Technological Aspects for Pleasant Learning: Comparison
Please note this is a comparison between Version 2 by Bruce Ren and Version 1 by Ramiro Quezada.

El procTheso de enseñanza-aprendizaje, en cada nivel teaching–learning process, at each educativo, es a menudo un onal level, is often an open problema abierto para los for educadores e investigadoretors and researchers relacionados con el tema planteadoted to the stated topic. LoRes investigadoreearchers combinan tecnologías emergentes para e emerging technologies to formular herramientas de aprendizaje con el fin de comprender los contenidoste learning tools in order to understand the abstractos de las asignatura contents of the subjects; sin howevembargo, elr, the problema still persistes. UnaA herramienta de aprendizaje tecnológico sería eficaz cuando se proyecta en un modelo etechnological learning tool would be effective when projected into an educativo que analiza laonal model that looks at motivación, la tion, usabilidad, el compromiso y la acty, engagement, and technological acceptabilidad tecnológicaty. AlgunSos de estos juegos podrían atribuirse mediante el uso de la realidad aumentada y los juegome of these aspects could be attributed through the use of augmented reality and games. 

  • enjoyable learning
  • augmented reality
  • educational games
  • learning models
  • learning tools
Please wait, diff process is still running!

References

  1. Oviatt, S.; Arthur, A.; Cohen, J. Quiet interfaces that help students think. In Proceedings of the of the 19th Annual ACM Symposium on User Interface Software and Technology, Montreux, Switzerland, 15–18 October 2006; pp. 191–200.
  2. Lindgren, R.; Tscholl, M.; Wang, S.; Johnson, E.; Wang, S. Enhancing Learning and Engagement through Embodied Interaction within a Mixed Reality. Comput. Educ. 2016.
  3. Khine, M.S.; Saleh, I.M. New science of learning: Cognition, computers and collaboration in education. New Sci. Learn. Cogn. Comput. Collab. Educ. 2010, 1–607.
  4. Mossel, A.; Schönauer, C.; Gerstweiler, G.; Kaufmann, H. ARTiFICe ± Augmented Reality Framework for Distributed Collaboration. Int. J. Virt. Real. 2012, 11, 1–7.
  5. Cuendet, S.; Bonnard, Q.; Do-Lenh, S.; Dillenbourg, P. Designing augmented reality for the classroom. Comput. Educ. 2013, 68, 557–569.
  6. Davis, F.D.; Davis, D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 2018, 13, 319–340.
  7. Spector, J.M.; Merrill, M.D.; Elen, J.; Bishop, M.J. Handbook of Research on Educational Communications and Technology, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–1005.
  8. Laine, T.H.; Nygren, E.; Dirin, A.; Suk, H.J. Science Spots AR: A platform for science learning games with augmented reality. Educ. Technol. Res. Dev. 2016, 64, 507–531.
  9. Boyle, E.A.; Connolly, T.M.; Hainey, T.; Boyle, J.M. Computers in Human Behavior Engagement in digital entertainment games: A systematic review. Comput. Hum. Behav. 2012, 28, 771–780.
  10. Khan, A.; Egbue, O.; Palkie, B.; Madden, J. Active learning: Engaging students to maximize learning in an online course. Electron. J. ELearning 2017, 15, 107–115.
  11. Fonseca, D.; Valls, F.; Redondo, E.; Villagrasa, S. Computers in Human Behavior Informal interactions in 3D education: Citizenship participation and assessment of virtual urban proposals. Comput. Hum. Behav. 2015.
  12. Markham, T. Project based learning a bridge just far enough. Teach. Libr. 2011, 39, 38.
  13. Jumaat, N.F.; Tasir, Z.; Halim, N.D.A.; Ashari, Z.M. Project-based learning from constructivism point of view. Adv. Sci. Lett. 2017, 23, 7904–7906.
  14. Basilotta-Gómez-Pablos, V.; Martín del Pozo, M.; García-Valcárcel-Muñoz-Repiso, A. Project-based learning (PBL) through the incorporation of digital technologies: An evaluation based on the experience of serving teachers. Comput. Hum. Behav. 2017, 68, 501.
  15. Tseng, K.H.; Chang, C.C.; Lou, S.J.; Chen, W.P. Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning (PjBL) environment. Int. J. Technol. Des. Educ. 2013, 23, 87–102.
  16. Fidan, M.; Tuncel, M. Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Comput. Educ. 2019, 142, 103635.
  17. Ryan, R.M.; Deci, E.L. Self-Determination Theory and the Facilitation of Intrinsic Motivation, Social Development, and Well-Being. Am. Psychol. 2000, 55, 68–78.
  18. Soltani, P.; Morice, A.H.P. Augmented reality tools for sports education and training. Comput. Educ. 2020, 155, 103923.
  19. Alper, A. A systematic literature review towards the research of game-based learning with augmented reality. Int. J. Technol. Educ. Sci. 2021, 5, 224–244.
  20. Akçayir, M.; Akçayir, G.; Pektaş, H.M.; Ocak, M.A. Augmented reality in science laboratories: The effects of augmented reality on university students’ laboratory skills and attitudes toward science laboratories. Comput. Hum. Behav. 2016, 57, 334–342.
  21. Chien, Y.C.; Su, Y.N.; Wu, T.T.; Huang, Y.M. Enhancing students’ botanical learning by using augmented reality. Univ. Access Inf. Soc. 2019, 18, 231–241.
  22. Hsu, T.C. Learning English with Augmented Reality: Do learning styles matter? Comput. Educ. 2017, 106, 137–149.
  23. Deterding, S.; Dixon, D.; Khaled, R.; Nacke, L. From game design elements to gamefulness: Defining gamification. In Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, Tampere, Finland, 28–30 September 2011; pp. 9–11.
  24. Bahuguna, Y.; Verma, A.; Raj, K. Smart learning based on augmented reality with android platform and its applicability. In Proceedings of the 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU), Bhimtal, India, 23–24 February 2018; pp. 1–5.
  25. Groh, F. Gamification: State of the Art Definition and Utilization. Res. Trends Media Inform. 2012, 39–46.
  26. Lai, A.F.; Chen, C.H.; Lee, G.Y. An augmented reality-based learning approach to enhancing students’ science reading performances from the perspective of the cognitive load theory. Br. J. Educ. Technol. 2019, 50, 232–247.
  27. Akçayır, M.; Akçayır, G. Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educ. Res. Rev. 2017, 20, 1–11.
  28. Erbas, C.; Demirer, V. The effects of augmented reality on students’ academic achievement and motivation in a biology course. J. Comput. Assist. Learn. 2019, 35, 450–458.
  29. Ruiz-Ariza, A.; Casuso, R.A.; Suarez-Manzano, S.; Emilio, J. Effect of augmented reality game Pokemon GO on cognitive performance and emotional intelligence in adolescent young. Comput. Educ. 2017.
  30. Rauschnabel, P.A.; Rossmann, A.; Dieck, M.C. The case of Pokémon Go. Comput. Hum. Behav. 2017.
  31. Cheng, K.H.; Tsai, C.C. Affordances of Augmented Reality in Science Learning: Suggestions for Future Research. J. Sci. Educ. Technol. 2013, 22, 449–462.
  32. Li, J.; van der Spek, E.D.; Feijs, L.; Wang , F.; Hu, J. Augmented Reality Games for Learning: A Literature Review. In Distributed, Ambient and Pervasive Interactions; Lecture Notes in Computer Science; Streitz , N., Markopoulos, P., Eds.; Springer: Cham, Switzerland, 2017; Volume 10291, pp. 612–626.
  33. Coimbra, M.T.; Cardoso, T.; Mateus, A. Augmented Reality: An Enhancer for Higher Education Students in Math’s Learning? Procedia Comput. Sci. 2015, 67, 332–339.
  34. Gan, L.; Jiang, J.; Zhang, W.; Su, Y.; Shi, Y.; Huang, C.; Pan, J.; Lü, M.; Wu, Y. Synthesis of Pyrrolidine Ring-Fused Fullerene Multicarboxylates by Photoreaction. J. Org. Chem. 1998, 63, 4240–4247.
  35. Cai, S.; Wang, X.; Chiang, F. Computers in Human Behavior A case study of Augmented Reality simulation system application in a chemistry course. Comput. Hum. Behav. 2014, 37, 31–40.
  36. Potkonjak, V.; Gardner, M.; Callaghan, V.; Mattila, P.; Guetl, C.; Petrović, V.M.; Jovanović, K. Virtual laboratories for education in science, technology, and engineering: A review. Comput. Educ. 2016, 95, 309–327.
  37. Sampaio, D.; Almeida, P. Pedagogical Strategies for the Integration of Augmented Reality in ICT Teaching and Learning Processes. Procedia Comput. Sci. 2016, 100, 894–899.
  38. Siwawetkul, W.; Koraneekij, P. Effect of 5E instructional model on mobile technology to enhance reasoning ability of lower primary school students. Kasetsart J. Soc. Sci. 2018, 41, 40–45.
  39. Rahman, M.A.; Ling, L.S.; Yin, O.S. Augmented Reality for Learning Calculus: A Research Framework of Interactive Learning System. Lect. Notes Electr. Eng. 2020, 603, 491–499.
  40. Sarmanho, E.S.; Barros, E.S.; Monteiro, D.C.; Marques, L.B.; de Souza, D.G. A Game for Teaching Children With disability in Reading and Writing in Portuguese using Voice Recognition and Kinect Sensor. In Proceedings of the 10th Brazilian Symposium on Computer Games and Digital Entertainment, Salvador, Brazil, 7–9 November 2011.
  41. Iskandar, B.S.; Ridzuan, P.D. Assistive Courseware for Dyslexic Children To Increase Learning Abilities Based on Kinect Technology (ABCDyslexic); Universiti Teknologi PETRONAS: Seri Iskandar, Malaysia, 2012.
  42. Goseki, M.; Egusa, R.; Adachi, T.; Takemura, H.; Mizoguchi, H.; Namatame, M.; Kusunoki, F. Puppet Show for Entertaining Hearing-Impaired, Together with Normal-Hearing People—A novel application of human sensing technology to inclusive education. In Proceedings of the 2012 First International Conference on Innovative Engineering Systems, Alexandria, Egypt, 7–9 September 2012; pp. 121–124.
  43. Baragash, R.S.; Al-Samarraie, H.; Alzahrani, A.I.; Alfarraj, O. Augmented reality in special education: A meta-analysis of single-subject design studies. Eur. J. Spec. Needs Educ. 2020, 35, 382–397.
  44. Martín García, G.; Frintrop, S.; Cremers, A.B. Attention-Based Detection of Unknown Objects in a Situated Vision Framework. KI Künstl. Intell. 2013, 27, 267–272.
  45. Lin, C.; Chai, H.; Wang, J.; Chen, C.; Liu, Y.; Chen, C.; Lin, C.; Huang, Y. Augmented reality in educational activities for children with disabilities. Displays 2016, 42, 51–54.
  46. Billinghurst, M.; Dunser, A. Vocational Training Council Note. IEEE Comput. Soc. 2012, 56–63.
  47. Viiri, J.; Savinainen, A. Teaching-learning sequences: A comparison of learning demand analysis and educational reconstruction. Lat. Am. J. Phys. Educ. 2008, 2, 1.
  48. Méheut, M. Teaching-learning sequences tools for learning and/or research. Res. Qual. Sci. Educ. 2005, 195–207.
  49. Smith, P.; Ragan, T. Instructional Design, 3rd ed.; Wiley & Sons: Hoboken, NJ, USA, 2013.
  50. Moraveji, N.; Morris, M.R.; Morris, D.; Czerwinski, M.; Riche, N. ClassSearch: Facilitating the Development of Web Search Skills through Social Learning. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011; pp. 1797–1806.
  51. Brown, C.S.; Choi, K.J.; Kaylie, D.M. Preoperative Imaging Findings and Cost in Adults With Postlingual Deafness Prior to Cochlear Implant. Ann. Otol. Rhinol. Laryngol. 2018, 127, 270–274.
  52. Bybee, R.W.; Taylor, J.A.; Gardner, A.; van Scotter, P.; Powell, J.C.; Westbrook, A.; Landes, N. The BSCS 5E Instructional Model: Origins, Effectiveness, and Applications; BSCS: Colorado Springs, CO, USA, 2006; pp. 1–19.
  53. Çepni, S.; Çiğdem, Ş. Effect of Different Teaching Methods and Techniques Embedded in the 5E Instructional Model on Students’ Learning about Buoyancy Force. Eurasian J. Phys. Chem. Educ. 2012, 4, 97–127.
  54. Cheng, S.H.; Chu, H.C. An interactive 5E learning cycle-based augmented reality system to improve students’ learning achievement in a microcosmic chemistry molecule course. In Proceedings of the 2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), Kumamoto, Japan, 10–14 July 2016; pp. 357–360.
  55. Sahin, C.; Cavus, S.; Gungoren, S. Examining Usage Trends of Computer Support of the Prospective Primary School Teachers in the Science Education based on the 5E Model. Procedia Soc. Behav. Sci. 2014, 116, 1913–1918.
  56. Demircioğlu, G.; Çağatay, G. The Effect of Laboratory Activities based on 5e Model of Constructivist Approach on 9th Grade Students’ Understanding of Solution Chemistry. Procedia Soc. Behav. Sci. 2014, 116, 3120–3124.
  57. Piyayodilokchai, H.; Panjaburee, P.; Laosinchai, P.; Ketpichainarong, W.; Ruenwongsa, P. A 5E learning cycle approach-based, multimedia-supplemented instructional unit for structured query language. Educ. Technol. Soc. 2013, 16, 146–159.
  58. Cheng, P.H.; Yang, Y.T.C.; Chang, S.H.G.; Kuo, F.R.R. 5E Mobile Inquiry Learning Approach for Enhancing Learning Motivation and Scientific Inquiry Ability of University Students. IEEE Trans. Educ. 2016, 59, 147–153.
  59. Lai, A.F.; Lai, H.Y.; Chuang, W.H.; Wu, Z.H. Developing a mobile learning management system for outdoors nature science activities based on 5E learning cycle. In Proceedings of the International Conference on e-Learning 2015, E-LEARNING 2015—Part of the Multi Conference on Computer Science and Information Systems 2015, Las Palmas de Gran Canaria, Spain, 21–24 July 2015; pp. 59–65.
  60. Liu, T.C.; Peng, H.; Wu, W.H.; Lin, M.S. The effects of mobile natural-science learning based on the 5E learning cycle: A case study. Educ. Technol. Soc. 2009, 12, 344–358.
  61. Desouza, J.M.S. Conceptual play and science inquiry: Using the 5E instructional model. Pedagogies 2017, 12, 340–353.
  62. Yang, S.; Mei, B.; Yue, X. Mobile Augmented Reality Assisted Chemical Education: Insights from Elements 4D. J. Chem. Educ. 2018, 95, 1060–1062.
  63. Chiu, J.L.; Dejaegher, C.J.; Chao, J. The effects of augmented virtual science laboratories on middle school students’ understanding of gas properties. Comput. Educ. 2015, 85, 59–73.
  64. Wu, Y.; Wu, Y.; Yu, S. An Augmented-Reality Interactive Card Game for Teaching Elementary School Students. Int. J. Soc. Behav. Educ. Econ. Bus. Ind. Eng. 2016, 10, 37–41.
  65. Sural, I. Augmented reality experience: Initial perceptions of higher education students. Int. J. Instr. 2018, 11, 565–576.
  66. Carraher, T.N.; Schliemann, A.D.; Carraher, D.W. Mathematical concepts in everyday life. New Dir. Child Adolesc. Dev. 1988, 1988, 71–87.
  67. Bujak, K.R.; Radu, I.; Catrambone, R.; Macintyre, B.; Zheng, R.; Golubski, G. Computers & Education A psychological perspective on augmented reality in the mathematics classroom. Comput. Educ. 2013, 68, 536–544.
  68. Sweller, J. Element interactivity and intrinsic, extraneous, and germane cognitive load. Educ. Psychol. Rev. 2010, 22, 123–138.
  69. Lucardie, D. The Impact of Fun and Enjoyment on Adult’s Learning. Procedia Soc. Behav. Sci. 2014, 142, 439–446.
  70. Braghirolli, L.F.; Ribeiro, J.L.D.; Weise, A.D.; Pizzolato, M. Benefits of educational games as an introductory activity in industrial engineering education. Comput. Hum. Behav. 2016, 58, 315–324.
  71. Zheng, D.; Newgarden, K.; Young, M.F. Multimodal analysis of language learning in World of Warcraft play: Languaging as Values-realizing. ReCALL 2012, 24, 339–360.
  72. Steinkuehler, C.; Squire, K. Videogames and learning. In The Cambridge Handbook of the Learning Sciences, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014; pp. 377–394.
  73. Moloney, J.; Globa, A.; Wang, R.; Roetzel, A. Serious Games for Integral Sustainable Design: Level 1. Procedia Eng. 2017, 180, 1744–1753.
  74. Tomi, A.B.; Rambli, D.R.A. An interactive mobile augmented reality magical playbook: Learning number with the thirsty crow. Procedia Comput. Sci. 2013, 25, 123–130.
  75. Songer, R.W. A Playful Affordances Model for Gameful Learning. In Proceedings of the Second International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain, 1–3 October 2014; pp. 205–213.
  76. Liu, Y.; Holden, D.; Zheng, D. Analyzing students’ Language Learning Experience in an Augmented Reality Mobile Game: An Exploration of an Emergent Learning Environment. Procedia Soc. Behav. Sci. 2016, 228, 369–374.
  77. Boletsis, C.; McCallum, S. The table mystery: An augmented reality collaborative game for chemistry education. In Proceedings of the International Conference on Serious Games Development and Applications, Trondheim, Norway, 25–27 September 2013; pp. 86–95.
  78. Lin, T.J.; Duh, H.B.L.; Li, N.; Wang, H.Y.; Tsai, C.C. An investigation of learners’ collaborative knowledge construction performances and behavior patterns in an augmented reality simulation system. Comput. Educ. 2013, 68, 314–321.
  79. Hung, Y.H.; Chen, C.H.; Huang, S.W. Applying augmented reality to enhance learning: A study of different teaching materials. J. Comput. Assist. Learn. 2017, 33, 252–266.
  80. Cai, S.; Chiang, F.K.; Sun, Y.; Lin, C.; Lee, J.J. Applications of augmented reality-based natural interactive learning in magnetic field instruction. Interact. Learn. Environ. 2017, 25, 778–791.
More