Plants have been used for centuries to treat several illnesses. The Plectranthus genus has a vast variety of species that has allowed the isolation of cytotoxic compounds with notable activities.
The abietane diterpenes 6,7-dehydroroyleanone (DeRoy), 7alfa-acetoxy-6-hydroxyroyleanone (Roy), and Parvifloron D (ParvD) were obtained from Plectranthus spp. and showed promising biological activities, such as cytotoxicity on several cancer cell lines, including cancer stem cell inducing sphere cells. In silico studies comparied the possible binding modes of active compounds and derivatives against different PKC isoforms alpha/beta/delta/iota/lambda/theta/zeta.
Plants have been used for centuries to treat several illnesses. The Plectranthus genus has a
vast variety of species that has allowed the isolation of cytotoxic compounds with notable activities.
The abietane diterpenes 6,7-dehydroroyleanone (DeRoy), 7alfa-acetoxy-6-hydroxyroyleanone (Roy), and Parvifloron D (ParvD) were obtained from Plectranthus spp. and showed promising biological activities, such as cytotoxicity on several cancer cell lines, including cancer stem cell inducing sphere cells. In silico studies comparied the possible binding modes of active compounds and derivatives against different PKC isoforms alpha/beta/delta/iota/lambda/theta/zeta.
The inhibitory effects of the different natural royleanones (
1
3) were compared in MFC-7, SkBr3, SUM159, and SUM159 grown in CSC-inducing conditions. CSC represents the subpopulation of cancer cells that is responsible for metastasis. Due to their morphological characteristics of growth in spheres, they are referred to as SUM159 spheres. Three-dimensional in vitro models can be considered as an intermediate model between in vitro cancer cell line cultures and in vivo tumor. Different cancer cell lines were used aiming to assess which of the cell development phases is most affected by the action of each abietane compound.
The results showed that increased concentrations of abietanes reduced cell viability (Figure 1). Overall, although Roy (
2
3
1) showed the highest inhibitory effect on SUM159 spheres, thus indicating its potential to significantly decrease the number of viable CSC cells.
Figure 13.
p
p
p < 0.0001.
The Protein DataBank (PDB, [1]) had the following available protein crystal structures:
θ
ι
α
β
δ
ε
ζ
θ
δ
α
ι
ζ
θ
δ
α
ε
δ.
Table 1.
3zh8 (Isoform | ι | ) | 4ra4 (Isoform α) | 1ptr (Isoform | δ | ) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vina | Glide XP |
MMGBSA | Vina | Glide XP |
MMGBSA | Vina | Glide XP |
MMGBSA | Vina | Glide XP | MMGBSA | Vina | Glide XP | MMGBSA |
PMA | −7.4 | −8.0 | −4.84 | −40.13 | −7.2 | −6.4 | −4.7 | −4.41 | −42.12 | ||||||
ARA | −6.3 | −7.8 | −1.00 | −40.95 | −6.5 | −5.6 | −4.4 | −1.85 | −18.56 | ||||||
5VS1001 (5f9e co-cryst.) |
−10.5 | −7.2 | −40.48 | ||||||||||||
PDS 902 (2i0e co-cryst.) |
–11.0 | −10.02 | −56.23 | ||||||||||||
C581582 (3zh8 co-cryst.) |
−9.9 |
5, magenta) in PKC (white). All molecules in solvent-accessible surface area representation.
Table 3. PKC isoform binding site amino acids and corresponding interactions.
Compounds | PKC Isoform |
---|
Compound | Total Solvent Accessible Area (Å | 2 | ) | Solved Exposed Area in Docked Pose (Å | 2 | ) | Exposed Surface Ratio % | log | P |
---|---|---|---|---|---|---|---|---|---|
α | βI | ι | θ | ||||||
DeRoy (1) | Met 417 (L), Ala 480 (L), Met 470 (L), Lys 368 (H), Val 353 (L), Leu 345 (L) | Met 473 (L), Ala 483 (L), Phe 485 (L), Leu 394 (L), Phe 353 (L), Val 356 (L), Lys 371 (L), Phe 418 (L), Met 420 (L), Ala 369 (L), Leu 348 (L) | Leu 376 (L), Thr 386 (R), Val 307 (L), Phe 297 (L), Ile 323 (L), Lys 274 (L), Val 259 (L), Ile 251 (L) | Leu 511 (L), Ala 521 (L), Met 458 (L), Lys 409 (H), Val 394 (H), Phe 391 (R) |
−8.0 | ||||
64.03 | ||||
−58.56 | ||||
Met 473 | Leu 376 | Leu 511 |
DeRoy (1) | 268.47 | 142.36 | 53.02 | 4.53 | |||||||||||||||||||
Roy (2) | Ala 480 | Val 420 (H), Lys 368 (L), Ala 366 (L), Met 417 (L), Val 353 (L), Leu 345 (H, L) | Met 473 (L), Ala 483 (L), Phe 353 (L), Met 420 (L), Lys 371 (L), Val 356 (L) | Asp 373 (H), Ile 323 (L) | Leu 511 (L), Asn 509 (L), Ala 521 (L), Met 458 (L), Lys 409 (L), Val 394 (L), Leu 386 (L) | ||||||||||||||||||
Ala 483 | Thr 386 | Ala 521 | |||||||||||||||||||||
Roy (2) | 318.47 | 209.29 | 65.71 | 2.65 | ParvD (3) | Met 470 (L), Val 353 (L), Ala 366 (L), Leu 345 (L), Met 417 (R, L), Lys 368 (L), Leu 391 (L), Ala 480 (L) | Met 473 (L), Tyr 422 (L), Leu 348 (L), Val 356 (L), Ala 483 (L), Ala 369 (L), Asn 471 (H), Phe 485 (L), Leu 394 (L), Lys 371 (L) | Ile 251 (L), Val 259 (L), Leu 376 (L), Tyr 325 (H), Val 259 (L), Thr 386 (L), Lys 274 (L), Ile 323 (L), Val 307 (L), Phe 297 (L) | Thr 401 | Leu 511 (L), Ala 521 (L), Met 458 (L), Ala 407 (L), Val 394 (L), Phe 391 (L) | |||||||||||||
Thr 404 | Val 307 | ||||||||||||||||||||||
−36.23 | |||||||||||||||||||||||
ParvD (3) | 171.75 | 355.37 | Thr 442 | ||||||||||||||||||||
48.12 | 5.64 | RoyBz (4) | Asp 424 (H), Ala 366 (L), Val 353 (L), Met 417 (L), Lys 368 (L), Ala 480 (L) | Leu 348 (L), Met 473 (L), Val 356 (L), Phe 353 (L), Lys 371 (L), Met 420 (L), Ala 483 (L) | Phe 333 (L, R), Asp 330 (H), Ile 251 (L), Leu 376 (L), Val 259 (L), Thr 386 (R), Ala 272 (L), Ile 323 (L), Val 307 (L) | Gly 464 (L), Phe 391 (L), Val 394 (L), Ala 407 (L), Met 458 (L), Ala 521 (L), Asp 522 (L), Lys 409 (H) | |||||||||||||||||
Met 417 | Met 420 | Ile 323 | Met 458 | ||||||||||||||||||||
Lys 368 | |||||||||||||||||||||||
RoyBz (4) | 469.79 | 260.01 | 55.35 | 7.88 | |||||||||||||||||||
RoyBzCl (5) | Asp 424 (H), Gly 423 (L), Met 343 (R, L), Val 353 (L), Phe 350 (L), Lys 368 (L), Met 417 (L), Ala 480 (L) | Met 473 (L), Ala (483), Leu 394 (L), Met 420 (R, L), Lys 371 (L), Val 356 (L), Phe 353 (L), Leu 348 (L) | Lys 371 | Lys 274 | Phe 333 (R), Asp 330 (H), Thr 386 (R), Val 307 (L), Ile 323 (R), Ala 272 (R), Val 259 (R, L), Ile 251 (L), Arg 253 (R, L) | Leu 511 (L), Ala 521 (L), Lys 506 (L), Phe 391 (R), Val 394 (L), Leu 386 (R), Tyr 460 (L) | |||||||||||||||||
Lys 409 | 8.8 | 3KZ701 (4ra4 co-cryst.) |
−10.4 | −10.0 | 0 | ||||||||||||||||||
RoyPr | PRB3 | ||||||||||||||||||||||
RoyBzCl (5) | 504.92 | 323.30 | 2 (6) | Asp 424 (H), Met 470 (L), Val 420 (L), Met 417 (L), Ala 366 (L), Val 353 (L) | Ala 483 (L), Phe 383 (L), Lys 371 (L), Val 356 (L), Leu 348 (L) | Val 353 | Val 356 | Thr 386 (H), Leu 376 (L), Ile 251 (L), Val 259 (L), Ala 257 (L) | Leu 511 (L), Ala 521 (L), Met 458 (L), Lys 409 (H, L), Ala 407 (L), Val 394 (L), Phe 391 (L) | (1ptr co-cryst.) | −6.3 | ||||||||||||
DihydroxyRoy (7) | −4.25 | Met 470 (L), Val 420 (H), Met 417 (L), Lys 368 (L), Leu 345 (H, L) | Phe 353 (L), Leu 348 (L), Val 356 (L), Lys 371 (L), Met 420 (R, L), Leu 394 (L), Phe 485 (L), Ala 483 (L) | Asp 373, Val 259, Lys 274, Ala 272, Ile 323 | Leu 511 (L), Ala 521 (L), Phe 523 (L), Leu 432 (L), Met 458 (L), Lys 409 (L), Val 394 (L), Leu 386 (L), Phe 391 (R) | −8.4 | −6.7 | 0 | −6.2 | −4.13 | −29.39 |
Table 4. Corresponding amino acid residues in different PKC isoforms.
PKC | α | PKC | β | I | PKC | ι | PKC | θ |
---|
Met 470 | ||||||||||||||||||
Val 259 | ||||||||||||||||||
Val 394 | ||||||||||||||||||
RoyPr | 2 | (6) | 403.77 | −27.00 | ||||||||||||||
207.97 | 51.50 | 4.87 | Leu 345 | Leu 348 | Ile 251 | Leu 386 | 1 | (DeRoy) | –9.3 | −5.8 | −44.29 | −12.0 | −6.21 | −30.81 | −8.4 | −5.6 | ||
2 | (Roy) | –9 | −10.4 | −8.8 | −8 | −6.7 | ||||||||||||
3 | (ParvD) | –9.8 | −2.0 | −12.0 | −5.84 | −9.8 | −6.91 | −9.3 | −4.84 | −8.4 | −4.68 | |||||||
4 | (RoyBz) | –9.3 | −9.4 | −9.0 | −8.7 | −6.9 | ||||||||||||
5 | (RoyBzCl) | –8.8 | −9.8 | −9.4 | −8.4 | −6.7 | ||||||||||||
6 | (RoyPr | 2 | ) | –8.7 | −7.9 | −7.4 | −7.5 | −6.3 | ||||||||||
7 | (DihidroxyRoy) | –8.3 | −10.5 | −8.7 | −7.6 | −7.9 | ||||||||||||
Uniprot, Isoform | ζ | Ι | δ | θ | ε | α | β |
---|
sp|P41743|KPCI_HUMAN, |
ζ |
100 |
72.81 |
36.82 |
36.86 |
44.78 |
43.57 |
43.48 |
sp|P41743|KPCI_HUMAN, | ι | 72.81 | 100 | 36.14 | 36.52 | 43.91 | 45.36 | 44.21 |
sp|Q05655|KPCD_HUMAN, | δ | 36.82 | 36.14 | 100 | 64.89 | 43.88 | 47.61 | 48.99 |
sp|Q04759|KPCT_HUMAN, | θ | 36.86 | 36.52 | 64.89 | 100 | 43.31 | 48.51 | 47.64 |
sp|Q02156|KPCE_HUMAN, | ε | 44.78 | 43.91 | 43.88 | 43.31 | 100 | 52.9 | 53.14 |
sp|P17252|KPCA_HUMAN, | α | 43.57 | 45.36 | 47.61 | 48.51 | 52.9 | 100 | 79.01 |
sp|P05771|KPCB_HUMAN, | β | 43.48 | 44.21 | 48.99 | 47.64 | 53.14 | 79.01 | 100 |
The results from the docking runs of all programs, proteins, and ligands (Table 2) showed that ParvD (
3
2
1
1
θ
β
ι
α
3
1 are the strongest inhibitors for all cell types. The weakest docking scores correspond to the compounds docked into the PKCδ isoform.
Table 2. Calculated docking scores for compounds against PKC isoforms. All values in kcal/mol.
Compound | 5f9e (Isoform | θ | ) | 2i0e (Isoform | β | II) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
From the data presented in Table 1, Table 2, Table 3, Table 4 and Table 5, we can explain the general trends in the docking scores of royleanones to different isoforms of PKC. Docking calculations report docking scores of up to −9.9 kcal/mol for
1
3
1
α
2
1
P
2
1
2
α
1
2
5
6
2
1
5
P
1
5
P value and a more exposed surface. This is probably the reason for the lower interaction score: The compound is too nonpolar and less buried in the binding site, which contributes to an easier unbinding process. Figure 2 shows the difference in the exposed surface area for
1
5.
Figure 24.
a
1
b
Table 5.
P) values and solvent-accessible surface area for docked poses in PKCα isoform.
DihidroxyRoy (7) |
285.37 |
165.58 |
58.02 |
2.52 |
Compound
3
β
1
2
3
P
3, which indicates a slower unbinding process. Both properties are in favor of a higher predicted affinity towards any of the PKC isoforms.
The difference in docking scores between
1
4
3
1
δ. Finally, the predicted interaction of each compound in different PKC isoforms can be due to subtle but significant amino acid residue changes, such as Met → Leu or Thr → Val and others, which can change the electrostatic nature of the binding site towards being more hydrophobic.
The binding site of PKC
δ
ι (Figure 3). ParvD (
3
1
4
δ has a smaller binding site as compared to the other isoforms.
Figure 35.
δ
ι (red).
ParvD (
3
1
3
3
1) (Figure 4), with the royleanone part of ParvD (3) flipped and more towards the entrance to the binding site, and its phenol ring in the hydroxybenzoate functional group interacting deeper, making hydrogen bonds with Val326 (top-right in Figure 4, interactions made instead by the royleanone part in the DeRoy(
1
3
ι
3
1).
Figure 46.
3
1
ι.
The 2-D interaction diagram (Figure 5) shows a schematic representation of the fit and intermolecular protein–ligand interactions for ParvD (
3
ι.
Figure 57.
3
ι.
Even though the mechanism of roylaneone compound inhibition of cancer cells is not yet determined as exclusively through inhibition or activation (
4
δ [2]) of specific PKC isoforms, ParvD (
3
1
3
ι
3,
P value.
Clues on PKC isoform modulation may give information on the specificity towards each isoform based on the structure of their different biding sites, as well as on useful probe compounds, such as royleanones. Even if it may be difficult to pick up differences in the binding sites of PKC isoforms, this is indeed possible. Selective thieno[2,3-
d]pyrimidine-based chemical inhibitors of atypical PKCs have been reported [3], and the region of hydrophobic residues in the binding site upstream from the catalytic Lys/Thr provides this specificity for compounds with bulky hydrophobic groups. The conserved Lys 371, on the other hand, provides a binding partner in nearly all isoforms. Atypical PKCs can tolerate the Lys -> Trp mutation, whereas other PKCs cannot [4].
Compounds in phase I or phase II clinical trials targeting classical PKC isoforms were not successful [5], but recent studies implicate that mainly atypical and novel PKC enzymes regulate oncogenic signaling pathways in pancreatic cancer. These subgroups converge signaling induced by mutant K-Ras, inflammatory cytokines, and growth factors. Approaches to compound design for novel PKCs and atypical PKCs may include allosteric inhibitors and ATP competitive inhibitors. The royleanone core and derivatives are interesting for further research on their different interactions with different PKC isoforms, pancreatic cancer, and breast cancer cell lines with an emphasis on breast CSC, which are attractive target cells as these are the cells with the highest metastatic potential.