Environmental Monitoring 1: Comparison
Please note this is a comparison between Version 2 by Conner Chen and Version 1 by Kleomenis Kalogeropoulos.

Human activities and climate change constitute the contemporary catalyst for natural processes and their impacts, i.e., geo-environmental hazards. Globally, natural catastrophic phenomena and hazards, such as drought, soil erosion, quantitative and qualitative degradation of groundwater, frost, flooding, sea level rise, etc., are intensified by anthropogenic factors. Thus, they present rapid increase in intensity, frequency of occurrence, spatial density, and significant spread of the areas of occurrence. The impact of these phenomena is devastating to human life and to global economies, private holdings, infrastructure, etc., while in a wider context it has a very negative effect on the social, environmental, and economic status of the affected region. Geospatial technologies including Geographic Information Systems, Remote Sensing—Earth Observation as well as related spatial data analysis tools, models, databases, contribute nowadays significantly in predicting, preventing, researching, addressing, rehabilitating, and managing these phenomena and their effects. 

  • environmental monitoring
  • climate change
  • geohazards
Please wait, diff process is still running!

References

  1. Karavitis, C. Drought Management Strategies for Urban Water Supplies: The Case of Metropolitan Athens. Ph.D. Thesis, Department of Civil Engineering, Colorado State University, Fort Collins, CO, USA, 1992.
  2. Kalabokidis, K.D.; Karavitis, C.; Vasilakos, C. Automated fire and flood danger assessment system. In Proceedings of the International Workshop on Forest Fires in the Wildland-Urban Interface and Rural Areas in Europe; MAICH: Crete, Greece, 2004; pp. 143–153.
  3. Kalabokidis, K.; Kallos, G.; Karavitis, C.; Caballero, D.; Tettelaar, P.; Llorens, J.; Vasilakos, C. Automated fire and flood hazard protection system. In Proceedings of the 5th International Workshop on Remote Sensing and GIS Applications to Forest Fire Management: Fire Effects Assessment, Zaragoza, Spain, 16–18 June 2005; Universidad de Zaragoza: Zaragoza, Spain, 2005; pp. 167–172.
  4. Tsesmelis, D.E.; Oikonomou, P.D.; Vasilakou, C.G.; Skondras, N.A.; Fassouli, V.; Alexandris, S.G.; Grigg, N.S.; Karavitis, C.A. Assessing structural uncertainty caused by different weighting methods on the Standardized Drought Vulnerability Index (SDVI). Stoch. Environ. Res. Risk Assess. 2019, 33, 515–533.
  5. Karavitis, C.A.; Tsesmelis, D.E.; Skondras, N.A.; Stamatakos, D.; Alexandris, S.; Fassouli, V.; Vasilakou, C.G.; Oikonomou, P.D.; Gregorič, G.; Grigg, N.S.; et al. Linking drought characteristics to impacts on a spatial and temporal scale. Water Policy 2014, 16, 1172–1197.
  6. Wilhite, D.A. Chapter 1 Drought as a Natural Hazard: Concepts and Definitions; Drought Mitigation Center Faculty Publications: Lincoln, NE, USA, 2000.
  7. Sonmez, K.; Komuscu, A.U.; Erkan, A.; Turgu, E. An Analysis of Spatial and Temporal Dimension of Drought Vulnerability in Turkey Using the Standardized Precipitation Index. Nat. Hazards 2005, 35, 243–264.
  8. Grigg, N.S.; Vlachos, E.C. Drought Water Management; International School for Water Resources, Department of Civil Engineering, Colorado State University: Fort Collins, CO, USA, 1990.
  9. Karavitis, C.A. Drought and urban water supplies: The case of metropolitan Athens. Water Policy 1998, 1, 505–524.
  10. Yevjevich, V.; Da Cunha, L.; Vlachos, E. Coping with Droughts; Water Resources Publications: Littleton, CO, USA, 1983.
  11. Karavitis, C.A. Decision Support Systems for Drought Management Strategies in Metropolitan Athens. Water Int. 1999, 24, 10–21.
  12. Bordi, I.; Fraedrich, K.; Petitta, M.; Sutera, A. Large-Scale Assessment of Drought Variability Based on NCEP/NCAR and ERA-40 Re-Analyses. Water Resour. Manag. 2006, 20, 899–915.
  13. Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216.
  14. Oikonomou, P.D.; Tsesmelis, D.E.; Waskom, R.M.; Grigg, N.S.; Karavitis, C.A. Enhancing the Standardized Drought Vulnerability Index by Integrating Spatiotemporal Information from Satellite and In Situ Data. J. Hydrol. 2019, 569, 265–277.
  15. Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281.
  16. Horton, G.; Hanna, L.; Kelly, B. Drought, drying and climate change: Emerging health issues for ageing Australians in rural areas. Australas. J. Ageing 2010, 29, 2–7.
  17. Wilhite, D.A.; Sivakumar, M.V.K.; Pulwarty, R. Managing drought risk in a changing climate: The role of national drought policy. Weather Clim. Extrem. 2014, 3, 4–13.
  18. Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533.
  19. Oikonomou, P.D.; Karavitis, C.A.; Tsesmelis, D.E.; Kolokytha, E.; Maia, R. Drought Characteristics Assessment in Europe over the Past 50 Years. Water Resources Management. 2020, 34, 4757–4772.
  20. Tsesmelis, D.E. Development, Implementation and Evaluation of Drought and Desertification Risk Indicators for the Integrated Management of Water Resources. Ph.D. Thesis, Department of Natural Resources Management & Agricultural Engineering, Agricultural University of Athens, Athens, Greece, 2017.
  21. Karavitis, C.A.; Alexandris, S.; Tsesmelis, D.E.; Athanasopoulos, G. Application of the Standardized Precipitation Index (SPI) in Greece. Water 2011, 3, 787–805.
  22. Karavitis, C.A.; Chortaria, C.; Alexandris, S.; Vasilakou, C.G.; Tsesmelis, D.E. Development of the standardised precipitation index for Greece. Urban. Water J. 2012, 9, 401–417.
  23. Pedro-Monzonís, M.; Ferrer, J.; Solera, A.; Estrela, T.; Paredes-Arquiola, J. Key issues for determining the exploitable water resources in a Mediterranean river basin. Sci. Total Environ. 2015, 503–504, 319–328.
  24. Pedro-Monzonís, M.; Solera, A.; Ferrer, J.; Estrela, T.; Paredes-Arquiola, J. A review of water scarcity and drought indexes in water resources planning and management. J. Hydrol. 2015, 527, 482–493.
  25. Loucks, D.P. Sustainable Water Resources Management. Water Int. 2000, 25, 3–10.
  26. Wilhite, D.A.; Hayes, M.J.; Knutson, C.; Smith, K.H. Planning for drought: Moving from crisis to risk management. JAWRA J. Am. Water Resour. Assoc. 2000, 36, 697–710.
  27. Kampragou, E.; Apostolaki, S.; Manoli, E.; Froebrich, J.; Assimacopoulos, D. Towards the harmonization of water-related policies for managing drought risks across the EU. Environ. Sci. Policy 2011, 14, 815–824.
  28. Skondras, N.A.; Karavitis, C.A.; Gkotsis, I.I.; Scott, P.J.B.; Kaly, U.L.; Alexandris, S.G. Application and assessment of the Environmental Vulnerability Index in Greece. Ecol. Indic. 2011, 11, 1699–1706.
  29. Skondras, N. Decision Making in Water Resources Management: Development of a Composite Indicator for the Assessment of the Social-Environmental Systems in Terms Resilience and Vulnerability to Water Scarcity and Water Stress. Ph.D. Thesis, Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Athens, Greece, 2015.
  30. Cancelliere, A.; Mauro, G.D.; Bonaccorso, B.; Rossi, G. Drought forecasting using the Standardized Precipitation Index. Water Resour. Manag. 2007, 21, 801–819.
  31. Priscoli, J.D. Keynote Address: Clothing the IWRM Emperor by Using Collaborative Modeling for Decision Support. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 609–613.
  32. Salas, J.D.; Fu, C.; Cancelliere, A.; Dustin, D.; Bode, D.; Pineda, A.; Vincent, E. Characterizing the Severity and Risk of Drought in the Poudre River, Colorado. J. Water Resour. Plan. Manag. 2005, 131, 383–393.
  33. Vlachos, E. Prologue: Water peace and conflict management. Water Int. 1990, 15, 185–188.
  34. Vlachos, E.; Braga, B. The challenge of urban water management. In Proceedings of the Frontiers in Urban Water Management: Deadlock or Hope; IWA Publishing: London, UK, 2001; pp. 1–36.
  35. Grigg, N.S. Water Resources Management. In Water Encyclopedia; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1996.
  36. Tsesmelis, D.E.; Karavitis, C.A.; Oikonomou, P.D.; Alexandris, S.; Kosmas, C. Assessment of the Vulnerability to Drought and Desertification Characteristics Using the Standardized Drought Vulnerability Index (SDVI) and the Environmentally Sensitive Areas Index (ESAI). Resources 2019, 8, 6.
  37. Swathandran, S.; Aslam, M.A.M. Assessing the role of SWIR band in detecting agricultural crop stress: A case study of Raichur district, Karnataka, India. Environ. Monit. Assess. 2019, 191, 442.
  38. Vlachos, E.C. Drought Management Interfaces; ASCE: Las Vegas, NE, USA, 1982; p. 15.
  39. AghaKouchak, A.; Feldman, D.; Hoerling, M.; Huxman, T.; Lund, J. Water and climate: Recognize anthropogenic drought. Nat. News 2015, 524, 409.
  40. Tsakiris, G.; Pangalou, D.; Vangelis, H. Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI). Water Resour. Manag. 2007, 21, 821–833.
  41. Vangelis, H.; Tigkas, D.; Tsakiris, G. The effect of PET method on Reconnaissance Drought Index (RDI) calculation. J. Arid Environ. 2013, 88, 130–140.
  42. Fassouli, V. Development, Implementation and Assessment of a Composite Index for the Identification and Classification of Drought and Creation of the Corresponding Decision Support System. Ph.D. Thesis, Department of Natural Resources Management & Agricultural Engineering, Agricultural University of Athens, Athens, Greece, 2017.
  43. Rossi, G.; Benedini, M.; Tsakiris, G.; Giakoumakis, S. On regional drought estimation and analysis. Water Resour. Manag. 1992, 6, 249–277.
  44. Pimentel, D. Soil erosion: A food and environmental threat. Environ. Dev. Sustain. 2006, 8, 119–137.
  45. Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450.
  46. Milliman, J.D.; Syvitski, J.P.M. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. J. Geol. 1992, 100, 525–544.
  47. Walling, D.E.; Webb, B.W. Erosion and sediment yield: A global overview. In Erosion and Sediment Yield: Global and Regional Perspectives Proceedings of the Exeter Symposium; Walling, D.E., Webb, B.W., Eds.; IAHS Publication No. 236; ISI: Exeter, UK, 1996; pp. 3–19.
  48. Polykretis, C.; Alexakis, D.D.; Grillakis, M.G.; Manoudakis, S. Assessment of Intra-Annual and Inter-Annual Variabilities of Soil Erosion in Crete Island (Greece) by Incorporating the Dynamic “Nature” of R and C-Factors in RUSLE Modeling. Remote Sens. 2020, 12, 2439.
  49. Lai, R. Soil degradation by erosion. Land Degrad. Dev. 2001, 12, 519–539.
  50. Xu, L.; Xu, X.; Meng, X. Risk assessment of soil erosion in different rainfall scenarios by RUSLE model coupled with Information Diffusion Model: A case study of Bohai Rim, China. Catena 2013, 100, 74–82.
  51. Nearing, M.A.; Pruski, F.F.; O’neal, M.R. Expected climate change impacts on soil erosion rates: A review. J. Soil Water Conserv. 2004, 59, 43–50.
  52. Ganasri, B.P.; Ramesh, H. Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geosci. Front. 2016, 7, 953–961.
  53. Oldeman, L.R.; Van Engelen, V.W.P.; Pulles, J.H.M. The extent of human induced soil degradation. In Annex 5 of World Man of the Status of Human-Induced Soil Degradation: An. Explanatory Note, 2nd ed.; Oldeman, L.R., Hakkeling, R.T.A., Sombroek, W.G., Eds.; International Soil Reference and Information Center: Wageningen, The Netherlands, 1990.
  54. Fistikoglu, O.; Harmancioglu, N.B. Integration of GIS with USLE in assessment of soil erosion. Water Resour. Manag. 2002, 16, 447–467.
  55. Kothyari, U.C. Erosion and sediment problems in India. In Proceedings of the Exeter Symposium on Erosion and Sediment Yield: Global and Regional Perspectives; IAHS Publication No. 236; ISI: Exeter, UK, 1996; pp. 531–540.
  56. Jha, M.K.; Paudel, R.C. Erosion predictions by empirical models in a mountainous watershed in Nepal. J. Spat. Hydrol. 2010, 10, 89–102.
  57. Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Agriculture Handbook No. 537; USDA: Washington, DC, USA, 1978.
  58. Karydas, C.G.; Panagos, P.; Gitas, I.Z. A classification of water erosion models according to their geospatial characteristics. Int. J. Digit. Earth 2014, 7, 229–250.
  59. Zhang, Z.-H.; Gang, H.U.; Jian, N.I. Effects of Topographical and Edaphic Factors on the Distribution of Plant Communities in Two Subtropical Karst Forests, Southwestern China. J. Mt. Sci. 2013, 10, 95–104.
  60. Lee, G.S.; Lee, K.H. Scaling effect for estimating soil loss in the RUSLE model using remotely sensed geospatial data in Korea. J. Hydrol. Earth Syst. Sci. 2006, 3, 135–157.
  61. Remortel Van, R.; Hamilton, M.; Hickey, R. Estimating the LS factor for RUSLE through iterative slope length processing of digital elevation data. Cartography 2001, 30, 27–35.
  62. Eckelmann, W.; Baritz, R.; Bialousz, S.; Bielek, P.; Carré, F.; Hrušková, B.; Jones, R.J.; Kibblewhite, M.; Kozak, J.; Le Bas, C.; et al. Common Criteria for Risk Area Identification According to Soil Threats; Office for Official Publications of the European Communities: Brussels, Belgium, 2006.
  63. Van Beek, C.L.; Tóth, T.; Hagyó, A.; Tóth, G.; Recatalá Boix, L.; Añó Vidal, C.; Malet, J.P.; Maquaire, O.; Van den Akker, J.J.H.; Van der Zee, S.; et al. The need for harmonizing methodologies for assessing soil threats in Europe. Soil Use Manag. 2010, 26, 299–309.
  64. Rozos, D.; Skilodimou, H.D.; Loupasakis, C.; Bathrellos, G.D. Application of the revised universal soil loss equation model on landslide prevention. An example from N. Euboea (Evia) Island, Greece. Environ. Earth Sci. 2013, 70, 3255–3266.
  65. Fernandez, P.; Delgado, E.; Lopez-Alonso, M.; Poyatos, J.M. GIS environmental information analysis of the Darro River basin as the key for the management and hydrological forest restoration. Sci. Total Environ. 2018, 613, 1154–1164.
  66. De Jong, S.M. Applications of reflective remote sensing for land degradation studies in a Mediterranean environment. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 1994.
  67. De Vente, J.; Poesen, J. Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth Sci. Rev. 2005, 71, 95–125.
  68. Giordano, A.; Bonfils, P.; Briggs, D.J.; de Sequeira, E.M.; de Laburu, C.R.; Yassoglou, N. The methodological approach to soil erosion and important land resources evaluation of the European Community. Soil Technol. 1991, 4, 65–77.
  69. Stathopoulos, N.; Lykoudi, E.; Vasileiou, E.; Rozos, D.; Dimitrakopoulos, D. Erosion Vulnerability Assessment of Sperchios River Basin, in East Central Greece—A GIS Based Analysis. Open J. Geol. 2017, 7, 621–646.
  70. Gitas, Ι.Z.; Douros, K.; Minakou, C.; Silleos, G.N.; Karydas, C.G. Multi-temporal soil erosion risk assessment in N. Chalkidiki using a modified USLE raster model. EARSeL eProceedings 2009, 8, 40–52.
  71. Fernandez, C.; Wu, J.Q.; McCool, D.Q.; Stockle, C.O. Estimating water erosion and sediment yield with GIS, RUSLE and SEDD. J. Soil Water Conserv. 2003, 58, 128–136.
  72. Alemayehu, F.; Taha, N.; Nyssen, J.; Girma, A.; Zenebe, A.; Behailu, M.; Deckers, S.; Poesen, J. The impacts of watershed management on land use and land cover dynamics in Eastern Tigray (Ethiopia). Resour. Conserv. Recycl. 2009, 53, 192–198.
  73. Rahman, M.R.; Shi, Z.H.; Chongfa, C. Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecol. Model. 2009, 220, 1724–1734.
  74. Alexakis, D.D.; Hadjimitsis, D.G.; Agapiou, A. Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of “Yialias” in Cyprus. Atmos. Res. 2013, 131, 108–124.
  75. Künzer, C.; Ottinger, M.; Liu, G.; Sun, B.; Baumhauer, R.; Dech, S. Earth observation-based coastal zone monitoring of the Yellow River Delta: Dynamics in China’s second largest oil producing region over four decades. Appl. Geogr. 2014, 55, 92–107.
  76. Alexandridis, T.K.; Sotiropoulou, A.M.; Bilas, G.; Karapetsas, N.; Silleos, N.G. The Effects of Seasonality in Estimating the C-Factor of Soil Erosion Studies. Land Degrad. Dev. 2015, 26, 596–603.
  77. Ghosh, M.K.; Kumar, L.; Roy, C. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 2015, 101, 137–144.
  78. AbdelRahman, M.A.; Natarajan, A.; Hegde, R. Assessment of land suitability and capability by integrating remote sensing and GIS for agriculture in Chamarajanagar district, Karnataka, India. Egypt. J. Remote Sens. Space Sci. 2016, 19, 125–141.
  79. Neugirg, F.; Stark, M.; Kaiser, A.; Vlacilova, M.; Della Seta, M.; Vergari, F.; Schmidt, J.; Becht, M.; Haas, F. Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology 2016, 269, 8–22.
  80. Rayegani, B.; Barati, S.; Sohrabi, T.A.; Sonboli, B. Remotely sensed data capacities to assess soil degradation. Egypt. J. Remote Sens. Space Sci. 2016, 19, 207–222.
  81. Dewan, A.; Corner, R.; Saleem, A.; Rahman, M.M.; Haider, M.R.; Rahman, M.M.; Sarker, M.H. Assessing channel changes of the Ganges-Padma River system in Bangladesh using Landsat and hydrological data. Geomorphology 2017, 276, 257–279.
  82. Chappell, A.; Webb, N.P.; Guerschman, J.P.; Thomas, D.T.; Mata, G.; Handcock, R.N.; Leys, J.F.; Butler, H.J. Improving ground cover monitoring for wind erosion assessment using MODIS BRDF parameters. Remote Sens. Environ. 2018, 204, 756–768.
  83. Nigel, R.; Rughooputh, S. Mapping of monthly soil erosion risk of mainland Mauritius and its aggregation with delineated basins. Geomorphology 2010, 114, 101–114.
  84. Jain, M.K.; Das, D. Estimation of sediment yield and areas of soil erosion and deposition for watershed prioritization using GIS and remote sensing. Water Resour. Manag. 2010, 24, 2091–2112.
  85. Chou, W.C. Modelling watershed scale soil loss prediction and sediment yield estimation. Water Resour. Manag. 2010, 24, 2075–2090.
  86. Hui, L.; Xiaoling, C.; Lim, K.J.; Xiaobin, C.; Sagong, M. Assessment of soil erosion and sediment yield in Liao watershed, Jiangxi Province, China, Using USLE, GIS, and RS. J. Earth Sci. 2010, 21, 941–953.
  87. Ouyang, W.; Hao, F.; Skidmore, A.K.; Toxopeus, A.G. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River. Sci. Total Environ. 2010, 409, 396–403.
  88. Demirci, A.; Karaburun, A. Estimation of soil erosion using RUSLE in a GIS framework: A case study in the Buyukcekmece Lake watershed, northwest Turkey. Environ. Earth Sci. 2012, 66, 903–913.
  89. Mhangara, P.; Kakembo, V.; Lim, K.J. Soil erosion risk assessment of the Keiskamma catchment, South Africa using GIS and remote sensing. Environ. Earth Sci. 2012, 65, 2087–2102.
  90. Pradhan, B.; Chaudhari, A.; Adinarayana, J.; Buchroithner, M.F. Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: A case study at Penang Island, Malaysia. Environ. Monit. Assess. 2012, 184, 715–727.
  91. Prasannakumar, V.; Vijith, H.; Abinod, S.; Geetha, N. Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geosci. Front. 2012, 3, 209–215.
  92. Ranzi, R.; Le, T.H.; Rulli, M.C. A RUSLE approach to model suspended sediment load in the Lo river (Vietnam): Effects of reservoirs and land use changes. J. Hydrol. 2012, 422, 17–29.
  93. Esteves, T.C.J.; Kirkby, M.J.; Shakesby, R.A.; Ferreira, A.J.D.; Soares, J.A.A.; Irvine, B.J.; Ferreira, C.S.S.; Coelho, C.O.A.; Bento, C.P.M.; Carreiras, M.A. Mitigating land degradation caused by wildfire: Application of the PESERA model to fire-affected sites in central Portugal. Geoderma 2012, 191, 40–50.
  94. Chatterjee, S.; Krishna, A.P.; Sharma, A.P. Geospatial assessment of soil erosion vulnerability at watershed level in some sections of the Upper Subarnarekha river basin, Jharkhand, India. Environ. Earth Sci. 2014, 71, 357–374.
  95. Sun, W.; Shao, Q.; Liu, J.; Zhai, J. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena 2014, 121, 151–163.
  96. Cilek, A.; Berberoglu, S.; Kirkby, M.; Irvine, B.; Donmez, C.; Erdogan, M.A. Erosion modelling in a Mediterranean subcatchment under climate change scenarios using Pan-European Soil Erosion Risk Assessment (PESERA). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 359.
  97. Aiello, A.; Adamo, M.; Canora, F. Remote sensing and GIS to assess soil erosion with RUSLE3D and USPED at river basin scale in southern Italy. Catena 2015, 131, 174–185.
  98. Gaubi, I.; Chaabani, A.; Mammou, A.B.; Hamza, M.H. A GIS-based soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) (Lebna watershed, Cap Bon, Tunisia). Nat. Hazards 2017, 86, 219–239.
  99. Bera, A. Estimation of soil loss by USLE model using GIS and remote sensing techniques: A case study of Muhuri River Basin, Tripura, India. Eurasian J. Soil Sci. 2017, 6, 206.
  100. Bouguerra, H.; Bouanani, A.; Khanchoul, K.; Derdous, O.; Tachi, S.E. Mapping erosion prone areas in the Bouhamdane watershed (Algeria) using the Revised Universal Soil Loss Equation through GIS. J. Water Land Dev. 2017, 32, 13–23.
  101. Karydas, C.G.; Panagos, P. The G2 erosion model: An algorithm for month-time step assessments. Environ. Res. 2018, 161, 256–267.
  102. Leh, M.; Bajwa, S.; Chaubey, I. Impact of land use change on erosion risk: An integrated remote sensing, geographic information system and modeling methodology. Land Degrad. Dev. 2013, 24, 409–421.
  103. Park, S.; Oh, C.; Jeon, S.; Jung, H.; Choi, C. Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation. J. Hydrol. 2011, 399, 263–273.
  104. Chowdary, V.M.; Chakraborthy, D.; Jeyaram, A.; Murthy, Y.K.; Sharma, J.R.; Dadhwal, V.K. Multi-criteria decision making approach for watershed prioritization using analytic hierarchy process technique and GIS. Water Resour. Manag. 2013, 27, 3555–3571.
  105. Badar, B.; Romshoo, S.A.; Khan, M.A. Integrating biophysical and socioeconomic information for prioritizing watersheds in a Kashmir Himalayan lake: A remote sensing and GIS approach. Environ. Monit. Assess. 2013, 185, 6419–6445.
  106. Mello, C.D.; Viola, M.R.; Beskow, S.; Norton, L.D. Multivariate models for annual rainfall erosivity in Brazil. Geoderma 2013, 202, 88–102.
  107. Thomas, J.; Joseph, S.; Thrivikramji, K.P. Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geosci. Front. 2018, 9, 893–906.
  108. Macedo, D.R.; Hughes, R.M.; Kaufmann, P.R.; Callisto, M. Development and validation of an environmental fragility index (EFI) for the neotropical savannah biome. Sci. Total Environ. 2018, 635, 1267–1279.
  109. Tetzlaff, B.; Friedrich, K.; Vorderbrügge, T.; Vereecken, H.; Wendland, F. Distributed modelling of mean annual soil erosion and sediment delivery rates to surface waters. Catena 2013, 102, 13–20.
  110. Shi, Z.H.; Cai, C.F.; Ding, S.W.; Wang, T.W.; Chow, T.L. Soil conservation planning at the small watershed level using RUSLE with GIS: A case study in the Three Gorge Area of China. Catena 2004, 55, 33–48.
  111. Şahin, Ş.; Kurum, E. Erosion risk analysis by GIS in environmental impact assessments: A case study—Seyhan Köprü Dam construction. J. Environ. Manag. 2002, 66, 239–247.
  112. Millward, A.A.; Mersey, J.E. Conservation strategies for effective land management of protected areas using an erosion prediction information system (EPIS). J. Environ. Manag. 2001, 61, 329–343.
  113. Aguirre, J.A.M.; Sánchez, J.C.R. Caracterización de las cuencas hidrográficas, objeto de restauración higrológico-forestal, mediante modelos hidrológicos. Ing. Del Agua 1994, 1, 2.
  114. Tabesh, M.; Saber, H. A prioritization model for rehabilitation of water distribution networks using GIS. Water Resour. Manag. 2012, 26, 225–241.
  115. Tang, Z.; Li, X.; Zhao, N.; Li, R.; Harvey, E.F. Developing a restorable wetland index for rainwater basin wetlands in south-central Nebraska: A multi-criteria spatial analysis. Wetlands 2012, 32, 975–984.
  116. Nekhay, O.; Arriaza, M.; Boerboom, L. Evaluation of soil erosion risk using Analytic Network Process and GIS: A case study from Spanish mountain olive plantations. J. Environ. Manag. 2009, 90, 3091–3104.
  117. De Paz, J.M.; Sánchez, J.; Visconti, F. Combined use of GIS and environmental indicators for assessment of chemical, physical and biological soil degradation in a Spanish Mediterranean region. J. Environ. Manag. 2006, 79, 150–162.
  118. Liu, C.; Frasier, P.; Kumar, L.; Macgregor, C. Catchmentwide wetland assessment and prioritization using the multi-criteria decision making method TOPIS. Environ. Manag. 2006, 38, 316–326.
  119. Metternicht, G.; Gonzalez, S. FUERO: Foundations of a fuzzy exploratory model for soil erosion hazard prediction. Environ. Model. Softw. 2005, 20, 715–728.
  120. Navas, A.; Machín, J.; Soto, J. Assessing soil erosion in a Pyrenean mountain catchment using GIS and fallout 137Cs. Agric. Ecosyst. Environ. 2005, 105, 493–506.
  121. Finlayson, D.P.; Montgomery, D.R. Modelling large-scale fluvial erosion in geographic information systems. Geomorphology 2003, 53, 147–164.
  122. Chowdhury, A.; Jha, M.K.; Chowdary, V.M.; Mal, B.C. Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. Int. J. Remote Sens. 2009, 30, 231–250.
  123. Magesh, N.S.; Chandrasekar, N.; Soundranayagam, J.P. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci. Front. 2012, 3, 189–196.
  124. Babiker, I.S.; Mohamed, M.A.; Hiyama, T. Assessing groundwater quality using GIS. Water Resour. Manag. 2007, 21, 699–715.
  125. Mukherjee, S.; Veer, V.; Tyagi, S.K.; Sharma, V. Sedimentation study of Hirakud reservoir through remote sensing techniques. J. Spat. Hydrol. 2007, 7, 1.
  126. Saraf, A.K.; Choudhury, P.R. Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. Int. J. Remote Sens. 1998, 19, 1825–1841.
  127. Babiker, I.S.; Mohamed, M.A.; Terao, H.; Kato, K.; Ohta, K. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environ. Int. 2004, 29, 1009–1017.
  128. Shetkar, R.V.; Mahesha, A. Tropical, seasonal river basin development: Hydrogeological analysis. J. Hydrol. Eng. 2004, 16, 280–291.
  129. Sener, E.; Davraz, A.; Ozcelik, M. An integration of GIS and remote sensing in groundwater investigations: A case study in Burdur, Turkey. Hydrogeol. J. 2005, 13, 826–834.
  130. Engman, E.T.; Gurney, R.J. Remote Sensing in Hydrology; Chapman and Hall: London, UK, 1991.
  131. Jha, M.K.; Chowdhury, A.; Chowdary, V.M.; Peiffer, S. Groundwater management and development by integrated remote sensing and geographic information systems: Prospects and constraints. Water Resour. Manag. 2007, 21, 427–467.
  132. Todd, D.K. Groundwater Hydrogeology, 2nd ed.; John Wiley & Son: New York, NY, USA, 1980.
  133. Jha, M.K.; Peiffer, S. Applications of Remote Sensing and GIS Technologies in Groundwater Hydrology: Past, Present and Future; BayCEER: Bayreuth, Germany, 2006; p. 201.
  134. Tiwari, A.; Rai, B. Hydromorphogeological mapping for groundwater prospecting using landsat-MSS images—a case study of part of Dhanbad District, Bihar. J. Indian Soc. Remote Sens. 1996, 24, 281–285.
  135. Das, S.; Behera, S.C.; Kar, A.; Narendra, P.; Guha, S. Hydrogeomorphological mapping in ground water exploration using remotely sensed data—a case study in keonjhar district, orissa. J. Indian Soc. Remote Sens. 1997, 25, 247–259.
  136. Thomas, A.; Sharma, P.K.; Sharma, M.K.; Sood, A. Hydrogeomorphological mapping in assessing ground water by using remote sensing data—A case study in lehra gaga block, sangrur district, Punjab. J. Indian Soc. Remote Sens. 1999, 27, 31.
  137. Harinarayanan, P.; Gopalakrishna, G.S.; Balasubramanian, A. Remote sensing data for groundwater development and management in Keralapura watersheds of Cauvery Basin, Karnataka, India. Indian Mineral. 2000, 34, 11–17.
  138. Muralidhar, M.; Raju, K.R.K.; Raju, K.S.V.P.; Prasad, J.R. Remote sensing applications for the evaluation of water resources in rainfed area, Warangal district, Andhra Pradesh. Indian Miner. 2000, 34, 33–40.
  139. Chowdhury, A.; Jha, M.K.; Chowdary, V.M. Delineation of groundwater recharge zones and identification of artificial recharge sites in West Medinipur district, West Bengal, using RS, GIS and MCDM techniques. Environ. Earth Sci. 2010, 59, 1209.
  140. Stafford, D.B. Civil Engineering Applications of Remote Sensing and Geographic Information Systems; ASCE: Reston, VA, USA, 1991.
  141. Goodchild, M.F. The state of GIS for environmental problem-solving. In Environmental Modeling with GIS; IntechOpen: London, UK, 1993; pp. 8–15.
  142. Chopra, R.; Sharma, P.K. Landform analysis and ground water potential in the Bist Doab area, Punjab, India. Int. J. Remote Sens. 1993, 14, 3221–3229.
  143. Sander, P. Water-well siting in hard-rock areas: Identifying promising targets using a probabilistic approach. Hydrogeol. J. 1997, 5, 32–43.
  144. Teeuw, R.M. Groundwater exploration using remote sensing and a low-cost geographical information system. Hydrogeol. J. 1995, 3, 21–30.
  145. Dar, I.A.; Sankar, K.; Dar, M.A. Deciphering groundwater potential zones in hard rock terrain using geospatial technology. Environ. Monit. Assess. 2011, 173, 597–610.
  146. Kumar, S.K.; Chandrasekar, N.; Seralathan, P.; Godson, P.S.; Magesh, N.S. Hydrogeochemical study of shallow carbonate aquifers, Rameswaram Island, India. Environ. Monit. Assess. 2012, 184, 4127–4138.
  147. Jankowski, P. Integrating geographical information systems and multiple criteria decision-making methods. Int. J. Geogr. Inf. Syst. 1995, 9, 251–273.
  148. Solomon, S.; Quiel, F. Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Hydrogeol. J. 2006, 14, 229–741.
  149. Prasad, R.K.; Mondal, N.C.; Banerjee, P.; Nandakumar, M.V.; Singh, V.S. Deciphering potential groundwater zone in hard rock through the application of GIS. Environ. Geol. 2008, 55, 467–475.
  150. Gustafsson, P. High Resolution Satellite Imagery and GIS as a Dynamic Tool in Groundwater Exploration in a Semi-arid Area; IAHS Publication: Wallingford, UK, 1993.
  151. Snyder, R.L.; Melo-Abreu, J.D. Frost Protection: Fundamentals, Practice and Economics; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005; Volume 1, pp. 1–240.
  152. Kramer, P.J. Water Relations of Plants; Academic Press: San Diego, CA, USA, 1983.
  153. Waring, R.H.; Schlesinger, W.H. Forest Ecosystems, Concepts and Management; Academic Press: Orlando, FL, USA, 1985.
  154. Aber, J.D.; Melillo, J.M. Terrestrial Ecosystems; Saunders College Publishing: Philadelphia, PA, USA, 1991.
  155. Blennow, K.; Lindkvist, L. Models of low temperature and high irradiance and their application to explaining the risk of seedling mortality. For. Ecol. Manag. 2000, 135, 289–301.
  156. Thornes, J.E. Road salting—An international cost/benefit review. In 8th World Salt Symposium; Geertman, R.M., Ed.; Elsevier: Amsterdam, The Netherlands; New York, NY, USA, 2000; Volume 2, pp. 787–790.
  157. Chapman, L.; Thornes, J.E.; Bradley, A.V. Modelling of road surface temperature from a geographical parameter database. Part 2: Numerical. Meteorol. Appl. 2001, 8, 421–436.
  158. Louka, P.; Papanikolaou, I.; Petropoulos, G.P.; Kalogeropoulos, K.; Stathopoulos, N. Identifying Spatially Correlated Patterns between Surface Water and Frost Risk Using EO Data and Geospatial Indices. Water 2020, 12, 700.
  159. Simões, D.D.S.; Fontana, D.C.; Vicari, M.B. Use of LST images from MODIS/AQUA sensor as an indication of frost occurrence in RS. Rev. Bras. De Eng. Agrícola E Ambient. 2015, 19, 920–925.
  160. Benali, A.; Carvalho, A.C.; Nunes, J.P.; Carvalhais, N.; Santos, A. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens. Environ. 2012, 124, 108–121.
  161. Willmott, C.J.; Robeson, S.M. Climatologically aided interpolation (CAI) of terrestrial air temperature. Int. J. Climatol. 1995, 15, 221–229.
  162. Czajkowski, K.P.; Goward, S.N.; Stadler, S.J.; Walz, A. Thermal remote sensing of near surface environmental variables: Application over the Oklahoma Mesonet. Prof. Geogr. 2000, 52, 345–357.
  163. NASA—National Aeronautics and Space Administration. Available online: (accessed on 16 March 2013).
  164. NASA—National Aeronautics and Space Administration. Available online: (accessed on 16 February 2016).
  165. Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiativetransfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852.
  166. ESA—European Space Agency. Available online: (accessed on 11 March 2020).
  167. Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE. Trans. Geosci. Remote Sens. 2006, 44, 2207–2218.
  168. Coll, C.; Caselles, V.; Valor, E.; Niclòs, R.; Sánchez, J.M.; Galve, J.M.; Mira, M. Temperature and emissivity separation from ASTER data for low spectral contrast surfaces. Remote Sens. Environ. 2007, 110, 162–175.
  169. Liu, H.; Weng, Q. Enhancing temporal resolution of satellite imagery for public health studies: A case study of West Nile Virus outbreak in Los Angeles in 2007. Remote Sens. Environ. 2012, 117, 57–71.
  170. Semmens, K.A.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; McKee, L.; Xia, T. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens. Environ. 2016, 185, 155–170.
  171. Smith, K.; Petley, D.N. Environmental Hazards: Assessing Risk and Reducing Disaster, 5th ed.; Routledge: Abingdon, UK, 2009.
  172. Maantay, J.; Maroko, A. Mapping urban risk: Flood hazards, race, and environmental justice in New York. Appl. Geogr. 2009, 29, 111–124.
  173. Smith, K. Environmental Hazards Assessing Risk and Reducing Disaster, 3rd ed.; Routledge: London, UK, 2001.
  174. Wang, Y. Using Landsat 7 TM data acquired days after a flood event to delineate the maximum flood extent on a coastal floodplain. Int. J. Remote Sens. 2004, 25, 959–974.
  175. Lekkas, E. Natural and Technological Disasters; Access Pre-Press, 2000; Available online: (accessed on 2 February 2021).
  176. Handmer, J.W. Flood hazard maps as public information: An assessment within the context of the Canadian flood damage reduction program. Can. Water Resour. J. 1980, 5, 82–110.
  177. Handmer, J.W.; Milne, J. Flood maps as public information. In Proceedings of the Floodplain Management Conference, Canberra, Australia, 7–10 May 1980; Conference Series 4. Australian Water Resources Council: Canberra, Australia; Australian Government Publishing Service: Canberra, Australia, 1981; pp. 1–26.
  178. Deekshatulu, B.L.; Lohani, B.N.; Narayan, L.R.A. Disaster warning and assessment by remote sensing. In Proceedings of the Southeast Asian Conference on Soil Engineering, Taipei, Taiwan, 19–28 May 1980; pp. 819–824.
  179. Hubert-Moy, L.; Ganzetti, I.; Bariou, R.; Mounier, J. Maps of flooded areas in Ille-et-Vilaine through remote sensing [Une cartographie des zones inondables en Ille-et-Vilaine par teledetection]. Norois 1992, 155, 337–347.
  180. Biggin, D.S.; Blyth, K. A comparison of ERS-1 satellite radar and aerial photography for river flood mapping. J. Chart. Inst. Water Environ. Manag. 1996, 10, 59–64.
  181. Webster, T.L.; Forbes, D.L.; Dickie, S.; Shreenan, R. Using topographic lidar to map flood risk from storm-surge events for Charlottetown, Prince Edward Island, Canada. Can. J. Remote Sens. 2004, 30, 64–76.
  182. Dewan, A.M.; Kumamoto, T.; Nishigaki, M. Flood hazard delineation in Greater Dhaka, Bangladesh using an integrated GIS and remote sensing approach. Geocarto Int. 2006, 21, 33–38.
  183. Knebl, M.R.; Yang, Z.L.; Hutchison, K.; Maidment, D.R. Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: A case study for the San Antonio River Basin Summer 2002 storm event. J. Environ. Manag. 2005, 75, 325–336.
  184. Stathopoulos, N.; Louka, P.; Kalogeropoulos, K.; Karymbalis, E.; Papadopoulos, A.; Chalkias, C. Flood Impact Assessment via SAR data analysis and GIS. Applications in Sperchios River Basin Greece. In Proceedings of the 2nd Conference of GIS and Spatial Analysis in Agriculture and Environment, Athens, Greece, 25–26 May 2017.
  185. Stathopoulos, N.; Kalogeropoulos, K.; Polykretis, C.; Skrimizeas, P.; Louka, P.; Karymbalis, E.; Chalkias, C. Introducing Flood Susceptibility Index Using Remote-Sensing Data and Geographic Information Systems: Empirical Analysis in Sperchios River Basin, Greece. In Remote Sensing of Hydrometeorological Hazards; Petropoulos, G., Islam, T., Eds.; CRC Press: Boca Raton, FL, USA, 2018.
  186. Stathopoulos, N.; Kalogeropoulos, K.; Dimitriou, E.; Skrimizeas, P.; Louka, P.; Papadias, V.; Chalkias, C. A Robust Remote Sensing–Spatial Modeling–Remote Sensing (R-M-R) Approach for Flood Hazard Assessment. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019; pp. 391–410.
  187. Pulvirenti, L.; Pierdicca, N.; Chini, M.; Guerriero, L. An algorithm for operational flood mapping from synthetic aperture radar (SAR) data using fuzzy logic. Nat. Hazards Earth Syst. Sci. 2011, 11, 529–540.
  188. Stancalie, G.; Craciunescu, V. Contribution of earth observation data supplied by the new satellite sensors to flood disaster assessment and hazard reduction. In Geo-information for Disaster Management; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1315–1332.
  189. Tapia-Silva, F.O.; Nuñez, J.M.; López-López, D. Using SRTM DEM, Landsat ETM+ images and a distributed rainfall-runoff model to define inundation hazard maps on urban canyons. In Proceedings of the 32nd International Symposium on Remote Sensing of Environment: Sustainable Development Through Global Earth Observations, San José, Costa Rica, 25–29 June 2007; p. 4.
  190. Skakun, S.; Kussul, N.; Shelestov, A.; Kussul, O. Flood hazard and flood risk assessment using a time series of satellite images: A case study in Namibia. Risk Anal. 2014, 34, 1521–1537.
  191. Pelletier, J.D.; Mayer, L.; Pearthree, P.A.; House, P.K.; Demsey, K.A.; Klawon, J.E.; Vincent, K.R. An integrated approach to flood hazard assessment on alluvial fans using numerical modeling, field mapping, and remote sensing. Bull. Geol. Soc. Am. 2005, 117, 1167–1180.
  192. Rozalis, S.; Morin, E.; Yair, Y.; Price, C. Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. J. Hydrol. 2010, 394, 245–255.
  193. Kourgialas, N.N.; Karatzas, G.P.; Nikolaidis, N.P. An integrated framework for the hydrologic simulation of a complex geomorphological river basin. J. Hydrol. 2010, 381, 308–321.
  194. Fugura, A.A.; Billa, L.; Pradhan, B.; Mohamed, T.A.; Rawashdeh, S. Coupling of hydrodynamic modeling and aerial photogrammetry-derived digital surface model for flood simulation scenarios using GIS: Kuala Lumpur flood, Malaysia. Disaster Adv. 2011, 4, 20–28.
  195. Paiva, R.C.D.; Collischonn, W.; Buarque, D.C. Validation of a full hydrodynamic model for large-scale hydrologic modelling in the Amazon. Hydrol. Process. 2013, 27, 333–346.
  196. Fortin, J.; Turcotte, R.; Massicotte, S.; Moussa, R.; Fitzback, J.; Villeneuve, J. Distributed watershed model compatible with remote sensing and GIS data I: Description of model. J. Hydrol. Eng. 2001, 6, 91–99.
  197. Lacroix, M.P.; Martz, L.W.; Kite, G.W.; Garbrecht, J. Using digital terrain analysis modeling techniques for the parameterization of a hydrologic model. Environ. Model. Softw. 2002, 17, 27–136.
  198. Thorne, R.; Woo, M. Efficacy of a hydrologic model in simulating discharge from a large mountainous catchment. J. Hydrol. 2006, 330, 301–312.
  199. Neitsch, S.L.; Arnold, A.G.; Kiniry, J.R.; Srinivasan, J.R.; Williams, J.R. Soil and Water Assessment Tool User’s Manual: Version 2000; TR-192; Texas Water Resources Institute: College Station, TX, USA, 2002.
  200. Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430.
  201. Kalogeropoulos, K.; Chalkias, C.; Pissias, E.; Karalis, S. Application of the SWAT model for the investigation of reservoirs creation. In Advances in the Research of Aquatic Environment; Lambrakis, N., Stournaras, G., Katsanou, K., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2011; Volume II, pp. 71–79.
  202. Pissias, E.; Psarogiannis, A.; Kalogeropoulos, K. Water savings-a necessity in a changing environment. The case of small reservoirs. In Proceedings of the WIN4life Conference, Tinos, Greece, 19–21 September 2013.
  203. Kalogeropoulos, K.; Chalkias, C. Modelling the impacts of climate change on surface runoff in small Mediterranean catchments: Empirical evidence from Greece. Water Environ. J. 2013, 27, 505–513.
  204. Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modeling. Hydrol. Process. 2005, 19, 563–572.
  205. Amengual, A.; Romero, R.; Gomez, M.; Martin, A.; Alonso, S. A Hydrometeorological Modeling Study of a Flash-Flood Event over Catalonia, Spain. J. Hydrometeorol. 2007, 8, 282–303.
  206. McColl, C.; Aggett, G. Land-use forecasting and hydrologic model integration for improved land-use decision support. J. Environ. Manag. 2007, 84, 494–512.
  207. Gul, G.O.; Harmancioglu, N.; Gul, A. A combined hydrologic and hydraulic modeling approach for testing efficiency of structural flood control measures. Nat. Hazards 2010, 54, 245–260.
  208. Popescu, I.; Jonoski, A.; Van Andel, S.J.; Onyari, E.; Moya Quiroga, V.G. Integrated modelling for flood risk mitigation in Romania: Case study of the Timis–Bega river basin. River Basin Manag. 2010, 8, 269–280.
  209. Choudhari, K.; Panigrahi, B.; Chandra, J.P. Simulation of rainfall-runoff process using HEC-HMS model for Balijore Nala watershed, Odisha, India. Int. J. Geomat. Geosci. 2014, 5, 253–265.
  210. Mendes, J.; Maia, R. Hydrologic Modelling Calibration for Operational Flood Forecasting. Water Resour. Manag. 2016, 30, 5671–5685.
  211. Al-Zahrani, Μ.; Al-Areeq, Α.; Sharif, Η.Ο. Estimating urban flooding potential near the outlet of an arid catchment in Saudi Arabia. Geomat. Nat. Hazards Risk 2017, 8, 672–688.
  212. Jia, Y.; Wang, H.; Zhou, Z.; Qiu, Y.; Luo, X.; Wang, J.; Yan, D.; Qin, D. Development of the WEP-L distributed hydrological model and dynamic assessment of water resources in the Yellow River basin. J. Hydrol. 2006, 331, 606–629.
  213. Ranaee, Ε.; Mahmoodian, Μ.; Quchani, S.R. The Combination of HEC-Geo-HMS, HEC-HMS and MIKE11 Software Utilize in a Two Branches River Flood Routing Modeling. In Proceedings of the Second International Conference on Environmental and Computer Science, Dubai, United Arab Emirates, 28–30 December 2009; pp. 317–321.
  214. Van der Knijff, J.M.; Younis, J.; De Roo, A.P.J. LISFLOOD: A GIS-based distributed model for river basin scale water balance and flood simulation. Int. J. Geogr. Inf. Sci. 2010, 24, 189–212.
  215. Weng, Q. Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS. Environ. Manag. 2001, 28, 737–748.
  216. Stamellou, E.; Kalogeropoulos, K.; Stathopoulos, N.; Chalkias, C.; Katsafados, P. Flood Assessment via analytical Hierarchy model, GIS & Cellular Automata. In Proceedings of the 11th International Hydrogeological Congress of Greece, Athens, Greece, 4–6 October 2017.
  217. Melesse, A.M.; Graham, W.D. Storm runoff prediction based on a spatially distributed travel time method utilizing remote sensing and GIS. J. Am. Water Resour. Assoc. 2004, 40, 863–879.
  218. Olivera, F.; Valenzuela, M.; Srinivasan, R.; Choi, J.; Cho, H.; Koka, S.; Agrawal, A. ArcGIS-SWAT: A geodata model and GIS interface for SWAT. J. Am. Water Resour. Asoc. 2006, 42, 295–309.
  219. Wolski, P.; Savenije, H.H.G.; Murray-Hudson, M.; Gumbricht, T. Modelling of the flooding in the Okavango Delta, Botswana, using a hybrid reservoir-GIS model. J. Hydrol. 2006, 331, 58–72.
  220. Pradhan, B. Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J. Spat. Hydrol. 2009, 9, 1–18.
  221. Chen, J.; Hill, A.A.; Urbano, L.D. A GIS-based model for urban flood inundation. J. Hydrol. 2009, 373, 184–192.
  222. Du, J.; Xie, H.; Hu, Y.; Xu, Y.; Xu, C.Y. Development and testing of a new storm runoff routing approach based on time variant spatially distributed travel time method. J. Hydrol. 2009; 369, 44–54.
  223. Lei, X.; Wang, Y.; Liao, W.; Jiang, Y.; Tian, Y.; Wang, H. Development of efficient and cost-effective distributed hydrological modeling tool MWEasyDHM based on opensource MapWindow GIS. Comput. Geosci. 2011, 37, 1476–1489.
  224. Sarhadi, A.; Soltani, S.; Modarres, R. Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis. J. Hydrol. 2012, 458–459, 68–86.
  225. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J. Hydrol. 2013, 504, 69–79.
  226. Gioti, E.; Riga, C.; Kalogeropoulos, K.; Chalkias, C. A GIS-based flash flood runoff model using high resolution DEM and meteorological data. EARSeL eProceedings 2013, 12, 33–43.
  227. Kalogeropoulos, K.; Karalis, S.; Karymbalis, E.; Chalkias, C.; Chalkias, G.; Katsafados, P. Modeling Flash Floods in Vouraikos River Mouth, Greece. In Proceedings of the MEDCOAST Conference Proceedings 2013, Marmaris, Turkey, 30 October–3 November 2013; Volume II, pp. 1135–1146.
  228. Kalogeropoulos, K.; Stathopoulos, N.; Psarogiannis, A.; Penteris, D.; Tsiakos, C.; Karagiannopoulou, A.; Krikigianni, E.; Karymbalis, E.; Chalkias, C. A GIS-based method for flood risk assessment. In Proceedings of the European Geosciences Union General Assembly 2016, Vienna, Austria, 17–22 April 2016.
  229. Chalkias, C.; Stathopoulos, N.; Kalogeropoulos, K.; Karymbalis, E. Applied Hydrological Modeling with the Use of Geoinformatics: Theory and Practice. In Empirical Modeling and Its Applications; Mamun, H.M., Ed.; InTech: Rijeka, Croatia, 2016; pp. 61–86.
  230. Kalogeropoulos, K.; Stathopoulos, N.; Psarogiannis, A.; Pissias, E.; Louka, P.; Petropoulos, G.P.; Chalkias, C. An Integrated GIS-Hydro Modeling Methodology for Surface Runoff Exploitation via Small-Scale Reservoirs. Water 2020, 12, 3182.
  231. Formetta, G.; Antonello, A.; Franceschi, S.; David, O.; Rigon, R. Hydrological modeling with components: A GIS-based open-source framework. Environ. Model. Softw. 2014, 55, 190–200.
  232. Mahmoud, S.H. Investigation of rainfall-runoff modeling for Egypt by using remote sensing and GIS integration. Catena 2014, 120, 111–121.
  233. Tsanakas, K.; Gaki-Papanastassiou, K.; Kalogeropoulos, K.; Chalkias, C.; Katsafados, P.; Karymbalis, E. Investigation of flash flood natural causes of Xirolaki Torrent, Northern Greece based on GIS modeling and geomorphological analysis. Nat. Hazards 2016, 84, 1015–1033.
  234. Dawson, C.W.; Wilby, R. Hydrological modeling using artificial neural networks. Prog. Phys. Geogr. 2001, 25, 80–108.
  235. Kia, M.B.; Pirasteh, S.; Pradhan, B.; Mahmud, A.R.; Sulaiman, W.N.A.; Moradi, A. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ. Earth Sci. 2012, 67, 251–264.
  236. Mukerji, A.; Chatterjee, C.; Raghuwanshi, N.S. Flood Forecasting Using ANN, Neuro-Fuzzy, and Neuro-GA Models. J. Hydrol. Eng. 2009, 14, 647–652.
  237. Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 2014, 512, 332–343.
  238. Ablain, M.; Cazenave, A.; Larnicol, G.; Balmaseda, M.; Cipollini, P.; Faugère, Y.; Andersen, O. Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project. Ocean. Sci 2015, 11, 67–82.
  239. Muhs, D.R.; Wehmiller, J.F.; Simmons, K.R.; York, L.L. Quaternary sea-level history of the United States. Dev. Quat. Sci. 2003, 1, 147–183.
  240. Bindoff, N.L.; Willebrand, J.; Artale, V.; Cazenave, A.; Gregory, J.; Gulev, S.; Hanawa, K.; Le Quéré, C.; Levitus, S.; Nojiri, Y.; et al. Section 5.5.1: Introductory Remarks. In Climate Change 2007: The Physical Science Basis, 2007 ed.; Chapter 5; Observations: Ocean Climate Change and Sea, Level; WHO: Geneva, Switzerland; UNEP: Nairobi, Kenya, 2007.
  241. IPCC. Global Warming of 1.5°C; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Eds.; An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; IPCC: Geneva, Switzerland, 2018.
  242. Mengel, M.; Levermann, A.; Frieler, K.; Robinson, A.; Marzeion, B.; Winkelmann, R. Future sea level rise constrained by observations and long-term commitment. Proc. Natl. Acad. Sci. USA 2016, 113, 2597–2602.
  243. Rovere, A.; Stocchi, P.; Vacchi, M. Eustatic and Relative Sea Level Changes. Curr. Clim. Chang. Rep. 2016, 2, 4.
  244. Douglas, B.C. Global sea rise: A redetermination. Surv. Geophys. 1997, 18, 279–292.
  245. Jevrejeva, S.; Grinsted, A.; Moore, J.C.; Holgate, S. Nonlinear trends and multi-year cycle in sea level records. J. Geophys. Res. 2006.
  246. Jevrejeva, S.; Moore, J.C.; Grinsted, A.; Matthews, A.P.; Spada, G. Trends and acceleration in global and regional sea levels since 1807. Glob. Planet. Chang. 2014.
  247. Church, J.A.; White, N.J. A twentieth century acceleration in global Sea-level rise. Geophys. Res. Lett. 2006, 33, L01602.
  248. Church, J.A.; White, N.J. Sea-level rise from the late ninenteenth to the early twenty-first century. Surv. Geophys. 2011, 32, 585–602.
  249. Hay, C.C.; Morrow, E.; Kopp, R.E.; Mitrovica, J.X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 2015, 517, 481–484.
  250. Wöppelmann, G.; Marcos, M. Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys. 2016, 54, 64–92.
  251. Cipollini, P.; Calafat, F.M.; Jevrejeva, S.; Melet, A.; Prandi, P. Monitoring sea level in the coastal zone with satellite altimetry and tide gauges. Surv. Geophys. 2016, 32, 585–602.
More
ScholarVision Creations