Enhancing Lithium-Manganese Oxide Electrochemical Behavior: Comparison
Please note this is a comparison between Version 2 by Bruce Ren and Version 1 by Petru Ilea.

Lithium manganese oxide is regarded as a capable cathode material for lithium-ion batteries, but it suffers from relative low conductivity, manganese dissolution in electrolyte and structural distortion from cubic to tetragonal during elevated temperature tests. 

  • lithium manganese oxide
  • surface modification
  • doping
  • stability
  • long cycling ability
  • discharge capacity
Please wait, diff process is still running!

References

  1. Han, Z.; Jia, X.; Zhan, H.; Zhou, Y. LiMn2O4/LiNi0.5Mn1.5O4 composite with improved electrochemical property. Electrochim. Acta 2013, 114, 772–778.
  2. Li, C.; Zhang, H.; Fu, L.; Liu, H.; Wu, Y.; Rahm, E.; Holze, R.; Wu, H. Cathode materials modified by surface coating for lithium ion batteries. Electrochim. Acta 2006, 51, 3872–3883.
  3. Zhao, Q.; Wu, Y.; Ma, X.; Wang, R.; Xu, X.; Cao, C. Mn oxidation state controllable spinel manganese-based intergrown cathode for excellent reversible lithium storage. J. Power Source 2017, 359, 295–302.
  4. Li, X.; Shao, Z.; Liu, K.; Liu, G.; Xu, B. Synthesis and electrochemical characterizations of LiMn2O4 prepared by high temperature ball milling combustion method with citric acid as fuel. J. Electroanal. Chem. 2018, 818, 204–209.
  5. Wang, Y.; Liu, B.; Li, Q.; Cartmell, S.; Ferrara, S.; Deng, Z.D.; Xiao, J. Lithium and lithium ion batteries for applications in microelectronic devices: A review. J. Power Source 2015, 286, 330–345.
  6. Dai, X.; Zhou, A.; Xu, J.; Lu, Y.; Wang, L.; Fan, C.; Li, J. Extending the high-voltage capacity of LiCoO2 cathode by direct coating of the composite electrode with Li2CO3 via magnetron sputtering. J. Phys. Chem. C 2015, 120, 422–430.
  7. Wang, G.; Qu, Q.; Wang, B.; Shi, Y.; Tian, S.; Wu, Y.; Holze, R. Electrochemical behavior of LiCoO2 in a saturated aqueous Li2SO4 solution. Electrochim. Acta 2009, 54, 1199–1203.
  8. Chen, J.-M.; Cho, Y.-D.; Hsiao, C.-L.; Fey, G.T.-K. Electrochemical studies on LiCoO2 surface coated with Y3Al5O12 for lithium-ion cells. J. Power Source 2009, 189, 279–287.
  9. Satyavani, T.; Kumar, A.S.; Rao, P.S. Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review. Eng. Sci. Technol. Int. J. 2016, 19, 178–188.
  10. Hou, Y.; Wang, X.; Zhu, Y.; Hu, C.; Chang, Z.; Wu, Y.; Holze, R. Macroporous LiFePO4 as a cathode for an aqueous rechargeable lithium battery of high energy density. J. Mater. Chem. A 2013, 1, 14713.
  11. Li, Z.; Zhang, D.; Yang, F. Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material. J. Mater. Sci. 2009, 44, 2435–2443.
  12. Yu, H.; Dong, X.; Pang, Y.; Wang, Y.; Xia, Y. High power lithium-ion battery based on spinel cathode and hard carbon anode. Electrochim. Acta 2017, 228, 251–258.
  13. Liu, Q.; Wang, S.; Tan, H.; Yang, Z.; Zeng, J. Preparation and doping mode of doped LiMn2O4 for Li-ion batteries. Energies 2013, 6, 1718–1730.
  14. Lv, W.; Li, Z.; Deng, Y.; Yang, Q.-H.; Kang, F. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Mater. 2016, 2, 107–138.
  15. Ozanam, F.; Rosso, M. Silicon as anode material for Li-ion batteries. Mater. Sci. Eng. B 2016, 213, 2–11.
  16. Dash, R.; Pannala, S. The potential of silicon anode based lithium ion batteries. Mater. Today 2016, 19, 483–484.
  17. Wang, X.F.; Liu, B.; Hou, X.J.; Wang, Q.F.; Li, W.W.; Chen, D.; Shen, G.Z. Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Res. 2014, 7, 1073–1082.
  18. Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ. 2016, 1, 18–42.
  19. Michalska, M.; Ziolkowska, D.A.; Jasinski, J.B.; Lee, P.H.; Lawniczak, P.; Andrzejewski, B.; Ostrowski, A.; Bednarski, W.; Wu, S.H.; Lin, J.Y. Improved electrochemical performance of LiMn2O4 cathode material by Ce doping. Electrochim. Acta 2018, 276, 37–46.
  20. Kiani, M.A.; Mousavi, M.F.; Rahmanifar, M.S. Synthesis of nano- and micro-particles of LiMn2O4: Electrochemical investigation and assessment as a cathode in Li battery. Int. J. Electrochem. Sci. 2011, 6, 2581–2595.
  21. Han, C.-G.; Zhu, C.; Saito, G.; Akiyama, T. Improved electrochemical properties of LiMn2O4with the Bi and La co-doping for lithium-ion batteries. RSC Adv. 2015, 5, 73315–73322.
  22. Wang, J.-G.; Jin, D.; Liu, H.; Zhang, C.; Zhou, R.; Shen, C.; Xie, K.; Wei, B. All-manganese-based Li-ion batteries with high rate capability and ultralong cycle life. Nano Energy 2016, 22, 524–532.
  23. Thackeray, M.M.; Picciotto, L.A.; de Kock, A.; Johnson, P.J.; Nicholas, V.A.; Adendorff, K.T. Spinel electrodes for Lithium batteries—A review. J. Power Source 1987, 21, 1–8.
  24. Thackeray, M.M.; David, W.I.F.; Bruce, P.G.; Goodenough, J.B. Lithium insertion into manganese spinels. Mater. Res. Bull. 1983, 18, 461–472.
  25. Zuo, D.; Tian, G.; Li, X.; Chen, D.; Shu, K. Recent progress in surface coating of cathode materials for lithium ion secondary batteries. J. Alloys Compd. 2017, 706, 24–40.
  26. Peng, Z.; Li, Y.; Du, K.; Cao, Y.; Hu, G. Improved elevated temperature performance of spinel LiMn2O4 via surface-modified by Li-rich Li1.2Ni0.2Mn0.6O2 for lithium-ion batteries. J. Alloys Compd. 2017, 728, 1209–1216.
  27. He, X.; Li, J.; Cai, Y.; Wang, Y.; Ying, J.; Jiang, C.; Wan, C. Preparation of co-doped spherical spinel LiMn2O4 cathode materials for Li-ion batteries. J. Power Source 2005, 150, 216–222.
  28. Chung, K.Y.; Ryu, C.-W.; Kim, K.-B. Onset mechanism of Jahn-Teller distortion in 4 V LiMn2O4 and its suppression by LiM0.05Mn1.95O4 (M = Co, Ni) coating. J. Electrochem. Soc. 2005, 152, A791.
  29. Liang, X.; Zeng, S.; Liu, Y.; Shi, L.; Liu, T. Enhance cycling performance of LiMn2O4 cathode by Sr2+ and Cr3+ doping. Mater. Sci. Technol. 2014, 31, 443–447.
  30. Feng, X.; Zhang, J.; Yin, L. Effect of AlP coating on electrochemical properties of LiMn2O4 cathode material for lithium ion battery. Mater. Res. Bull. 2016, 74, 421–424.
  31. Thirunakaran, R.; Sivashanmugam, A.; Gopukumar, S.; Dunnill, C.W.; Gregory, D.H. Electrochemical behaviour of nano-sized spinel LiMn2O4 and LiAlxMn2−xO4 (x = Al: 0.00–0.40) synthesized via fumaric acid-assisted sol-gel synthesis for use in lithium rechargeable batteries. J. Phys. Chem. Solids 2008, 69, 2082–2090.
  32. Wang, M.; Yang, M.; Zhao, X.; Ma, L.; Shen, X.; Cao, G. Spinel LiMn2−xSiO4 (x < 1) through Si4+ substitution as a potential cathode material for lithium-ion batteries. Sci. China Mater. 2016, 59, 558–566.
  33. Jiang, Q.Q.; Liu, D.D.; Zhang, H.; Wang, S.Y. Plasma-assisted sulfur doping of LiMn2O4 for high-performance lithium-ion batteries. J. Phys. Chem. C 2015, 119, 28776–28782.
  34. Xiang, M.W.; Zhou, X.Y.; Zhang, Z.F.; Chen, M.M.; Bai, H.L.; Guo, J.M. LiMn2O4 prepared by liquid phase flameless combustion with F-doped for lithium-ion battery cathode materials. In Advances in Materials and Materials Processing; Jiang, Z.Y., Liu, X.H., Jiao, S.H., Han, J.T., Eds.; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2013; pp. 825–830.
  35. Thirunakaran, R.; Ravikumar, R.; Vanitha, S.; Gopukumar, S.; Sivashanmugam, A. Glutamic acid-assisted sol-gel synthesis of multi-doped spinel lithium manganate as cathode materials for lithium rechargeable batteries. Electrochim. Acta 2011, 58, 348–358.
  36. Bao, S.J.; Liang, Y.Y.; Zhou, W.J.; He, B.L.; Li, H.L. Enhancement of the electrochemical properties of LiMn2O4 through Al3+ and F-co-substitution. J. Colloid Interface Sci. 2005, 291, 433–437.
  37. Wang, C.-M.; Jin, F.-M.; Shi, T.; Chen, L. The effect of LaMnO3 with high electronic conductivity on the high rate charge-discharge performance of LiMn2O. J. Electroanal. Chem. 2016, 775, 306–310.
  38. Park, K.; Park, J.-H.; Hong, S.-G.; Yoon, J.; Park, S.; Kim, J.-H.; Yoon, D.; Kim, H.; Son, Y.-H.; Park, J.-H.; et al. Induced AlF3 segregation for the generation of reciprocal Al2O3 and LiF coating layer on self-generated LiMn2O4 surface of over-lithiated oxide based Li-ion battery. Electrochim. Acta 2016, 222, 830–837.
  39. Zhang, Z.J.; Chou, S.L.; Gu, Q.F.; Liu, H.K.; Li, H.J.; Ozawa, K.; Wang, J.Z. Enhancing the high rate capability and cycling stability of LiMn2O4 by coating of solid-state electrolyte LiNbO3. ACS Appl. Mater. Interfaces 2014, 6, 22155–22165.
  40. Fang, D.-L.; Li, J.-C.; Liu, X.; Huang, P.-F.; Xu, T.-R.; Qian, M.-C.; Zheng, C.-H. Synthesis of a Co-Ni doped LiMn2O4 spinel cathode material for high-power Li-ion batteries by a sol-gel mediated solid-state route. J. Alloys Compd. 2015, 640, 82–89.
  41. Yi, Z. Rheological phase reaction synthesis of Co-doped LiMn2O4 octahedral particles. J. Mater. Sci. Mater. Electron. 2016, 27, 10347–10352.
  42. Li, S.Y.; Zhu, K.L.; Du, S.L. Enhanced elevated-temperature performance of Al-doped LiMn2O4 as cathodes for lithium ion batteries. In Proceedings of the 2nd International Conference on Materials Science, Resource and Environmental Engineering, Wuhan, China, 27–29 October 2017.
  43. Zhan, D.; Liang, Y.; Cui, P.; Xiao, Z.A. Al-doped LiMn2O4 single crystalline nanorods with enhanced elevated-temperature electrochemical performance via a template-engaged method as a cathode material for lithium ion batteries. RSC Adv. 2015, 5, 6372–6377.
  44. Bakierska, M.; Świętosławski, M.; Chudzik, K.; Lis, M.; Molenda, M. Enhancing the lithium ion diffusivity in LiMn2O4−ySy cathode materials through potassium doping. Solid State Ion. 2018, 317, 190–193.
  45. Molenda, M.; Bakierska, M.; Majda, D.; Świętosławski, M.; Dziembaj, R. Structural and electrochemical characterization of sulphur-doped lithium manganese spinel cathode materials for lithium ion batteries. Solid State Ion. 2015, 272, 127–132.
  46. Sun, Y.-K.; Jeon, Y.; Leeb, H.J. Overcoming Jahn-Teller Distortion for Spinel Mn Phase. Electrochem. Solid-State Lett. 1999, 3, 7–9.
  47. Nkosi, F.P.; Jafta, C.J.; Kebede, M.; le Roux, L.; Mathe, M.K.; Ozoemena, K.I. Microwave-assisted optimization of the manganese redox states for enhanced capacity and capacity retention of LiAlxMn2−xO4(x = 0 and 0.3) spinel materials. RSC Adv. 2015, 5, 32256–32262.
  48. Liu, J.; Li, G.; Yu, Y.; Bai, H.; Shao, M.; Guo, J.; Su, C.; Liu, X.; Bai, W. Synthesis and electrochemical performance evaluations of polyhedra spinel LiAlxMn2−xO4 (x ≦ 0.20) cathode materials prepared by a solution combustion technique. J. Alloys Compd. 2017, 728, 1315–1328.
  49. Waller, G.; Brooke, P.; Rainwater, B.; Lai, S.; Hu, R.; Ding, Y.; Alamgir, F.; Sandhage, K.; Liu, M. Structure and surface chemistry of Al2O3 coated LiMn2O4 nanostructured electrodes with improved lifetime. J. Power Source 2016, 306, 162–170.
  50. Guan, D.; Wang, Y. Ultrathin surface coatings to enhance cycling stability of LiMn2O4 cathode in lithium-ion batteries. Ionics 2012, 19, 1–8.
  51. Chen, Q.; Wang, Y.; Zhang, T.; Yin, W.; Yang, J.; Wang, X. Electrochemical performance of LaF3-coated LiMn2O4 cathode materials for lithium ion batteries. Electrochim. Acta 2012, 83, 65–72.
  52. Michalska, M.; Hamankiewicz, B.; Ziółkowska, D.; Krajewski, M.; Lipińska, L.; Andrzejczuk, M.; Czerwiński, A. Influence of LiMn2O4 modification with CeO2 on electrode performance. Electrochim. Acta 2014, 136, 286–291.
  53. Ha, H.-W.; Yun, N.J.; Kim, K. Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries. Electrochim. Acta 2007, 52, 3236–3241.
  54. Han, C.-G.; Zhu, C.; Saito, G.; Sheng, N.; Nomura, T.; Akiyama, T. Enhanced cycling performance of surface-doped LiMn2O4 modified by a Li2CuO2-Li2NiO2 solid solution for rechargeable lithium-ion batteries. Electrochim. Acta 2017, 224, 71–79.
  55. Wang, X.; Wang, H.; Wen, J.; Tan, Y.; Zeng, Y. Surface modification of LiMn2O4 cathode with LaCoO3 by a molten salt method for lithium ion batteries. Ceram. Int. 2021, 47, 6434–6441.
  56. Zhao, X.; Hayner, C.M.; Kung, H.H. Self-assembled lithium manganese oxide nanoparticles on carbon nanotube or graphene as high-performance cathode material for lithium-ion batteries. J. Mater. Chem. 2011, 21, 17297–17303.
  57. Jaber-Ansari, L.; Puntambekar, K.P.; Kim, S.; Aykol, M.; Luo, L.L.; Wu, J.S.; Myers, B.D.; Iddir, H.; Russell, J.T.; Saldana, S.J.; et al. Suppressing manganese dissolution from lithium manganese oxide spinel cathodes with single-layer graphene. Adv. Energy Mater. 2015, 5, 10.
  58. Cericola, D.; Novak, P.; Wokaun, A.; Kotz, R. Segmented bi-material electrodes of activated carbon and LiMn2O4 for electrochemical hybrid storage devices: Effect of mass ratio and C-rate on current sharing. Electrochim. Acta 2011, 56, 1288–1293.
  59. Cericola, D.; Novak, P.; Wokaun, A.; Kotz, R. Mixed bi-material electrodes based on LiMn2O4 and activated carbon for hybrid electrochemical energy storage devices. Electrochim. Acta 2011, 56, 8403–8411.
  60. Tang, M.; Yuan, A.; Xu, J. Synthesis of highly crystalline LiMn2O4/multiwalled carbon nanotube composite material with high performance as lithium-ion battery cathode via an improved two-step approach. Electrochim. Acta 2015, 166, 244–252.
  61. Shah, A.; Ates, M.N.; Kotz, S.; Seo, J.; Abraham, K.M.; Somu, S.; Busnaina, A. A Layered carbon nanotube architecture for high power lithium ion batteries. J. Electrochem. Soc. 2014, 161, A989–A995.
  62. Hong, H.P.; Kim, M.S.; Lee, Y.H.; Yu, J.S.; Lee, C.J.; Min, N.K. Spray deposition of LiMn2O4 nanoparticle-decorated multiwalled carbon nanotube films as cathode material for lithium-ion batteries. Thin Solid Film. 2013, 547, 68–71.
  63. Xia, H.; Ragavendran, K.R.; Xie, J.P.; Lu, L. Ultrafine LiMn2O4/carbon nanotube nanocomposite with excellent rate capability and cycling stability for lithium-ion batteries. J. Power Source 2012, 212, 28–34.
  64. Ding, Y.H.; Li, J.X.; Zhao, Y.; Guan, L.H. Direct growth of LiMn2O4 on carbon nanotubes as cathode materials for lithium ion batteries. Mater. Lett. 2012, 68, 197–200.
  65. Liu, X.-M.; Huang, Z.-D.; Oh, S.; Ma, P.-C.; Chan, P.C.H.; Vedam, G.K.; Kang, K.; Kim, J.-K. Sol–gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries. J. Power Source 2010, 195, 4290–4296.
  66. Zhuo, H.T.; Wan, S.; He, C.X.; Zhang, Q.L.; Li, C.H.; Gui, D.Y.; Zhu, C.Z.; Niu, H.B.; Liu, J.H. Improved electrochemical performance of spinel LiMn2O4 in situ coated with graphene-like membrane. J. Power Source 2014, 247, 721–728.
  67. Pyun, M.H.; Park, Y.J. Graphene/LiMn2O4 nanocomposites for enhanced lithium ion batteries with high rate capability. J. Alloys Compd. 2015, 643, S90–S94.
  68. Jiang, Q.Q.; Xu, L.; Ma, Z.L.; Zhang, H. Carbon coated to improve the electrochemical properties of LiMn2O4 cathode material synthesized by the novel acetone hydrothermal method. Appl. Phys. A Mater. Sci. Process. 2015, 119, 1069–1074.
  69. Jiang, Q.; Wang, X.; Tang, Z. Improving the electrochemical performance of LiMn2O4 by amorphous carbon coating. Fuller. Nanotub. Carbon Nanostruct. 2014, 23, 676–679.
  70. Lee, S.; Cho, Y.; Song, H.K.; Lee, K.T.; Cho, J. Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries. Angew Chem. Int. Ed. Engl. 2012, 51, 8748–8752.
  71. Wutthiprom, J.; Phattharasupakun, N.; Sawangphruk, M. Turning carbon black to hollow carbon nanospheres for enhancing charge storage capacities of LiMn2O4, LiCoO2, LiNiMnCoO2, and LiFePO4 lithium-ion batteries. ACS Omega 2017, 2, 3730–3738.
  72. Bak, S.-M.; Nam, K.-W.; Lee, C.-W.; Kim, K.-H.; Jung, H.-C.; Yang, X.-Q.; Kim, K.-B. Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries. J. Mater. Chem. 2011, 21, 17309.
  73. Li, J.; Zhang, X.; Peng, R.F.; Huang, Y.J.; Guo, L.; Qi, Y.C. LiMn2O4/graphene composites as cathodes with enhanced electrochemical performance for lithium-ion capacitors. RSC Adv. 2016, 6, 54866–54873.
  74. Ge, Q.S.; Wang, D.F.; Li, F.L.; Chen, D.; Ping, G.X.; Fan, M.Q.; Qin, L.S.; Bai, L.Q.; Tian, G.L.; Lv, C.J.; et al. Enhanced cycling stability of spinel LiMn2O4 cathode by incorporating graphene sheets. Russ. J. Electrochem. 2015, 51, 125–133.
  75. Sreelakshmi, K.V.; Sasi, S.; Balakrishnan, A.; Sivakumar, N.; Nair, A.S.; Nair, S.V.; Subramanian, K.R.V. Hybrid composites of LiMn2O4-graphene as rechargeable electrodes in energy storage devices. Energy Technol. 2014, 2, 257–262.
  76. Lin, B.H.; Yin, Q.; Hu, H.R.; Lu, F.J.; Xia, H. LiMn2O4 nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries. J. Solid State Chem. 2014, 209, 23–28.
  77. Jasinski, J.B.; Ziolkowska, D.; Michalska, M.; Lipinska, L.; Korona, K.P.; Kaminska, M. Novel graphene oxide/manganese oxide nanocomposites. RAS Adv. 2013, 3, 22857–22862.
  78. Cui, Y.L.; Xu, K.; Yuan, Z.; Xie, R.J.; Zhu, G.L.; Zhuang, Q.C.; Qiang, Y.H. Synthesis and electrochemical performance of graphene modified nano-spinel LiMn2O4 cathode materials. Chin. J. Inorg. Chem. 2013, 29, 50–56.
  79. Zhu, X.; Hoang, T.K.A.; Chen, P. Novel carbon materials in the cathode formulation for high rate rechargeable hybrid aqueous batteries. Energies 2017, 10, 17.
  80. Zhu, J.P.; Duan, R.; Zhang, S.; Jiang, N.; Zhang, Y.Y.; Zhu, J. The application of graphene in lithium ion battery electrode materials. Springerplus 2014, 3, 585.
  81. Rangappa, D.; Hari Mohan, E.; Siddhartha, V.; Gopalan, R.; Narasinga Rao, T. Preparation of LiMn2O4 graphene hybrid nanostructure by combustion synthesis and their electrochemical properties. AIMS Mater. Sci. 2014, 1, 174–183.
  82. Ragavendran, K.; Hui, X.; Gu, X.; Sherwood, D.; Emmanuel, B.; Arof, A.K. On the graphene incorporated LiMn2O4 nanostructures: Possibilities for tuning the preferred orientations and high rate capabilities. RSC Adv. 2014, 4, 60106–60111.
  83. Liu, D.; He, Z.; Liu, X. Increased cycling stability of AlPO4-coated LiMn2O4 for lithium ion batteries. Mater. Lett. 2007, 61, 4703–4706.
  84. Cho, M.-Y.; Roh, K.-C.; Park, S.-M.; Lee, J.-W. Effects of CeO2 coating uniformity on high temperature cycle life performance of LiMn2O4. Mater. Lett. 2011, 65, 2011–2014.
  85. Arumugam, D.; Kalaignan, G.P. Synthesis and electrochemical characterization of nano-CeO2-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries. Electrochim. Acta 2010, 55, 8709–8716.
  86. Arumugam, D.; Kalaignan, G.P. Electrochemical characterizations of surface modified LiMn2O4 cathode materials for high temperature lithium battery applications. Thin Solid Film. 2011, 520, 338–343.
  87. Arumugam, D.; Paruthimal Kalaignan, G. Synthesis and electrochemical characterizations of nano-La2O3-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries. Mater. Res. Bull. 2010, 45, 1825–1831.
  88. Feng, L.; Wang, S.; Han, L.; Qin, X.; Wei, H.; Yang, Y. Enhanced electrochemical properties of LiMn2O4 cathode material coated by 5 wt.% of nano-La2O3. Mater. Lett. 2012, 78, 116–119.
  89. Zhang, Y.N.; Dong, P.; Zhang, M.Y.; Sun, X.L.; Yu, X.H.; Song, J.J.; Meng, Q.; Li, X.; Zhang, Y.J. Combustion combined with ball milling to produce nanoscale La2O3 coated on LiMn2O4 for optimized Li-ion storage performance at high temperature. J. Appl. Electrochem. 2018, 48, 135–145.
  90. Shang, Y.; Lin, X.; Lu, X.; Huang, T.; Yu, A. Nano-TiO2(B) coated LiMn2O4 as cathode materials for lithium-ion batteries at elevated temperatures. Electrochim. Acta 2015, 156, 121–126.
  91. Zhang, J.; Shen, J.; Wang, T.; Wei, C.; Ma, Y.; Zhu, C.; Yue, Y. Improvement of capacity and cycling performance of spinel LiMn2O4 cathode materials with TiO2-B nanobelts. Electrochim. Acta 2013, 111, 691–697.
  92. Lai, C.; Ye, W.; Liu, H.; Wang, W. Preparation of TiO2-coated LiMn2O4 by carrier transfer method. Ionics 2008, 15, 389–392.
  93. Yu, L.; Qiu, X.; Xi, J.; Zhu, W.; Chen, L. Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery. Electrochim. Acta 2006, 51, 6406–6411.
  94. Walz, K.A.; Johnson, C.S.; Genthe, J.; Stoiber, L.C.; Zeltner, W.A.; Anderson, M.A.; Thackeray, M.M. Elevated temperature cycling stability and electrochemical impedance of LiMn2O4 cathodes with nanoporous ZrO2 and TiO2 coatings. J. Power Source 2010, 195, 4943–4951.
  95. Guler, M.O.; Akbulut, A.; Cetinkaya, T.; Uysal, M.; Akbulut, H. Improvement of electrochemical and structural properties of LiMn2O4 spinel based electrode materials for Li-ion batteries. Int. J. Hydrogen Energy 2014, 39, 21447–21460.
  96. Ming, H.; Yan, Y.; Ming, J.; Adkins, J.; Li, X.; Zhou, Q.; Zheng, J. Gradient V2O5 surface-coated LiMn2O4 cathode towards enhanced performance in Li-ion battery applications. Electrochim. Acta 2014, 120, 390–397.
  97. Tao, S.; Zhao, H.; Wu, C.; Xie, H.; Cui, P.; Xiang, T.; Chen, S.; Zhang, L.; Fang, Y.; Wang, Z.; et al. Enhanced electrochemical performance of MoO3-coated LiMn2O4 cathode for rechargeable lithium-ion batteries. Mater. Chem. Phys. 2017, 199, 203–208.
  98. Lee, J.H.; Kim, K.J. Superior electrochemical properties of porous Mn2O3-coated LiMn2O4 thin-film cathodes for Li-ion microbatteries. Electrochim. Acta 2013, 102, 196–201.
  99. Yao, Y.; Wang, Z.; Yu, X.; Zhang, Y.; Duan, J.; Zhu, C.; Hu, Z.; Shen, Z.; Wang, Q.; Zhan, Z.; et al. Interface control strategy of synthesis LiMn2O4@Al2O3 assisted by tert-butanol. Int. J. Electrochem. Sci. 2019, 14, 6478–6487.
  100. Li, S.; Zhu, K.; Zhao, D.; Zhao, Q.; Zhang, N. Porous LiMn2O4 with Al2O3 coating as high-performance positive materials. Ionics 2018, 25, 1991–1998.
  101. Zhou, H.-M.; Zhu, Y.-H.; Li, J.; Sun, W.-J.; Liu, Z.-Z. Electrochemical performance of Al2O3 pre-coated spinel LiMn2O4. Rare Met. 2015, 38, 128–135.
  102. Guo, J.; Chen, Y.; Xu, C.; Li, Y.; Deng, S.; Xu, H.; Su, Q. Enhanced electrochemical performance of LiMn2O4 by SiO2 modifying via electrostatic attraction forces method. Ionics 2019, 25, 2977–2985.
  103. Yi, X.; Wang, X.; Ju, B.; Shu, H.; Wen, W.; Yu, R.; Wang, D.; Yang, X. Effective enhancement of electrochemical performance for spherical spinel LiMn2O4 via Li ion conductive Li2ZrO3 coating. Electrochim. Acta 2014, 134, 143–149.
  104. Qing, C.; Bai, Y.; Yang, J.; Zhang, W. Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating. Electrochim. Acta 2011, 56, 6612–6618.
  105. Yang, Z.; Li, S.; Xia, S.-A.; Jiang, Y.; Zhang, W.-X.; Huang, Y.-H. Significant improved electrochemical performance of spinel LiMn2O4 promoted by FePO4 incorporation. Electrochem. Solid-State Lett. 2011, 14, A109.
  106. Zhao, S.; Bai, Y.; Ding, L.; Wang, B.; Zhang, W. Enhanced cycling stability and thermal stability of YPO4-coated LiMn2O4 cathode materials for lithium ion batteries. Solid State Ion. 2013, 247, 22–29.
  107. Yan, J.; Liu, H.; Wang, Y.; Zhao, X.; Mi, Y.; Xia, B. Enhanced high-temperature cycling stability of LiMn2O4 by LiCoO2 coating as cathode material for lithium ion batteries. J. Mater. Sci. Chem. Eng. 2014, 02, 12–18.
  108. Shi, T.; Dong, Y.; Wang, C.-M.; Tao, F.; Chen, L. Enhanced cycle stability at high rate and excellent high rate capability of La0.7Sr0.3Mn0.7Co0.3O3-coated LiMn2O4. J. Power Source 2015, 273, 959–965.
  109. Tron, A.; Park, Y.D.; Mun, J. AlF3-coated LiMn2O4 as cathode material for aqueous rechargeable lithium battery with improved cycling stability. J. Power Source 2016, 325, 360–364.
  110. Li, X.; Yang, R.; Cheng, B.; Hao, Q.; Xu, H.; Yang, J.; Qian, Y. Enhanced electrochemical properties of nano-Li3PO4 coated on the LiMn2O4 cathode material for lithium ion battery at 55 °C. Mater. Lett. 2012, 66, 168–171.
  111. Liu, J.; Wu, X.; Chen, S.; Liu, J.; He, Z. Enhanced high temperature performance of LiMn2O4 coated with Li3BO3 solid electrolyte. Bull. Mater. Sci. 2013, 36, 687–691.
  112. Zhao, S.; Bai, Y.; Chang, Q.; Yang, Y.; Zhang, W. Surface modification of spinel LiMn2O4 with FeF3 for lithium ion batteries. Electrochim. Acta 2013, 108, 727–735.
  113. Zhao, S.; Chang, Q.; Jiang, K.; Bai, Y.; Yang, Y.; Zhang, W. Performance improvement of spinel LiMn2O4 cathode material by LaF3 surface modification. Solid State Ion. 2013, 253, 1–7.
  114. Wang, H.-Q.; Lai, F.-Y.; Li, Y.; Zhang, X.-H.; Huang, Y.-G.; Hu, S.-J.; Li, Q.-Y. Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries. Electrochim. Acta 2015, 177, 290–297.
  115. Peng, Z.; Wang, G.; Cao, Y.; Zhang, Z.; Du, K.; Hu, G. Enhanced high power and long life performance of spinel LiMn2O4 with Li2MnO3 coating for lithium-ion batteries. J. Solid State Electrochem. 2016, 20, 2865–2871.
  116. Potapenko, A.V.; Kirillov, S.A. Enhancing high-rate electrochemical properties of LiMn2O4 in a LiMn2O4/LiNi0.5Mn1.5O4 core/shell composite. Electrochim. Acta 2017, 259, 9–16.
  117. Wen, W.; Chen, S.; Fu, Y.; Wang, X.; Shu, H. A core–shell structure spinel cathode material with a concentration-gradient shell for high performance lithium-ion batteries. J. Power Source 2015, 274, 219–228.
  118. Zhu, Q.; Zheng, S.; Lu, X.; Wan, Y.; Chen, Q.; Yang, J.; Zhang, L.-Z.; Lu, Z. Improved cycle performance of LiMn2O4 cathode material for aqueous rechargeable lithium battery by LaF3 coating. J. Alloys Compd. 2016, 654, 384–391.
  119. Shang, Y.; Liu, J.; Huang, T.; Yu, A. Effect of heat treatment on the structure and electrochemical performance of FePO4 coated spinel LiMn2O4. Electrochim. Acta 2013, 113, 248–255.
  120. Lu, Z.; Lu, X.; Ding, J.; Zhou, T.; Ge, T.; Yang, G.; Yin, F.; Wu, M. Enhanced electrochemical performance of LiMn2O4 by constructing a stable Mn2+-rich interface. Appl. Surf. Sci. 2017, 426, 19–28.
  121. Mohan, P.; Paruthimal-Kalaignan, G. Structure and electrochemical performance of surface modified LaPO4 coated LiMn2O4 cathode materials for rechargeable lithium batteries. Ceram. Int. 2014, 40, 1415–1421.
  122. Wang, M.-S.; Wang, J.; Zhang, J.; Fan, L.-Z. Improving electrochemical performance of spherical LiMn2O4 cathode materials for lithium ion batteries by Al-F codoping and AlF3 surface coating. Ionics 2015, 21, 27–35.
  123. Ye, S.; Bo, J.; Li, C.; Cao, J.; Sun, Q.; Wang, Y. Improvement of the high-rate discharge capability of phosphate-doped spinel LiMn2O4 by a hydrothermal method. Electrochim. Acta 2010, 55, 2972–2977.
  124. Sahan, H.; Ates, M.N.; Dokan, F.K.; Ulgen, A.; Patat, S. Synergetic action of doping and coating on electrochemical performance of lithium manganese spinel as an electrode material for lithium-ion batteries. Bull. Mater. Sci. 2015, 38, 141–149.
  125. Şahan, H.; Göktepe, H.; Patat, Ş.; Ülgen, A. Improvement of the electrochemical performance of LiMn2O4 cathode active material by lithium borosilicate (LBS) surface coating for lithium-ion batteries. J. Alloys Compd. 2011, 509, 4235–4241.
  126. Wei, C.; Fei, H.; An, Y.; Zhang, Y.; Feng, J. Crumpled Ti3C2Tx (MXene) nanosheet encapsulated LiMn2O4 for high performance lithium-ion batteries. Electrochim. Acta 2019, 309, 362–370.
  127. Sinha, A.; Dhanjai; Zhao, H.; Huang, Y.; Lu, X.; Chen, J.; Jain, R. MXene: An emerging material for sensing and biosensing. Trac. Trends Anal. Chem. 2018, 105, 424–435.
  128. Tang, H.; Hu, Q.; Zheng, M.; Chi, Y.; Qin, X.; Pang, H.; Xu, Q. MXene-2D layered electrode materials for energy storage. Prog. Nat. Sci. Mater. Int. 2018, 28, 133–147.
  129. Yan, H.; Zhang, D.; Guo, G.; Wang, Z.; Liu, Y.; Wang, X. Hydrothermal synthesis of spherical Li4Ti5O12 material for a novel durable Li4Ti5O12/LiMn2O4 full lithium ion battery. Ceram. Int. 2016, 42, 14855–14861.
  130. Su, X.L.; Liu, J.Y.; Zhang, C.C.; Huang, T.; Wang, Y.G.; Yu, A.S. High power lithium-ion battery based on a LiMn2O4 nanorod cathode and a carbon-coated Li4Ti5O12 nanowire anode. RSC Adv. 2016, 6, 107355–107363.
  131. Kim, M.-K.; Kim, J.; Yu, S.-H.; Mun, J.; Sung, Y.-E. A facile process for surface modification with lithium ion conducting material of Li2TiF6 for LiMn2O4 in lithium ion batteries. J. Electrochem. Sci. Technol. 2019, 10, 223–230.
More
ScholarVision Creations