Apple Cider Sensory: Comparison
Please note this is a comparison between Version 2 by Camila Xu and Version 1 by Paul Cristian Calugar.

Apple cider and pear cider are defined as alcoholic beverages with an alcohol content between 1.2% and 8.5% (low-alcohol cider may have less than 1.2%) obtained by partial or complete fermentation of juice (fresh or reconstituted), with or without the addition of sugar, water or flavouring.

  • apple cider
  • fermentation
  • volatile compounds
  • sensory profile
Please wait, diff process is still running!

References

  1. European Cider and Fruit Wine Association. 2018. Available online: (accessed on 15 January 2021).
  2. Buglass, A.J. Cider and Perry. In Handbook of Alcoholic Beverages: Technical, Analytical and Nutritional Aspects; John Wiley & Sons Ltd.: Chichester, UK, 2011.
  3. Mitchell, P. Out of the Orchard, into the Glass: An Appreciation of Cider and Perry; National Association of Cider Makers and Mitchell F & D Limited: Newent, UK, 2006.
  4. Rodríguez, M.E.; Pérez-Través, L.; Sangorrín, M.P.; Barrio, E.; Querol, A.; Lopes, C.A. Saccharomyces uvarum is responsible for the traditional fermentation of apple chicha in Patagonia. FEMS Yeast Res. 2017, 17, fow109.
  5. Rana, T.S.; Datt, B.; Rao, R.R. Soor: A traditional alcoholic beverage in Tons Valley, Garhwal Himalaya. Indian J. Tradit. Knowl. 2004, 3, 59–65.
  6. Sekar, S.; Mariappan, S. Usage of traditional fermented products by Indian rural folks and IPR. Indian J. Tradit. Knowl. 2007, 6, 111–120.
  7. Merwin, I.A.; Valois, S.; Padilla-Zakour, O.I. Cider Apples and Cider-Making Techniques in Europe and North America; John Wiley & Sons Ltd.: Chichester, UK, 2008; Volume 34.
  8. Langley, M.; Jenkin, E. Westons Cider Report, 4th ed.; Technical Report for Weston’s Cider; Weston’s Cider: Herefordshire, UK, 2019.
  9. The European Cider & Fruit Wine Associaton. European Cider Trends; The European Cider & Fruit Wine Associaton: Brussels, Belgium, 2019.
  10. Bedriñana, R.P.; Lobo, A.P.; Madrera, R.R.; Valles, B.S. Characteristics of ice juices and ciders made by cryo-extraction with different cider apple varieties and yeast strains. Food Chem. 2020, 310, 1–36.
  11. Berber, V. Young People’s Beliefs about the Health Effects of Different Alcoholic Beverages: An Exploratory Comparison of the UK and France; Kingston University London: London, UK, 2016.
  12. Joshi, V.K.; Sharma, S.; Thakur, A.D. 13-Wines: White, red, sparkling, fortified, and cider. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Sanromán, M.Á., Du, G., Soccol, C.R., Dussap, C.-G., Eds.; Elsevier: Cham, Switzerland, 2017; pp. 353–406.
  13. Hammel, K.; Arnold, T. Understanding the loss of traditional agricultural systems: A case study of orchard meadows in Germany. J. Agric. Food Syst. Community Dev. 2012, 2, 119–136.
  14. León-Muñoz, L.M.; Galán, I.; Donado-Campos, J.; Sánchez-Alonso, F.; López-García, E.; Valencia-Martín, J.L.; Guallar-Castillón, P.; Rodríguez-Artalejo, F. Patterns of alcohol consumption in the older population of Spain, 2008–2010. J. Acad. Nutr. Diet. 2015, 115, 213–224.
  15. Włodarska, K.; Pawlak-Lemańska, K.; Górecki, T.; Sikorska, E. Classification of commercial apple juices based on multivariate analysis of their chemical profiles. Int. J. Food Prop. 2017, 20, 1773–1785.
  16. Laaksonen, O.; Kuldjärv, R.; Paalme, T.; Virkki, M.; Yang, B. Impact of apple cultivar, ripening stage, fermentation type and yeast strain on phenolic composition of apple ciders. Food Chem. 2017, 233, 29–37.
  17. Wei, K.; Ma, C.; Sun, K.; Liu, Q.; Zhao, N.; Sun, Y.; Tu, K.; Pan, L. Relationship between optical properties and soluble sugar contents of apple flesh during storage. Postharvest Biol. Technol. 2020, 159, 1–9.
  18. Harker, F.R.; Amos, R.L.; Echeverría, G.; Gunson, F.A. Influence of texture on taste: Insights gained during studies of hardness, juiciness, and sweetness of apple fruit. J. Food Sci. 2006, 71, 77–82.
  19. Planchon, V.; Lateur, M.; Dupont, P.; Lognay, G. Ascorbic acid level of Belgian apple genetic resources. Sci. Hortic. 2004, 100, 51–61.
  20. Camporro, A.; Díaz, M.B. Elaboración de sidras con manzanas gallegas de producción ecológica. In Proceedings of the IV Congreso Internacional de Agroecoloxía e Agricultura Ecolóxica, Vigo, Spain, 21–23 June 2012.
  21. Danbrew, K.J. Cider Production in England and France and Denmark? Brygmesteren 2000, 4, 1–15.
  22. Nybom, H.; Spoor, T.; Sehic, J.; Ekholm, A.; Rumpunen, K.; Tahir, I. Growing English and French cider apple cultivars in Sweden. Acta Hortic. 2020, 1281, 9–14.
  23. Al Daccache, M.; Koubaa, M.; Maroun, R.G.; Salameh, D.; Louka, N.; Vorobiev, E. Suitability of the Lebanese “Ace Spur” apple variety for cider production using Hanseniaspora sp. yeast. Fermentation 2020, 6, 32.
  24. Valois, S.; Merwin, I.A.; Padilla-Zakour, O.I. Characterization of fermented cider apple varieties grown in Upstate New York. J. Am. Pom. Soc. 2006, 60, 113–128.
  25. Ewing, B.L.; Peck, G.M.; Ma, S. Management of apple maturity and postharvest storage conditions to increase polyphenols in cider. HortScience 2019, 54, 143–148.
  26. Sanoner, P.; Guyot, S.; Marnet, N.; Molle, D.; Drilleau, J.-F. Polyphenol profiles of French cider apple varieties (Malus domestica sp.). J. Agric. Food Chem. 1999, 47, 4847–4853.
  27. Keller, S.E.; Chirtel, S.J.; Merker, R.I.; Taylor, K.T.; Tan, H.L.; Miller, A.J. Influence of fruit variety, harvest technique, quality sorting, and storage on the native microflora of unpasteurized apple cider. J. Food Prot. 2004, 67, 2240–2247.
  28. Villière, A.; Arvisenet, G.; Bauduin, R.; Le Quéré, J.-M.; Sérot, T. Influence of cider-making process parameters on the odourant volatile composition of hard ciders. J. Inst. Brew. 2015, 121, 95–105.
  29. Girschik, L.; Jones, J.E.; Kerslake, F.L.; Robertson, M.; Dambergs, R.G.; Swarts, N.D. Apple variety and maturity profiling of base ciders using UV spectroscopy. Food Chem. 2017, 228, 323–329.
  30. Way, M.L.; Jones, J.E.; Swarts, N.D.; Da Bergs, R.G. Phenolic content of apple juice for cider making as influenced by common pre-fermentation processes using two analytical methods. Beverages 2019, 5, 53.
  31. Lea, A. Craft Cider Making, 3rd ed.; The Crowood Press Ltd.: Ramsbury, UK, 2015.
  32. Zielinski, A.A.F.; Braga, C.M.; Demiate, I.M.; Beltrame, F.L.; Nogueira, A.; Wosiacki, G. Development and optimization of a HPLC-RI method for the determination of major sugars in apple juice and evaluation of the effect of the ripening stage. Food Sci. Technol. 2014, 34, 38–43.
  33. Ye, M.; Yue, T.; Yuan, Y. Evolution of polyphenols and organic acids during the fermentation of apple cider. J. Sci. Food Agric. 2014, 94, 2951–2957.
  34. Alberti, A.; Machado dos Santos, T.P.; Ferreira Zielinski, A.A.; Eleuterio dos Santos, C.M.; Braga, C.M.; Demiate, I.M.; Nogueira, A. Impact on chemical profile in apple juice and cider made from unripe, ripe and senescent dessert varieties. LWT Food Sci. Technol. 2016, 65, 436–443.
  35. Schmid, T.; Baumann, B.; Himmelsbach, M.; Kampfl, C.W.; Buchberger, W. Analysis of saccharides in beverages by HPLC with direct UV detection. Anal. Bioanal. Chem. 2016, 408, 1871–1878.
  36. Lea, A.G.H.; Piggott, J.R. Fermented Beverage Production, 2nd ed.; Springer Science+Business Media: New York, NY, USA, 2003.
  37. Carrín, M.E.; Ceci, L.N.; Lozano, J.E. Characterization of starch in apple juice and its degradation by amylases. Food Chem. 2004, 87, 173–178.
  38. Ramos-Aguilar, A.L.; Victoria-Campos, C.I.; Ochoa-Reyes, E.; de Jesús Ornelas-Paz, J.; Zamudio-Flores, P.B.; Rios-Velasco, C.; Reyes-Hernández, J.; Pérez-Martínez, J.; Ibarra-Junquera, V. Physicochemical properties of apple juice during sequential steps of the industrial processing and functional properties of pectin fractions from the generated pomace. LWT Food Sci. Technol. 2017, 86, 465–472.
  39. Abel, E.S.; Aidoo, K.E. A comparative study of the nutritional quality of freshly extracted juices from organic versus conventional orange and apple fruits. EC Nutr. 2016, 4, 945–959.
  40. Ma, S.; Nielson, A.P.; Lahne, J.; Peck, G.M.; O’Keefe, S.F.; Stewart, A.C. Free amino acid composition of apple juices with potential for cider making as determined by UPLC-PDA. J. Inst. Brew. 2018, 124, 467–476.
  41. Boudreau, T.F.; Peck, G.M.; O’Keefe, S.F.; Stewart, A.C. Free amino nitrogen concentration correlates to total yeast assimilable nitrogen concentration in apple juice. Food Sci. Nutr. 2017, 6, 119–123.
  42. Karl, A.D.; Brown, M.G.; Ma, S.; Sandbrook, A.; Stewart, A.C.; Cheng, L.; Mansfield, A.K.; Peck, G.M. Foliar urea applications increase yeast assimilable nitrogen concentration and alcoholic fermentation rate in ‘Red Spy’ apples used for cider production. HortScience 2020, 55, 1356–1364.
  43. Song, Y.; Gibney, P.; Cheng, L.; Liu, S.; Peck, G. Yeast Assimilable Nitrogen Concentrations Influence Yeast Gene Expression and Hydrogen Sulfide Production During Cider Fermentation. Front. Microbiol. 2020, 11, 1264.
  44. Alberti, A.; Vieira, R.G.; Dirlleau, J.F.; Wosiacki, G.; Nogueira, A. Apple wine processing with different nitrogen contents. Braz. Arch. Biol. Technol. 2011, 54, 551–558.
  45. Karl, A.D. Apple Orchard Management for Hard Cider Production: Influence of Nitrogen Fertilization and Carbohydrate Availability on Tannin Synthesis, Yeast Assimilable Nitrogen, and Fermentation Kinetics. Ph.D. Thesis, Cornell University, New York, NY, USA, 2020.
  46. Torrea, D.; Varela, C.; Ugliano, M.; Ancin-Azpilicueta, C.; Francis, I.L.; Henschke, P.A. Comparison of inorganic and organic nitrogen supplementation of grape juice—Effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast. Food Chem. 2011, 127, 1072–1083.
  47. Tahim, C.M.; Mansfield, A.K. Yeast assimilable nitrogen (YAN) optimization for cool-climate Riesling. Am. J. Enol. Vitic. 2018, 70, 127–138.
  48. Cline, J.A.; Plotkowski, D.; Beneff, A. Juice attributes of Ontario-grown culinary (dessert) apples for cider. Can. J. Plant Sci. 2021.
  49. Guiné, R.P.F.; Barroca, M.J.; Coldea, T.E.; Bartkiene, E.; Anjos, O. Apple fermented products: An overview of technology, properties and health effects. Processes 2021, 9, 223.
  50. Vilela, A. Sensory and volatile flavor analysis of beverages. Foods 2021, 10, 177.
  51. Fuertes, M.C.; Diaz-Hernandez, M.B.; Carcia-Rubio, J.C. El cultivo del manzano en Asturias. Serv. Publ. Astur. 1996, 1–223.
  52. Boré, J.M.; Fleckinger, J. Pommiers à cidre. Variétés de France; Inra-Quae: Versailles Cedex, France, 1997.
  53. Dunn, D.; Awdey, G.; McGonegal, C. Cider Style Guidelines; BJCP: St. Louis Park, MN, USA, 2015.
  54. Copas, L. A Somerset Pomona: The Cider Apples of Somerset, 1st ed.; The Dovecote Press Ltd.: Stanbridge, UK, 2001.
  55. Christensen, H.B.; Granby, K. Method validation for strobilurin fungicides in cereals and fruit. Food Addit. Contam. 2001, 10, 866–874.
  56. Navarro, S.; Barba, A.; Navarro, G.; Vela, N.; Oliva, J. Multiresidue method for the rapid determination—In grape, must and wine—Of fungicides frequently used on vineyards. J. Chromatogr. A 2000, 882, 221–229.
  57. Jin, B.; Xie, L.; Guo, Y.; Pang, G. Multi-residue detection of pesticides in juice and fruit wine: A review of extraction and detection methods. Food Res. Int. 2012, 46, 399–409.
  58. Vysini, E.; Dunwell, J.; Froud-Williams, B.; Hadley, P.; Hatcher, P.; Ordidge, M.; Shaw, M.; Battey, N. Sustainable Cider Apple Production; University of Reading: Reading, UK, 2011.
  59. Wojdyło, A.; Oszmiański, J. Antioxidant Activity Modulated by Polyphenol Contents in Apple and Leaves during Fruit Development and Ripening. Antioxidants 2020, 9, 567.
  60. Bedriñana, R.P.; Querol, S.A.; Suárez, V.B. Genetic and phenotypic diversity of autochthonous cider yeasts in a cellar from Asturias. Food Microbiol. 2010, 27, 503–508.
  61. Morrissey, W.F.; Davenport, B.; Querol, A.; Dobson, A.D.W. The role of indigenous yeasts in traditional Irish cider fermentations. J. Appl. Microbiol. 2004, 97, 647–655.
  62. Graça, A.; Santo, D.; Esteves, E.; Nunes, C.; Abadias, M.; Quintas, C. Evaluation of microbial quality and yeast diversity in fresh-cut apple. Food Microbiol. 2015, 51, 179–185.
  63. Cousin, F.J.; Le Guellec, R.; Schulusselhuber, M.; Dalmasso, M.; Laplace, J.-M.; Cretenet, M. Microorganisms in fermented apple beverages: Current knowledge and future directions. Microorganisms 2017, 5, 39.
  64. Del Campo, G.; Santos, J.L.; Berregi, I.; Velasco, S.; Ibarburu, I.; Duenãs, M.T.; Irastorza, A. Ciders produced by two types of presses and fermented in stainless steel and wooden vats. J. Inst. Brew. 2003, 109, 342–348.
  65. Garcia, L.; Henderson, J.; Fabri, M.; Oke, M. Potential sources of microbial contamination in unpasteurized apple cider. J. Food Prot. 2006, 69, 137–144.
  66. Gomes, T.A.; Filho, M.R.S.; Zielinski, A.A.F.; Pietrowski, G.A.M.; Nogueira, A. Microbial levels in apple must and their association with fruit selection, washing and sanitization. J. Food Saf. 2014, 34, 141–149.
  67. Jarvis, B.; LEA, A.G.H. Sulphite binding in ciders. Int. J. Food Sci. Technol. 2000, 35, 113–127.
  68. Morgan, S.C.; Haggerty, J.J.; Johnston, B.; Jiranek, V.; Durall, D.M. Response to sulfur dioxide addition by two commercial Saccharomyces cerevisiae strains. Fermentation 2019, 5, 69.
  69. Nogueira, A.; Wosiacki, G. Apple Cider Fermentation. In Handbook of Plant-Based Fermented Food and Beverage Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 209–235.
  70. Joshi, K.; Mahendran, R.; Alagusundaram, K.; Norton, T.; Tiwari, B.K. Novel disinfectants for fresh produce. Trends Food Sci. Tech. 2013, 34, 54–61.
  71. Artés, F.; Gómez, P.; Aguayo, E.; Escalona, V.; Artés-Hernández, F. Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biol. Technol. 2009, 51, 287–296.
  72. Jackson, L.S.; Becham-Bowden, T.; Keller, S.E.; Adhikari, C.; Taylor, K.T.; Chirtel, S.J.; Merker, R.I. Apple quality, storage, and washing treatments affect patulin levels in apple cider. J. Food Prot. 2003, 66, 618–624.
  73. Pretorius, I.S. Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 2000, 16, 675–729.
  74. Pernica, M.; Martiník, J.; Boško, R.; Zušťáková, V.; Benešová, K.; Běláková, S. Determination of patulin and hydroxymethylfurfural in beverages by UPLC-PDA. World Mycotoxin J. 2021, 14, 41–48.
  75. Nadai, C.; Lemos Junior, W.J.F.; Favaron, F.; Giacomini, A.; Corich, V. Biocontrol activity of Starmerella bacillaris yeast against blue mold disease on apple fruit and its effect on cider fermentation. PLoS ONE 2018, 13, e0204350.
  76. Valles, B.S.; Bedriñana, R.P.; Tascón, N.F.; Simón, A.Q.; Madrera, R.R. Yeast species associated with the spontaneous fermentation of cider. Food Microbiol. 2007, 24, 25–31.
  77. Varela, C. The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl. Microbiol. Biotechnol. 2016, 100, 9861–9874.
  78. Ye, M.; Yue, T.; Yuan, Y. Effects of sequential mixed cultures of Wickerhamomyces anomalus and Saccharomyces cerevisiae on apple cider fermentation. FEMS Yeast Res. 2014, 14, 873–882.
  79. Lorenzini, M.; Simonato, B.; Slaghenaufi, D.; Ugliano, M.; Zapparoli, G. Assessment of yeasts for apple juice fermentation and production of cider volatile compounds. LWT Food Sci. Technol. 2019, 99, 224–230.
  80. Capozzi, V.; Fragasso, M.; Romaniello, R.; Berbegal, C.; Russo, P.; Spano, G. Spontaneous food fermentations and potential risks for human health. Fermentation 2017, 3, 49.
  81. Mihajlovic, B.; Dixon, B.; Couture, H.; Farber, J. Qualitative microbiological risk assessment of unpasteurized fruit juice and cider. Int. Food Risk Anal. J. 2013, 3.
  82. Wang, H.; Hu, Z.; Long, F.; Guo, C.; Niu, C.; Yuan, Y.; Yue, T. Combined effect of sugar content and pH on the growth of a wild strain of Zygosaccharomyces rouxii and time for spoilage in concentrated apple juice. Food Control 2016, 59, 298–305.
  83. Steensels, J.; Verstrepen, K.J. Taming wild yeast: Potential of conventional and nonconventional yeasts in industrial fermentations. Annu. Rev. Microbiol. 2014, 68, 61–80.
  84. Sukhvir, S.; Kocher, G.S. Development of apple wine from Golden Delicious cultivar using a local yeast isolate. J. Food Sci. Technol. 2019, 56, 2959–2969.
  85. Sánchez, A.; de Revel, G.; Antalick, G.; Herrero, M.; García, L.A.; Díaz, M. Influence of controlled inoculation of malolactic fermentation on the sensory properties of industrial cider. J. Ind. Microbiol. Biotechnol. 2014, 41, 853–867.
  86. Morgan, P.; Foss, C.; Jane, T.; McKay, M. Course Notes for Winemaking Module PW203 for BSc Viticulture and Oenology, and Summer Winemaking; Plumpton College: Ditchling, UK, 2006.
  87. Purves, W.K.; Sadava, D.; Orians, G.H.; Heller, H.C. Life, the Science of Biology, 6th ed.; W.H.Freeman & Co Ltd.: London, UK, 2001.
  88. Jackosn, R.S. Wine Science: Principles, Practice, Perception, 2nd ed.; Academic Press: Cambridge, MA, USA; Elsevier: New York, NY, USA, 2000.
  89. Boulton, C.; Quain, D. Brewing Yeast and Fermentation; Wiley-Blackwell: Hoboken, NJ, USA, 2006.
  90. Zhang, D.; Lovitt, R.W. Strategies for enhanced malolactic fermentation in wine and cider maturation. J. Chem. Technol. Biotechnol. 2006, 81, 1130–1140.
  91. Jarvis, B.; Forster, M.J.; Kinsella, W.P. Factors influencing the flavour of cider: The effect of fermentation treatments on fusel oil production. J. Appl. Microbiol. 1966, 29, 253–259.
  92. Herrero, M.; García, L.A.; Díaz, M. Volatile compounds in cider: Inoculation time and fermentation temperature effects. J. Inst. Brew. 2012, 112, 210–214.
  93. Villar, A.; Vadillo, J.; Santos, J.I.; Gorritxategi, E.; Mabe, J.; Arnaiz, A.; Fernández, L.A. Cider fermentation process monitoring by Vis-NIR sensor system and chemometrics. Food Chem. 2017, 221, 100–106.
  94. Hatzakis, E. Nuclear magnetic resonance (NMR) spectroscopy in food science: A comprehensive review. Compr. Rev. Food Sci. F. 2018, 18, 189–220.
  95. Cosano, E.; Simonato, B.; Consonni, R. Fermentation process of apple juice investigated by NMR spectroscopy. LWT Food Sci. Technol. 2018, 96, 147–151.
  96. Llorente, D.D.; Abrodo, P.A.; González-Álvarez, J.; de la Fuente, E.D.; Alonso, J.J.M.; Álvarez, M.D.G.; Gomis, D.B. A New Analytical Method to Volatile Compounds in Cider Apples: Application to Evaluate the Starch Index. Food Bioprocess. Technol. 2013, 6, 2447–2454.
  97. Kourkoutas, Y.; Manojlović, V.; Nedović, V.A. Immobilization of microbial cells for alcoholic and malolactic fermentation of wine and cider. Encapsulation Technol. Act. Food Ingred. Food Process. 2010, 1, 327–343.
  98. Kourkoutas, Y.; Bekatorou, A.; Banat, I.M.; Marchant, R.; Koutinas, A.A. Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiol. 2004, 21, 377–397.
  99. Boudreau, T.F.; Peck, G.M.; O’Keefe, S.; Stewart, A.C. The interactive effect of fungicide residues and yeast assimilable nitrogen on fermentation kinetics and hydrogen sulfide production during cider fermentation. J. Sci. Food Agric. 2016, 97, 693–704.
  100. Boudreau, T.F.; Peck, G.M.; Ma, S.; Patrick, N.; Duncan, S.; O’Keefe, S.; Stewart, A.C. Hydrogen sulphide production during cider fermentation is moderated by pre-fermentation methionine addition. J. Inst. Brew. 2017, 123, 553–561.
  101. Liu, Y.; Chen, Y.-R.; Kim, M.S.; Chan, D.E.; Lefcourt, A.M. Development of simple algorithms for the detection of fecal contaminants on apples from visible/near infrared hyperspectral reflectance imaging. J. Food Eng. 2007, 81, 412–418.
  102. Simonato, B.; Lorenzini, M.; Zapparoli, G. Effects of post-harvest fungal infection of apples on chemical characteristics of cider. LWT Food Sci. Technol. 2021, 138.
  103. Han, Y.; Dong, F.; Xu, J.; Liu, X.; Li, X.; Kong, Z.; Liang, X.; Liu, N.; Zheng, Y. Residue change of pyridaben in apple samples during apple cider processing. Food Control 2014, 34, 240–244.
More