as a potential cathode material for lithium-ion batteries. Sci. China Mater. 2016, 59, 558–566.
Jiang, Q.Q.; Liu, D.D.; Zhang, H.; Wang, S.Y. Plasma-assisted sulfur doping of LiMn2O4 for high-performance lithium-ion batteries. J. Phys. Chem. C 2015, 119, 28776–28782.
Xiang, M.W.; Zhou, X.Y.; Zhang, Z.F.; Chen, M.M.; Bai, H.L.; Guo, J.M. LiMn2O4 prepared by liquid phase flameless combustion with F-doped for lithium-ion battery cathode materials. In Advances in Materials and Materials Processing; Jiang, Z.Y., Liu, X.H., Jiao, S.H., Han, J.T., Eds.; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2013; pp. 825–830.
Thirunakaran, R.; Ravikumar, R.; Vanitha, S.; Gopukumar, S.; Sivashanmugam, A. Glutamic acid-assisted sol-gel synthesis of multi-doped spinel lithium manganate as cathode materials for lithium rechargeable batteries. Electrochim. Acta 2011, 58, 348–358.
Bao, S.J.; Liang, Y.Y.; Zhou, W.J.; He, B.L.; Li, H.L. Enhancement of the electrochemical properties of LiMn2O4 through Al3+ and F-co-substitution. J. Colloid Interface Sci. 2005, 291, 433–437.
Wang, C.-M.; Jin, F.-M.; Shi, T.; Chen, L. The effect of LaMnO3 with high electronic conductivity on the high rate charge-discharge performance of LiMn2O. J. Electroanal. Chem. 2016, 775, 306–310.
Park, K.; Park, J.-H.; Hong, S.-G.; Yoon, J.; Park, S.; Kim, J.-H.; Yoon, D.; Kim, H.; Son, Y.-H.; Park, J.-H.; et al. Induced AlF3 segregation for the generation of reciprocal Al2O3 and LiF coating layer on self-generated LiMn2O4 surface of over-lithiated oxide based Li-ion battery. Electrochim. Acta 2016, 222, 830–837.
Zhang, Z.J.; Chou, S.L.; Gu, Q.F.; Liu, H.K.; Li, H.J.; Ozawa, K.; Wang, J.Z. Enhancing the high rate capability and cycling stability of LiMn2O4 by coating of solid-state electrolyte LiNbO3. ACS Appl. Mater. Interfaces 2014, 6, 22155–22165.
Fang, D.-L.; Li, J.-C.; Liu, X.; Huang, P.-F.; Xu, T.-R.; Qian, M.-C.; Zheng, C.-H. Synthesis of a Co-Ni doped LiMn2O4 spinel cathode material for high-power Li-ion batteries by a sol-gel mediated solid-state route. J. Alloys Compd. 2015, 640, 82–89.
Yi, Z. Rheological phase reaction synthesis of Co-doped LiMn2O4 octahedral particles. J. Mater. Sci. Mater. Electron. 2016, 27, 10347–10352.
Li, S.Y.; Zhu, K.L.; Du, S.L. Enhanced elevated-temperature performance of Al-doped LiMn2O4 as cathodes for lithium ion batteries. In Proceedings of the 2nd International Conference on Materials Science, Resource and Environmental Engineering, Wuhan, China, 27–29 October 2017.
Zhan, D.; Liang, Y.; Cui, P.; Xiao, Z.A. Al-doped LiMn2O4 single crystalline nanorods with enhanced elevated-temperature electrochemical performance via a template-engaged method as a cathode material for lithium ion batteries. RSC Adv. 2015, 5, 6372–6377.
Bakierska, M.; Świętosławski, M.; Chudzik, K.; Lis, M.; Molenda, M. Enhancing the lithium ion diffusivity in LiMn2O4−ySy cathode materials through potassium doping. Solid State Ion. 2018, 317, 190–193.
Molenda, M.; Bakierska, M.; Majda, D.; Świętosławski, M.; Dziembaj, R. Structural and electrochemical characterization of sulphur-doped lithium manganese spinel cathode materials for lithium ion batteries. Solid State Ion. 2015, 272, 127–132.
Sun, Y.-K.; Jeon, Y.; Leeb, H.J. Overcoming Jahn-Teller Distortion for Spinel Mn Phase. Electrochem. Solid-State Lett. 1999, 3, 7–9.
Nkosi, F.P.; Jafta, C.J.; Kebede, M.; le Roux, L.; Mathe, M.K.; Ozoemena, K.I. Microwave-assisted optimization of the manganese redox states for enhanced capacity and capacity retention of LiAlxMn2−xO4(x = 0 and 0.3) spinel materials. RSC Adv. 2015, 5, 32256–32262.
Liu, J.; Li, G.; Yu, Y.; Bai, H.; Shao, M.; Guo, J.; Su, C.; Liu, X.; Bai, W. Synthesis and electrochemical performance evaluations of polyhedra spinel LiAlxMn2−xO4 (x ≦ 0.20) cathode materials prepared by a solution combustion technique. J. Alloys Compd. 2017, 728, 1315–1328.
Waller, G.; Brooke, P.; Rainwater, B.; Lai, S.; Hu, R.; Ding, Y.; Alamgir, F.; Sandhage, K.; Liu, M. Structure and surface chemistry of Al2O3 coated LiMn2O4 nanostructured electrodes with improved lifetime. J. Power Source 2016, 306, 162–170.
Guan, D.; Wang, Y. Ultrathin surface coatings to enhance cycling stability of LiMn2O4 cathode in lithium-ion batteries. Ionics 2012, 19, 1–8.
Chen, Q.; Wang, Y.; Zhang, T.; Yin, W.; Yang, J.; Wang, X. Electrochemical performance of LaF3-coated LiMn2O4 cathode materials for lithium ion batteries. Electrochim. Acta 2012, 83, 65–72.
Michalska, M.; Hamankiewicz, B.; Ziółkowska, D.; Krajewski, M.; Lipińska, L.; Andrzejczuk, M.; Czerwiński, A. Influence of LiMn2O4 modification with CeO2 on electrode performance. Electrochim. Acta 2014, 136, 286–291.
Ha, H.-W.; Yun, N.J.; Kim, K. Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries. Electrochim. Acta 2007, 52, 3236–3241.
Han, C.-G.; Zhu, C.; Saito, G.; Sheng, N.; Nomura, T.; Akiyama, T. Enhanced cycling performance of surface-doped LiMn2O4 modified by a Li2CuO2-Li2NiO2 solid solution for rechargeable lithium-ion batteries. Electrochim. Acta 2017, 224, 71–79.
Wang, X.; Wang, H.; Wen, J.; Tan, Y.; Zeng, Y. Surface modification of LiMn2O4 cathode with LaCoO3 by a molten salt method for lithium ion batteries. Ceram. Int. 2021, 47, 6434–6441.
Zhao, X.; Hayner, C.M.; Kung, H.H. Self-assembled lithium manganese oxide nanoparticles on carbon nanotube or graphene as high-performance cathode material for lithium-ion batteries. J. Mater. Chem. 2011, 21, 17297–17303.
Jaber-Ansari, L.; Puntambekar, K.P.; Kim, S.; Aykol, M.; Luo, L.L.; Wu, J.S.; Myers, B.D.; Iddir, H.; Russell, J.T.; Saldana, S.J.; et al. Suppressing manganese dissolution from lithium manganese oxide spinel cathodes with single-layer graphene. Adv. Energy Mater. 2015, 5, 10.
Cericola, D.; Novak, P.; Wokaun, A.; Kotz, R. Segmented bi-material electrodes of activated carbon and LiMn2O4 for electrochemical hybrid storage devices: Effect of mass ratio and C-rate on current sharing. Electrochim. Acta 2011, 56, 1288–1293.
Cericola, D.; Novak, P.; Wokaun, A.; Kotz, R. Mixed bi-material electrodes based on LiMn2O4 and activated carbon for hybrid electrochemical energy storage devices. Electrochim. Acta 2011, 56, 8403–8411.
Tang, M.; Yuan, A.; Xu, J. Synthesis of highly crystalline LiMn2O4/multiwalled carbon nanotube composite material with high performance as lithium-ion battery cathode via an improved two-step approach. Electrochim. Acta 2015, 166, 244–252.
Shah, A.; Ates, M.N.; Kotz, S.; Seo, J.; Abraham, K.M.; Somu, S.; Busnaina, A. A Layered carbon nanotube architecture for high power lithium ion batteries. J. Electrochem. Soc. 2014, 161, A989–A995.
Hong, H.P.; Kim, M.S.; Lee, Y.H.; Yu, J.S.; Lee, C.J.; Min, N.K. Spray deposition of LiMn2O4 nanoparticle-decorated multiwalled carbon nanotube films as cathode material for lithium-ion batteries. Thin Solid Film. 2013, 547, 68–71.
Xia, H.; Ragavendran, K.R.; Xie, J.P.; Lu, L. Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries. J. Power Source 2012, 212, 28–34.
Ding, Y.H.; Li, J.X.; Zhao, Y.; Guan, L.H. Direct growth of LiMn2O4 on carbon nanotubes as cathode materials for lithium ion batteries. Mater. Lett. 2012, 68, 197–200.
Liu, X.-M.; Huang, Z.-D.; Oh, S.; Ma, P.-C.; Chan, P.C.H.; Vedam, G.K.; Kang, K.; Kim, J.-K. Sol–gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries. J. Power Source 2010, 195, 4290–4296.
Zhuo, H.T.; Wan, S.; He, C.X.; Zhang, Q.L.; Li, C.H.; Gui, D.Y.; Zhu, C.Z.; Niu, H.B.; Liu, J.H. Improved electrochemical performance of spinel LiMn2O4 in situ coated with graphene-like membrane. J. Power Source 2014, 247, 721–728.
Pyun, M.H.; Park, Y.J. Graphene/LiMn2O4 nanocomposites for enhanced lithium ion batteries with high rate capability. J. Alloys Compd. 2015, 643, S90–S94.
Jiang, Q.Q.; Xu, L.; Ma, Z.L.; Zhang, H. Carbon coated to improve the electrochemical properties of LiMn2O4 cathode material synthesized by the novel acetone hydrothermal method. Appl. Phys. A Mater. Sci. Process. 2015, 119, 1069–1074.
Jiang, Q.; Wang, X.; Tang, Z. Improving the electrochemical performance of LiMn2O4 by amorphous carbon coating. Fuller. Nanotub. Carbon Nanostruct. 2014, 23, 676–679.
Lee, S.; Cho, Y.; Song, H.K.; Lee, K.T.; Cho, J. Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew Chem. Int. Ed. Engl. 2012, 51, 8748–8752.
Wutthiprom, J.; Phattharasupakun, N.; Sawangphruk, M. Turning carbon black to hollow carbon nanospheres for enhancing charge storage capacities of LiMn2O4, LiCoO2, LiNiMnCoO2, and LiFePO4 lithium-ion batteries. ACS Omega 2017, 2, 3730–3738.
Bak, S.-M.; Nam, K.-W.; Lee, C.-W.; Kim, K.-H.; Jung, H.-C.; Yang, X.-Q.; Kim, K.-B. Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries. J. Mater. Chem. 2011, 21, 17309.
Li, J.; Zhang, X.; Peng, R.F.; Huang, Y.J.; Guo, L.; Qi, Y.C. LiMn2O4/graphene composites as cathodes with enhanced electrochemical performance for lithium-ion capacitors. RSC Adv. 2016, 6, 54866–54873.
Ge, Q.S.; Wang, D.F.; Li, F.L.; Chen, D.; Ping, G.X.; Fan, M.Q.; Qin, L.S.; Bai, L.Q.; Tian, G.L.; Lv, C.J.; et al. Enhanced cycling stability of spinel LiMn2O4 cathode by incorporating graphene sheets. Russ. J. Electrochem. 2015, 51, 125–133.
Sreelakshmi, K.V.; Sasi, S.; Balakrishnan, A.; Sivakumar, N.; Nair, A.S.; Nair, S.V.; Subramanian, K.R.V. Hybrid composites of LiMn2O4-graphene as rechargeable electrodes in energy storage devices. Energy Technol. 2014, 2, 257–262.
Lin, B.H.; Yin, Q.; Hu, H.R.; Lu, F.J.; Xia, H. LiMn2O4 nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries. J. Solid State Chem. 2014, 209, 23–28.
Zhu, X.; Hoang, T.K.A.; Chen, P. Novel carbon materials in the cathode formulation for high rate rechargeable hybrid aqueous batteries. Energies 2017, 10, 17.
Zhu, J.P.; Duan, R.; Zhang, S.; Jiang, N.; Zhang, Y.Y.; Zhu, J. The application of graphene in lithium ion battery electrode materials. Springerplus 2014, 3, 585.
Rangappa, D.; Hari Mohan, E.; Siddhartha, V.; Gopalan, R.; Narasinga Rao, T. Preparation of LiMn2O4 graphene hybrid nanostructure by combustion synthesis and their electrochemical properties. AIMS Mater. Sci. 2014, 1, 174–183.
Ragavendran, K.; Hui, X.; Gu, X.; Sherwood, D.; Emmanuel, B.; Arof, A.K. On the graphene incorporated LiMn2O4 nanostructures: Possibilities for tuning the preferred orientations and high rate capabilities. RSC Adv. 2014, 4, 60106–60111.
Liu, D.; He, Z.; Liu, X. Increased cycling stability of AlPO4-coated LiMn2O4 for lithium ion batteries. Mater. Lett. 2007, 61, 4703–4706.
Cho, M.-Y.; Roh, K.-C.; Park, S.-M.; Lee, J.-W. Effects of CeO2 coating uniformity on high temperature cycle life performance of LiMn2O4. Mater. Lett. 2011, 65, 2011–2014.
Arumugam, D.; Kalaignan, G.P. Synthesis and electrochemical characterization of nano-CeO2-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries. Electrochim. Acta 2010, 55, 8709–8716.
Arumugam, D.; Kalaignan, G.P. Electrochemical characterizations of surface modified LiMn2O4 cathode materials for high temperature lithium battery applications. Thin Solid Film. 2011, 520, 338–343.
Arumugam, D.; Paruthimal Kalaignan, G. Synthesis and electrochemical characterizations of nano-La2O3-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries. Mater. Res. Bull. 2010, 45, 1825–1831.
Feng, L.; Wang, S.; Han, L.; Qin, X.; Wei, H.; Yang, Y. Enhanced electrochemical properties of LiMn2O4 cathode material coated by 5 wt.% of nano-La2O3. Mater. Lett. 2012, 78, 116–119.
Zhang, Y.N.; Dong, P.; Zhang, M.Y.; Sun, X.L.; Yu, X.H.; Song, J.J.; Meng, Q.; Li, X.; Zhang, Y.J. Combustion combined with ball milling to produce nanoscale La2O3 coated on LiMn2O4 for optimized Li-ion storage performance at high temperature. J. Appl. Electrochem. 2018, 48, 135–145.
Shang, Y.; Lin, X.; Lu, X.; Huang, T.; Yu, A. Nano-TiO2(B) coated LiMn2O4 as cathode materials for lithium-ion batteries at elevated temperatures. Electrochim. Acta 2015, 156, 121–126.
Zhang, J.; Shen, J.; Wang, T.; Wei, C.; Ma, Y.; Zhu, C.; Yue, Y. Improvement of capacity and cycling performance of spinel LiMn2O4 cathode materials with TiO2-B nanobelts. Electrochim. Acta 2013, 111, 691–697.
Lai, C.; Ye, W.; Liu, H.; Wang, W. Preparation of TiO2-coated LiMn2O4 by carrier transfer method. Ionics 2008, 15, 389–392.
Yu, L.; Qiu, X.; Xi, J.; Zhu, W.; Chen, L. Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery. Electrochim. Acta 2006, 51, 6406–6411.
Walz, K.A.; Johnson, C.S.; Genthe, J.; Stoiber, L.C.; Zeltner, W.A.; Anderson, M.A.; Thackeray, M.M. Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings. J. Power Source 2010, 195, 4943–4951.
Guler, M.O.; Akbulut, A.; Cetinkaya, T.; Uysal, M.; Akbulut, H. Improvement of electrochemical and structural properties of LiMn2O4 spinel based electrode materials for Li-ion batteries. Int. J. Hydrogen Energy 2014, 39, 21447–21460.
Guo, J.; Chen, Y.; Xu, C.; Li, Y.; Deng, S.; Xu, H.; Su, Q. Enhanced electrochemical performance of LiMn2O4 by SiO2 modifying via electrostatic attraction forces method. Ionics 2019, 25, 2977–2985.
Yi, X.; Wang, X.; Ju, B.; Shu, H.; Wen, W.; Yu, R.; Wang, D.; Yang, X. Effective enhancement of electrochemical performance for spherical spinel LiMn2O4 via Li ion conductive Li2ZrO3 coating. Electrochim. Acta 2014, 134, 143–149.
Qing, C.; Bai, Y.; Yang, J.; Zhang, W. Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating. Electrochim. Acta 2011, 56, 6612–6618.
Yang, Z.; Li, S.; Xia, S.-A.; Jiang, Y.; Zhang, W.-X.; Huang, Y.-H. Significant improved electrochemical performance of spinel LiMn2O4 promoted by FePO4 incorporation. Electrochem. Solid-State Lett. 2011, 14, A109.
Zhao, S.; Bai, Y.; Ding, L.; Wang, B.; Zhang, W. Enhanced cycling stability and thermal stability of YPO4-coated LiMn2O4 cathode materials for lithium ion batteries. Solid State Ion. 2013, 247, 22–29.
Yan, J.; Liu, H.; Wang, Y.; Zhao, X.; Mi, Y.; Xia, B. Enhanced high-temperature cycling stability of LiMn2O4 by LiCoO2 coating as cathode material for lithium ion batteries. J. Mater. Sci. Chem. Eng. 2014, 02, 12–18.
Shi, T.; Dong, Y.; Wang, C.-M.; Tao, F.; Chen, L. Enhanced cycle stability at high rate and excellent high rate capability of La0.7Sr0.3Mn0.7Co0.3O3-coated LiMn2O4. J. Power Source 2015, 273, 959–965.
Tron, A.; Park, Y.D.; Mun, J. AlF3-coated LiMn2O4 as cathode material for aqueous rechargeable lithium battery with improved cycling stability. J. Power Source 2016, 325, 360–364.
Li, X.; Yang, R.; Cheng, B.; Hao, Q.; Xu, H.; Yang, J.; Qian, Y. Enhanced electrochemical properties of nano-Li3PO4 coated on the LiMn2O4 cathode material for lithium ion battery at 55 °C. Mater. Lett. 2012, 66, 168–171.
Liu, J.; Wu, X.; Chen, S.; Liu, J.; He, Z. Enhanced high temperature performance of LiMn2O4 coated with Li3BO3 solid electrolyte. Bull. Mater. Sci. 2013, 36, 687–691.
Zhao, S.; Bai, Y.; Chang, Q.; Yang, Y.; Zhang, W. Surface modification of spinel LiMn2O4 with FeF3 for lithium ion batteries. Electrochim. Acta 2013, 108, 727–735.
Zhao, S.; Chang, Q.; Jiang, K.; Bai, Y.; Yang, Y.; Zhang, W. Performance improvement of spinel LiMn2O4 cathode material by LaF3 surface modification. Solid State Ion. 2013, 253, 1–7.
Peng, Z.; Wang, G.; Cao, Y.; Zhang, Z.; Du, K.; Hu, G. Enhanced high power and long life performance of spinel LiMn2O4 with Li2MnO3 coating for lithium-ion batteries. J. Solid State Electrochem. 2016, 20, 2865–2871.
Potapenko, A.V.; Kirillov, S.A. Enhancing high-rate electrochemical properties of LiMn2O4 in a LiMn2O4/LiNi0.5Mn1.5O4 core/shell composite. Electrochim. Acta 2017, 259, 9–16.
Wen, W.; Chen, S.; Fu, Y.; Wang, X.; Shu, H. A core–shell structure spinel cathode material with a concentration-gradient shell for high performance lithium-ion batteries. J. Power Source 2015, 274, 219–228.
Zhu, Q.; Zheng, S.; Lu, X.; Wan, Y.; Chen, Q.; Yang, J.; Zhang, L.-Z.; Lu, Z. Improved cycle performance of LiMn2O4 cathode material for aqueous rechargeable lithium battery by LaF3 coating. J. Alloys Compd. 2016, 654, 384–391.
Shang, Y.; Liu, J.; Huang, T.; Yu, A. Effect of heat treatment on the structure and electrochemical performance of FePO4 coated spinel LiMn2O4. Electrochim. Acta 2013, 113, 248–255.
Lu, Z.; Lu, X.; Ding, J.; Zhou, T.; Ge, T.; Yang, G.; Yin, F.; Wu, M. Enhanced electrochemical performance of LiMn2O4 by constructing a stable Mn2+-rich interface. Appl. Surf. Sci. 2017, 426, 19–28.
Mohan, P.; Paruthimal-Kalaignan, G. Structure and electrochemical performance of surface modified LaPO4 coated LiMn2O4 cathode materials for rechargeable lithium batteries. Ceram. Int. 2014, 40, 1415–1421.
Wang, M.-S.; Wang, J.; Zhang, J.; Fan, L.-Z. Improving electrochemical performance of spherical LiMn2O4 cathode materials for lithium ion batteries by Al-F codoping and AlF3 surface coating. Ionics 2015, 21, 27–35.
Ye, S.; Bo, J.; Li, C.; Cao, J.; Sun, Q.; Wang, Y. Improvement of the high-rate discharge capability of phosphate-doped spinel LiMn2O4 by a hydrothermal method. Electrochim. Acta 2010, 55, 2972–2977.
Sahan, H.; Ates, M.N.; Dokan, F.K.; Ulgen, A.; Patat, S. Synergetic action of doping and coating on electrochemical performance of lithium manganese spinel as an electrode material for lithium-ion batteries. Bull. Mater. Sci. 2015, 38, 141–149.
Şahan, H.; Göktepe, H.; Patat, Ş.; Ülgen, A. Improvement of the electrochemical performance of LiMn2O4 cathode active material by lithium borosilicate (LBS) surface coating for lithium-ion batteries. J. Alloys Compd. 2011, 509, 4235–4241.
Wei, C.; Fei, H.; An, Y.; Zhang, Y.; Feng, J. Crumpled Ti3C2Tx (MXene) nanosheet encapsulated LiMn2O4 for high performance lithium-ion batteries. Electrochim. Acta 2019, 309, 362–370.
Sinha, A.; Dhanjai; Zhao, H.; Huang, Y.; Lu, X.; Chen, J.; Jain, R. MXene: An emerging material for sensing and biosensing. Trac. Trends Anal. Chem. 2018, 105, 424–435.
Tang, H.; Hu, Q.; Zheng, M.; Chi, Y.; Qin, X.; Pang, H.; Xu, Q. MXene-2D layered electrode materials for energy storage. Prog. Nat. Sci. Mater. Int. 2018, 28, 133–147.
Yan, H.; Zhang, D.; Guo, G.; Wang, Z.; Liu, Y.; Wang, X. Hydrothermal synthesis of spherical Li4Ti5O12 material for a novel durable Li4Ti5O12/LiMn2O4 full lithium ion battery. Ceram. Int. 2016, 42, 14855–14861.
Su, X.L.; Liu, J.Y.; Zhang, C.C.; Huang, T.; Wang, Y.G.; Yu, A.S. High power lithium-ion battery based on a LiMn2O4 nanorod cathode and a carbon-coated Li4Ti5O12 nanowire anode. RSC Adv. 2016, 6, 107355–107363.
Kim, M.-K.; Kim, J.; Yu, S.-H.; Mun, J.; Sung, Y.-E. A facile process for surface modification with lithium ion conducting material of Li2TiF6 for LiMn2O4 in lithium ion batteries. J. Electrochem. Sci. Technol. 2019, 10, 223–230.