Total parenteral nutrition (TPN): Comparison
Please note this is a comparison between Version 2 by Conner Chen and Version 1 by Gregory Guthrie.

Total parenteral nutrition (TPN) was first established as a life-saving approach for nutritional support in infants in 1968. Originally, the solution contained only dextrose, amino acids, minerals, and vitamins, as there were no suitable lipid solutions. To overcome this limitation, plasma was given to provide essential fatty acids. However, high carbohydrate administration during TPN can increase hepatic de novo lipogenesis and may predispose individuals to hyperglycemia, so the initial formulations were not ideal. Lipid emulsions were created to supply the necessary essential fatty acids to prevent essential fatty acid deficiency (EFAD) and to the meet energy and growth needs. While the provision of TPN containing lipid emulsions has successfully reduced the overall mortality of premature infants and infants that are intractable to enteral feeding, there have been a number of diseases that have arisen from its use. Despite line infections and sepsis being the most common issues with TPN, more complex diseases can arise during TPN use. Cholestatic liver disease historically has been among the common TPN related morbidities in infants.

  • soybean oil
  • fish oil
  • medium chain triglycerides
Please wait, diff process is still running!

References

  1. Piironen, V.; Lindsay, D.G.; Miettinen, T.A.; Toivo, J.; Lampi, A.-M. Plant sterols: Biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric. 2000, 80, 939–966.
  2. Jiang, Q.; Christen, S.; Shigenaga, M.K.; Ames, B.N. gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am. J. Clin. Nutr. 2001, 74, 714–722.
  3. Beale, E.F.; Nelson, R.M.; Bucciarelli, R.L.; Donnelly, W.H.; Eitzman, D.V. Intrahepatic cholestasis associated with parenteral nutrition in premature infants. Pediatrics 1979, 64, 342–347.
  4. Black, D.D.; Suttle, E.A.; Whitington, P.F.; Whitington, G.L.; Korones, S.D. The effect of short-term total parenteral nutrition on hepatic function in the human neonate: A prospective randomized study demonstrating alteration of hepatic canalicular function. J. Pediatr. 1981, 99, 445–449.
  5. Vileisis, R.A.; Inwood, R.J.; Hunt, C.E. Prospective controlled study of parenteral nutrition-associated cholestatic jaundice: Effect of protein intake. J. Pediatr. 1980, 96, 893–897.
  6. Postuma, R.; Trevenen, C.L. Liver disease in infants receiving total parenteral nutrition. Pediatrics 1979, 63, 110–115.
  7. Rager, R.; Finegold, M.J. Cholestasis in immature newborn infants: Is parenteral alimentation responsible? J. Pediatr. 1975, 86, 264–269.
  8. Allardyce, D.B. Cholestasis caused by lipid emulsions. Surg. Gynecol. Obstet. 1982, 154, 641–647.
  9. Cober, M.P.; Killu, G.; Brattain, A.; Welch, K.B.; Kunisaki, S.M.; Teitelbaum, D.H. Intravenous fat emulsions reduction for patients with parenteral nutrition-associated liver disease. J. Pediatr. 2012, 160, 421–427.
  10. Rollins, M.D.; Ward, R.M.; Jackson, W.D.; Mulroy, C.W.; Spencer, C.P.; Ying, J.; Greene, T.; Book, L.S. Effect of decreased parenteral soybean lipid emulsion on hepatic function in infants at risk for parenteral nutrition-associated liver disease: A pilot study. J. Pediatr. Surg. 2013, 48, 1348–1356.
  11. Sanchez, S.E.; Braun, L.P.; Mercer, L.D.; Sherrill, M.; Stevens, J.; Javid, P.J. The effect of lipid restriction on the prevention of parenteral nutrition-associated cholestasis in surgical infants. J. Pediatr. Surg. 2013, 48, 573–578.
  12. Gonzalez-Hernandez, J.; Prajapati, P.; Ogola, G.; Nguyen, V.; Channabasappa, N.; Piper, H.G. A comparison of lipid minimization strategies in children with intestinal failure. J. Pediatr. Surg. 2017.
  13. Bell, R.L.; Ferry, G.D.; Smith, E.O.; Shulman, R.J.; Christensen, B.L.; Labarthe, D.R.; Wills, C.A. Total parenteral nutrition-related cholestasis in infants. J. Parenter. Enter. Nutr. 1986, 10, 356–359.
  14. Rodgers, B.M.; Hollenbeck, J.I.; Donnelly, W.H.; Talbert, J.L. Intrahepatic cholestasis with parental alimentation. Am. J. Surg. 1976, 131, 149–155.
  15. Christensen, R.D.; Henry, E.; Wiedmeier, S.E.; Burnett, J.; Lambert, D.K. Identifying patients, on the first day of life, at high-risk of developing parenteral nutrition-associated liver disease. J. Perinatol. 2007, 27, 284–290.
  16. Ferrucci, L.; Cherubini, A.; Bandinelli, S.; Bartali, B.; Corsi, A.; Lauretani, F.; Martin, A.; Andres-Lacueva, C.; Senin, U.; Guralnik, J.M. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J. Clin. Endocrinol. Metab. 2006, 91, 439–446.
  17. Ramsden, C.E.; Ringel, A.; Feldstein, A.E.; Taha, A.Y.; MacIntosh, B.A.; Hibbeln, J.R.; Majchrzak-Hong, S.F.; Faurot, K.R.; Rapoport, S.I.; Cheon, Y.; et al. Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins Leukot. Essent. Fat. Acids 2012, 87, 135–141.
  18. Araya, J.; Rodrigo, R.; Videla, L.A.; Thielemann, L.; Orellana, M.; Pettinelli, P.; Poniachik, J. Increase in long-chain polyunsaturated fatty acid n − 6/n − 3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin. Sci. 2004, 106, 635–643.
  19. Clayton, P.T.; Bowron, A.; Mills, K.A.; Massoud, A.; Casteels, M.; Milla, P.J. Phytosterolemia in children with parenteral nutrition-associated cholestatic liver disease. Gastroenterology 1993, 105, 1806–1813.
  20. Carter, B.A.; Taylor, O.A.; Prendergast, D.R.; Zimmerman, T.L.; Von Furstenberg, R.; Moore, D.D.; Karpen, S.J. Stigmasterol, a soy lipid-derived phytosterol, is an antagonist of the bile acid nuclear receptor FXR. Pediatr. Res. 2007, 62, 301–306.
  21. Guthrie, G.; Tackett, B.; Stoll, B.; Martin, C.; Olutoye, O.; Burrin, D.G. Phytosterols Synergize With Endotoxin to Augment Inflammation in Kupffer Cells but Alone Have Limited Direct Effect on Hepatocytes. J. Parenter. Enter. Nutr. 2018, 42, 37–48.
  22. El Kasmi, K.C.; Anderson, A.L.; Devereaux, M.W.; Vue, P.M.; Zhang, W.; Setchell, K.D.; Karpen, S.J.; Sokol, R.J. Phytosterols promote liver injury and Kupffer cell activation in parenteral nutrition-associated liver disease. Sci. Transl. Med. 2013, 5, 206ra137.
  23. El Kasmi, K.C.; Vue, P.M.; Anderson, A.L.; Devereaux, M.W.; Ghosh, S.; Balasubramaniyan, N.; Fillon, S.A.; Dahrenmoeller, C.; Allawzi, A.; Woods, C.; et al. Macrophage-derived IL-1beta/NF-kappaB signaling mediates parenteral nutrition-associated cholestasis. Nat. Commun. 2018, 9, 1393.
  24. Ng, K.; Stoll, B.; Chacko, S.; Saenz de Pipaon, M.; Lauridsen, C.; Gray, M.; Squires, E.J.; Marini, J.; Zamora, I.J.; Olutoye, O.O.; et al. Vitamin E in New-Generation Lipid Emulsions Protects Against Parenteral Nutrition-Associated Liver Disease in Parenteral Nutrition-Fed Preterm Pigs. J. Parenter. Enter. Nutr. 2016, 40, 656–671.
  25. Baker, M.A.; Cho, B.S.; Anez-Bustillos, L.; Dao, D.T.; Pan, A.; O’Loughlin, A.A.; Lans, Z.M.; Mitchell, P.D.; Nose, V.; Gura, K.M.; et al. Fish oil-based injectable lipid emulsions containing medium-chain triglycerides or added alpha-tocopherol offer anti-inflammatory benefits in a murine model of parenteral nutrition-induced liver injury. Am. J. Clin. Nutr. 2019, 109, 1038–1050.
  26. Gura, K.M.; Parsons, S.K.; Bechard, L.J.; Henderson, T.; Dorsey, M.; Phipatanakul, W.; Duggan, C.; Puder, M.; Lenders, C. Use of a fish oil-based lipid emulsion to treat essential fatty acid deficiency in a soy allergic patient receiving parenteral nutrition. Clin. Nutr. 2005, 24, 839–847.
  27. Gura, K.M.; Duggan, C.P.; Collier, S.B.; Jennings, R.W.; Folkman, J.; Bistrian, B.R.; Puder, M. Reversal of parenteral nutrition-associated liver disease in two infants with short bowel syndrome using parenteral fish oil: Implications for future management. Pediatrics 2006, 118, e197–e201.
  28. Puder, M.; Valim, C.; Meisel, J.A.; Le, H.D.; de Meijer, V.E.; Robinson, E.M.; Zhou, J.; Duggan, C.; Gura, K.M. Parenteral fish oil improves outcomes in patients with parenteral nutrition-associated liver injury. Ann. Surg. 2009, 250, 395–402.
  29. Wang, C.; Venick, R.S.; Shew, S.B.; Dunn, J.C.Y.; Reyen, L.; Gou, R.; Calkins, K.L. Long-Term Outcomes in Children With Intestinal Failure-Associated Liver Disease Treated With 6 Months of Intravenous Fish Oil Followed by Resumption of Intravenous Soybean Oil. J. Parenter. Enter. Nutr. 2019, 43, 708–716.
  30. Premkumar, M.H.; Carter, B.A.; Hawthorne, K.M.; King, K.; Abrams, S.A. Fish oil-based lipid emulsions in the treatment of parenteral nutrition-associated liver disease: An ongoing positive experience. Adv. Nutr. 2014, 5, 65–70.
  31. Gura, K.; Strijbosch, R.; Arnold, S.; McPherson, C.; Puder, M. The role of an intravenous fat emulsion composed of fish oil in a parenteral nutrition-dependent patient with hypertriglyceridemia. Nutr. Clin. Pract. 2007, 22, 664–672.
  32. Ekema, G.; Falchetti, D.; Boroni, G.; Tanca, A.R.; Altana, C.; Righetti, L.; Ridella, M.; Gambarotti, M.; Berchich, L. Reversal of severe parenteral nutrition-associated liver disease in an infant with short bowel syndrome using parenteral fish oil (Omega-3 fatty acids). J. Pediatr. Surg. 2008, 43, 1191–1195.
  33. Calhoun, A.W.; Sullivan, J.E. Omegaven for the treatment of parenteral nutrition associated liver disease: A case study. J. Ky. Med. Assoc. 2009, 107, 55–57.
  34. Cheung, H.M.; Lam, H.S.; Tam, Y.H.; Lee, K.H.; Ng, P.C. Rescue treatment of infants with intestinal failure and parenteral nutrition-associated cholestasis (PNAC) using a parenteral fish-oil-based lipid. Clin. Nutr. 2009, 28, 209–212.
  35. Lam, H.S.; Tam, Y.H.; Poon, T.C.; Cheung, H.M.; Yu, X.; Chan, B.P.; Lee, K.H.; Lee, B.S.; Ng, P.C. A double-blind randomised controlled trial of fish oil-based versus soy-based lipid preparations in the treatment of infants with parenteral nutrition-associated cholestasis. Neonatology 2014, 105, 290–296.
  36. Nehra, D.; Fallon, E.M.; Potemkin, A.K.; Voss, S.D.; Mitchell, P.D.; Valim, C.; Belfort, M.B.; Bellinger, D.C.; Duggan, C.; Gura, K.M.; et al. A comparison of 2 intravenous lipid emulsions: Interim analysis of a randomized controlled trial. J. Parenter. Enter. Nutr. 2014, 38, 693–701.
  37. de Meijer, V.E.; Le, H.D.; Meisel, J.A.; Gura, K.M.; Puder, M. Parenteral fish oil as monotherapy prevents essential fatty acid deficiency in parenteral nutrition-dependent patients. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 212–218.
  38. Riedy, M.; DePaula, B.; Puder, M.; Gura, K.M.; Sztam, K.A. Higher Doses of Fish Oil-Based Lipid Emulsions Used to Treat Inadequate Weight Gain and Rising Triene:Tetraene Ratio in a Severely Malnourished Infant With Intestinal Failure-Associated Liver Disease. J. Parenter. Enter. Nutr. 2017, 41, 667–671.
  39. Anez-Bustillos, L.; Dao, D.T.; Fell, G.L.; Baker, M.A.; Gura, K.M.; Bistrian, B.R.; Puder, M. Redefining essential fatty acids in the era of novel intravenous lipid emulsions. Clin. Nutr. 2018, 37, 784–789.
  40. Dicken, B.J.; Bruce, A.; Samuel, T.M.; Wales, P.W.; Nahirniak, S.; Turner, J.M. Bedside to bench: The risk of bleeding with parenteral omega-3 lipid emulsion therapy. J. Pediatr. 2014, 164, 652–654.
  41. Turner, J.M.; Field, C.J.; Goruk, S.; Wizzard, P.; Dicken, B.J.; Bruce, A.; Wales, P.W. Platelet Arachidonic Acid Deficiency May Contribute to Abnormal Platelet Function During Parenteral Fish Oil Monotherapy in a Piglet Model. J. Parenter. Enter. Nutr. 2016, 40, 587–591.
  42. Gura, K.; Premkumar, M.H.; Calkins, K.L.; Puder, M. Intravenous Fish Oil Monotherapy as a Source of Calories and Fatty Acids Promotes Age-Appropriate Growth in Pediatric Patients with Intestinal Failure-Associated Liver Disease. J. Pediatr. 2020, 219, 98–105.
  43. Gura, K.M.; Calkins, K.L.; Puder, M. Use of Fish Oil Intravenous Lipid Emulsions as Monotherapy in the Pediatric Intestinal Failure Patient: Beyond the Package Insert. Nutr. Clin. Pract. 2020, 35, 108–118.
  44. Raphael, B.P.; Mitchell, P.D.; Gura, K.M.; Potemkin, A.K.; Squires, R.H.; Puder, M.; Duggan, C.P. Growth in Infants and Children With Intestinal Failure-associated Liver Disease Treated With Intravenous Fish Oil. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 261–268.
  45. Rayyan, M.; Devlieger, H.; Jochum, F.; Allegaert, K. Short-term use of parenteral nutrition with a lipid emulsion containing a mixture of soybean oil, olive oil, medium-chain triglycerides, and fish oil: A randomized double-blind study in preterm infants. J. Parenter. Enter. Nutr. 2012, 36, 81S–94S.
  46. Vlaardingerbroek, H.; Ng, K.; Stoll, B.; Benight, N.; Chacko, S.; Kluijtmans, L.A.; Kulik, W.; Squires, E.J.; Olutoye, O.; Schady, D.; et al. New generation lipid emulsions prevent PNALD in chronic parenterally fed preterm pigs. J. Lipid Res. 2014, 55, 466–477.
  47. Skouroliakou, M.; Konstantinou, D.; Koutri, K.; Kakavelaki, C.; Stathopoulou, M.; Antoniadi, M.; Xemelidis, N.; Kona, V.; Markantonis, S. A double-blind, randomized clinical trial of the effect of omega-3 fatty acids on the oxidative stress of preterm neonates fed through parenteral nutrition. Eur. J. Clin. Nutr. 2010, 64, 940–947.
  48. Tomsits, E.; Pataki, M.; Tolgyesi, A.; Fekete, G.; Rischak, K.; Szollar, L. Safety and efficacy of a lipid emulsion containing a mixture of soybean oil, medium-chain triglycerides, olive oil, and fish oil: A randomised, double-blind clinical trial in premature infants requiring parenteral nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 514–521.
  49. D’Ascenzo, R.; Savini, S.; Biagetti, C.; Bellagamba, M.P.; Marchionni, P.; Pompilio, A.; Cogo, P.E.; Carnielli, V.P. Higher docosahexaenoic acid, lower arachidonic acid and reduced lipid tolerance with high doses of a lipid emulsion containing 15% fish oil: A randomized clinical trial. Clin. Nutr. 2014, 33, 1002–1009.
  50. Goulet, O.; Antebi, H.; Wolf, C.; Talbotec, C.; Alcindor, L.G.; Corriol, O.; Lamor, M.; Colomb-Jung, V. A new intravenous fat emulsion containing soybean oil, medium-chain triglycerides, olive oil, and fish oil: A single-center, double-blind randomized study on efficacy and safety in pediatric patients receiving home parenteral nutrition. J. Parenter. Enter. Nutr. 2010, 34, 485–495.
  51. Diamond, I.R.; Grant, R.C.; Pencharz, P.B.; de Silva, N.; Feldman, B.M.; Fitzgerald, P.; Sigalet, D.; Dicken, B.; Turner, J.; Marchand, V.; et al. Preventing the Progression of Intestinal Failure-Associated Liver Disease in Infants Using a Composite Lipid Emulsion: A Pilot Randomized Controlled Trial of SMOFlipid. J. Parenter. Enter. Nutr. 2017, 41, 866–877.
  52. Hojsak, I.; Colomb, V.; Braegger, C.; Bronsky, J.; Campoy, C.; Domellof, M.; Embleton, N.; Fidler Mis, N.; Hulst, J.M.; Indrio, F.; et al. ESPGHAN Committee on Nutrition Position Paper. Intravenous Lipid Emulsions and Risk of Hepatotoxicity in Infants and Children: A Systematic Review and Meta-analysis. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 776–792.
  53. Kapoor, V.; Malviya, M.N.; Soll, R. Lipid emulsions for parenterally fed preterm infants. Cochrane Database Syst. Rev. 2019, 6, CD013163.
  54. Kotiya, P.; Zhao, X.; Cheng, P.; Zhu, X.; Xiao, Z.; Wang, J. Fish oil- and soy oil-based lipid emulsions in neonatal parenteral nutrition: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2016, 70, 1106–1115.
  55. Vayalthrikkovil, S.; Bashir, R.A.; Rabi, Y.; Amin, H.; Spence, J.-M.; Robertson, H.L.; Lodha, A. Parenteral Fish-Oil Lipid Emulsions in the Prevention of Severe Retinopathy of Prematurity: A Systematic Review and Meta-Analysis. Am. J. Perinatol. 2017, 34, 705–715.
  56. Beken, S.; Dilli, D.; Fettah, N.D.; Kabatas, E.U.; Zenciroglu, A.; Okumus, N. The influence of fish-oil lipid emulsions on retinopathy of prematurity in very low birth weight infants: A randomized controlled trial. Early Hum. Dev. 2014, 90, 27–31.
  57. Repa, A.; Binder, C.; Thanhaeuser, M.; Kreissl, A.; Pablik, E.; Huber-Dangl, M.; Berger, A.; Haiden, N. A Mixed Lipid Emulsion for Prevention of Parenteral Nutrition Associated Cholestasis in Extremely Low Birth Weight Infants: A Randomized Clinical Trial. J. Pediatr. 2018, 194, 87–93.e1.
  58. Savini, S.; D’Ascenzo, R.; Biagetti, C.; Serpentini, G.; Pompilio, A.; Bartoli, A.; Cogo, P.E.; Carnielli, V.P. The effect of 5 intravenous lipid emulsions on plasma phytosterols in preterm infants receiving parenteral nutrition: A randomized clinical trial. Am. J. Clin. Nutr. 2013, 98, 312–318.
  59. Skouroliakou, M.; Konstantinou, D.; Agakidis, C.; Kaliora, A.; Kalogeropoulos, N.; Massara, P.; Antoniadi, M.; Panagiotakos, D.; Karagiozoglou-Lampoudi, T. Parenteral MCT/omega-3 Polyunsaturated Fatty Acid-Enriched Intravenous Fat Emulsion Is Associated With Cytokine and Fatty Acid Profiles Consistent With Attenuated Inflammatory Response in Preterm Neonates: A Randomized, Double-Blind Clinical Trial. Nutr. Clin. Pract. 2016, 31, 235–244.
  60. Kapoor, V.; Malviya, M.N.; Soll, R. Lipid emulsions for parenterally fed term and late preterm infants. Cochrane Database Syst. Rev. 2019, 6, CD013171.
  61. Lam, C.K.L.; Church, P.C.; Haliburton, B.; Chambers, K.; Martincevic, I.; Vresk, L.; Courtney-Martin, G.; Bandsma, R.; Avitzur, Y.; Wales, P.C.; et al. Long-term Exposure of Children to a Mixed Lipid Emulsion Is Less Hepatotoxic Than Soybean-based Lipid Emulsion. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 501–504.
  62. Torgalkar, R.; Dave, S.; Shah, J.; Ostad, N.; Kotsopoulos, K.; Unger, S.; Shah, P.S. Multi-component lipid emulsion vs soy-based lipid emulsion for very low birth weight preterm neonates: A pre-post comparative study. J. Perinatol. 2019, 39, 1118–1124.
  63. Ferguson, C.L.; Perry, C.; Subramanian, M.; Gillette, C.; Ayers, K.; Welch, C. Mixed Oil-Based Lipid Emulsions vs Soybean Oil-Based Lipid Emulsions on Incidence and Severity of Intestinal Failure-Associated Liver Disease in a Neonatal Intensive Care Unit. J. Parenter. Enter. Nutr. 2020.
  64. Carlson, S.J.; Nandivada, P.; Chang, M.I.; Mitchell, P.D.; O’Loughlin, A.; Cowan, E.; Gura, K.M.; Nose, V.; Bistrian, B.R.; Puder, M. The addition of medium-chain triglycerides to a purified fish oil-based diet alters inflammatory profiles in mice. Metab. Clin. Exp. 2015, 64, 274–282.
  65. Fell, G.L.; Anez-Bustillos, L.; Dao, D.T.; Baker, M.A.; Nandivada, P.; Cho, B.S.; Pan, A.; O’Loughlin, A.A.; Nose, V.; Gura, K.M.; et al. Alpha-tocopherol in intravenous lipid emulsions imparts hepatic protection in a murine model of hepatosteatosis induced by the enteral administration of a parenteral nutrition solution. PLoS ONE 2019, 14, e0217155.
  66. Fell, G.L.; Cho, B.S.; Dao, D.T.; Anez-Bustillos, L.; Baker, M.A.; Nandivada, P.; Pan, A.; O’Loughlin, A.A.; Mitchell, P.D.; Nose, V.; et al. Fish oil protects the liver from parenteral nutrition-induced injury via GPR120-mediated PPARgamma signaling. Prostaglandins Leukot. Essent. Fat. Acids 2019, 143, 8–14.
  67. Javid, P.J.; Greene, A.K.; Garza, J.; Gura, K.; Alwayn, I.P.; Voss, S.; Nose, V.; Satchi-Fainaro, R.; Zausche, B.; Mulkern, R.V.; et al. The route of lipid administration affects parenteral nutrition-induced hepatic steatosis in a mouse model. J. Pediatr. Surg. 2005, 40, 1446–1453.
  68. Meisel, J.A.; Le, H.D.; de Meijer, V.E.; Nose, V.; Gura, K.M.; Mulkern, R.V.; Sharif, M.R.A.; Puder, M. Comparison of 5 intravenous lipid emulsions and their effects on hepatic steatosis in a murine model. J. Pediatr. Surg. 2011, 46, 666–673.
  69. El Kasmi, K.C.; Anderson, A.L.; Devereaux, M.W.; Fillon, S.A.; Harris, J.K.; Lovell, M.A.; Finegold, M.J.; Sokol, R.J. Toll-like receptor 4-dependent Kupffer cell activation and liver injury in a novel mouse model of parenteral nutrition and intestinal injury. Hepatology 2012, 55, 1518–1528.
  70. Call, L.; Molina, T.; Stoll, B.; Guthrie, G.; Chacko, S.; Plat, J.; Robinson, J.; Lin, S.; Vonderohe, C.; Mohammad, M.; et al. Parenteral lipids shape gut bile acid pools and microbiota profiles in the prevention of cholestasis in preterm pigs. J. Lipid Res. 2020, 61, 1038–1051.
  71. Jain, A.K.; Stoll, B.; Burrin, D.G.; Holst, J.J.; Moore, D.D. Enteral bile acid treatment improves parenteral nutrition-related liver disease and intestinal mucosal atrophy in neonatal pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G218–G224.
  72. Stoll, B.; Horst, D.A.; Cui, L.; Chang, X.; Ellis, K.J.; Hadsell, D.L.; Suryawan, A.; Kurundkar, A.; Maheshwari, A.; Davis, T.A.; et al. Chronic parenteral nutrition induces hepatic inflammation, steatosis, and insulin resistance in neonatal pigs. J. Nutr. 2010, 140, 2193–2200.
  73. Lavallee, C.M.; Lim, D.W.; Wizzard, P.R.; Mazurak, V.C.; Mi, S.; Curtis, J.M.; Willing, B.P.; Yap, J.Y.; Wales, P.W.; Turner, J.M. Impact of Clinical Use of Parenteral Lipid Emulsions on Bile Acid Metabolism and Composition in Neonatal Piglets. J. Parenter. Enter. Nutr. 2019, 43, 668–676.
  74. Lavallee, C.M.; MacPherson, J.A.R.; Zhou, M.; Gao, Y.; Wizzard, P.R.; Wales, P.W.; Turner, J.M.; Willing, B.P. Lipid Emulsion Formulation of Parenteral Nutrition Affects Intestinal Microbiota and Host Responses in Neonatal Piglets. J. Parenter. Enter. Nutr. 2017, 41, 1301–1309.
  75. Lavallee, C.M.; Wizzard, P.R.; Lansing, M.; Vine, D.F.; Nation, P.N.; Yap, J.Y.; Willing, B.P.; Wales, P.W.; Turner, J.M. Surgical Anatomy Does Not Affect the Progression of Intestinal Failure-Associated Liver Disease in Neonatal Piglets. J. Parenter. Enter. Nutr. 2018, 42, 14–23.
  76. Lim, D.W.; Wales, P.W.; Josephson, J.K.; Nation, P.N.; Wizzard, P.R.; Sergi, C.M.; Field, C.J.; Sigalet, D.L.; Turner, J.M. Glucagon-Like Peptide 2 Improves Cholestasis in Parenteral Nutrition—Associated Liver Disease. J. Parenter. Enter. Nutr. 2016, 40, 14–21.
  77. Lim, D.W.; Wales, P.W.; Mi, S.; Yap, J.Y.; Curtis, J.M.; Mager, D.R.; Mazurak, V.C.; Wizzard, P.R.; Sigalet, D.L.; Turner, J.M. Glucagon-Like Peptide-2 Alters Bile Acid Metabolism in Parenteral Nutrition—Associated Liver Disease. J. Parenter. Enter. Nutr. 2016, 40, 22–35.
  78. Muto, M.; Lim, D.; Soukvilay, A.; Field, C.; Wizzard, P.R.; Goruk, S.; Ball, R.O.; Pencharz, P.B.; Mi, S.; Curtis, J.; et al. Supplemental Parenteral Vitamin E Into Conventional Soybean Lipid Emulsion Does Not Prevent Parenteral Nutrition-Associated Liver Disease in Full-Term Neonatal Piglets. J. Parenter. Enter. Nutr. 2017, 41, 575–582.
  79. Turner, J.M.; Josephson, J.; Field, C.J.; Wizzard, P.R.; Ball, R.O.; Pencharz, P.B.; Wales, P.W. Liver Disease, Systemic Inflammation, and Growth Using a Mixed Parenteral Lipid Emulsion, Containing Soybean Oil, Fish Oil, and Medium Chain Triglycerides, Compared With Soybean Oil in Parenteral Nutrition-Fed Neonatal Piglets. J. Parenter. Enter. Nutr. 2016, 40, 973–981.
  80. Isaac, D.M.; Alzaben, A.S.; Mazurak, V.C.; Yap, J.; Wizzard, P.R.; Nation, P.N.; Zhao, Y.Y.; Curtis, J.M.; Sergi, C.; Wales, P.W.; et al. Mixed Lipid, Fish Oil, and Soybean Oil Parenteral Lipids Impact Cholestasis, Hepatic Phytosterol, and Lipid Composition. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 861–867.
  81. Yu, L.; Hammer, R.E.; Li-Hawkins, J.; Von Bergmann, K.; Lutjohann, D.; Cohen, J.C.; Hobbs, H.H. Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc. Natl. Acad. Sci. USA 2002, 99, 16237–16242.
  82. Wang, J.; Mitsche, M.A.; Lutjohann, D.; Cohen, J.C.; Xie, X.S.; Hobbs, H.H. Relative roles of ABCG5/ABCG8 in liver and intestine. J. Lipid Res. 2015, 56, 319–330.
  83. Lee, W.S.; Sokol, R.J. Intestinal Microbiota, Lipids, and the Pathogenesis of Intestinal Failure-Associated Liver Disease. J. Pediatr. 2015, 167, 519–526.
  84. Lee, J.Y.; Plakidas, A.; Lee, W.H.; Heikkinen, A.; Chanmugam, P.; Bray, G.; Hwang, D.H. Differential modulation of Toll-like receptors by fatty acids: Preferential inhibition by n-3 polyunsaturated fatty acids. J. Lipid Res. 2003, 44, 479–486.
  85. Traber, M.G.; Atkinson, J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 2007, 43, 4–15.
  86. Traber, M.G. Vitamin E regulatory mechanisms. Annu. Rev. Nutr. 2007, 27, 347–362.
  87. Lembke, P.; Schubert, A. Chapter 37—Introduction to Fish Oil Oxidation, Oxidation Prevention, and Oxidation Correction. In Omega-3 Fatty Acids in Brain and Neurological Health; Watson, R.R., De Meester, F., Eds.; Academic Press: Boston, MA, USA, 2014; pp. 455–460.
  88. Rook, D.; Te Braake, F.W.; Schierbeek, H.; Longini, M.; Buonocore, G.; Van Goudoever, J.B. Glutathione synthesis rates in early postnatal life. Pediatr. Res. 2010, 67, 407–411.
  89. Buonocore, G.; Perrone, S.; Longini, M.; Vezzosi, P.; Marzocchi, B.; Paffetti, P.; Bracci, R. Oxidative stress in preterm neonates at birth and on the seventh day of life. Pediatr. Res. 2002, 52, 46–49.
  90. Fu, S.; Watkins, S.M.; Hotamisligil, G.S. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. 2012, 15, 623–634.
  91. Browning, J.D.; Horton, J.D. Molecular mediators of hepatic steatosis and liver injury. J. Clin. Investig. 2004, 114, 147–152.
  92. Miloudi, K.; Comte, B.; Rouleau, T.; Montoudis, A.; Levy, E.; Lavoie, J.C. The mode of administration of total parenteral nutrition and nature of lipid content influence the generation of peroxides and aldehydes. Clin. Nutr. 2012, 31, 526–534.
  93. Lavoie, J.C.; Chessex, P. Parenteral nutrition and oxidant stress in the newborn: A narrative review. Free Radic. Biol. Med. 2019, 142, 155–167.
  94. Rao, M.S.; Reddy, J.K. Peroxisomal beta-oxidation and steatohepatitis. Semin. Liver Dis. 2001, 21, 43–55.
  95. Reddy, J.K.; Hashimoto, T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: An adaptive metabolic system. Annu. Rev. Nutr. 2001, 21, 193–230.
  96. Hardwick, J.P. Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism and metabolic diseases. Biochem. Pharmacol. 2008, 75, 2263–2275.
  97. Reinehr, R.; Becker, S.; Wettstein, M.; Haussinger, D. Involvement of the Src family kinase yes in bile salt-induced apoptosis. Gastroenterology 2004, 127, 1540–1557.
  98. Krahenbuhl, S.; Stucki, J.; Reichen, J. Reduced activity of the electron transport chain in liver mitochondria isolated from rats with secondary biliary cirrhosis. Hepatology 1992, 15, 1160–1166.
  99. Sanyal, A.J.; Chalasani, N.; Kowdley, K.V.; McCullough, A.; Diehl, A.M.; Bass, N.M.; Neuschwander-Tetri, B.A.; Lavine, J.E.; Tonascia, J.; Unalp, A.; et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010, 362, 1675–1685.
  100. Lavine, J.E.; Schwimmer, J.B.; Van Natta, M.L.; Molleston, J.P.; Murray, K.F.; Rosenthal, P.; Abrams, S.H.; Scheimann, A.O.; Sanyal, A.J.; Chalasani, N.; et al. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: The TONIC randomized controlled trial. JAMA 2011, 305, 1659–1668.
  101. Guthrie, G.; Stoll, B.; Chacko, S.; Lauridsen, C.; Plat, J.; Burrin, D. Rifampicin, not vitamin E, suppresses parenteral nutrition-associated liver disease development through the pregnane X receptor pathway in piglets. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G41–G52.
  102. Morimoto, K.; Shirata, N.; Taketomi, Y.; Tsuchiya, S.; Segi-Nishida, E.; Inazumi, T.; Kabashima, K.; Tanaka, S.; Murakami, M.; Narumiya, S.; et al. Prostaglandin E2-EP3 signaling induces inflammatory swelling by mast cell activation. J. Immunol. 2014, 192, 1130–1137.
  103. Nishida, K.; Yamasaki, S.; Hasegawa, A.; Iwamatsu, A.; Koseki, H.; Hirano, T. Gab2, via PI-3K, regulates ARF1 in FcepsilonRI-mediated granule translocation and mast cell degranulation. J. Immunol. 2011, 187, 932–941.
  104. Yao, C.; Hirata, T.; Soontrapa, K.; Ma, X.; Takemori, H.; Narumiya, S. Prostaglandin E(2) promotes Th1 differentiation via synergistic amplification of IL-12 signalling by cAMP and PI3-kinase. Nat. Commun. 2013, 4, 1685.
  105. Boniface, K.; Bak-Jensen, K.S.; Li, Y.; Blumenschein, W.M.; McGeachy, M.J.; McClanahan, T.K.; McKenzie, B.S.; Kastelein, R.A.; Cua, D.J.; de Waal Malefyt, R. Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J. Exp. Med. 2009, 206, 535–548.
  106. Katagiri, H.; Ito, Y.; Ishii, K.; Hayashi, I.; Suematsu, M.; Yamashina, S.; Murata, T.; Narumiya, S.; Kakita, A.; Majima, M. Role of thromboxane derived from COX-1 and -2 in hepatic microcirculatory dysfunction during endotoxemia in mice. Hepatology 2004, 39, 139–150.
  107. Gaudreault, E.; Gosselin, J. Leukotriene B4 potentiates CpG signaling for enhanced cytokine secretion by human leukocytes. J. Immunol. 2009, 183, 2650–2658.
  108. Peterson, L.D.; Jeffery, N.M.; Thies, F.; Sanderson, P.; Newsholme, E.A.; Calder, P.C. Eicosapentaenoic and docosahexaenoic acids alter rat spleen leukocyte fatty acid composition and prostaglandin E2 production but have different effects on lymphocyte functions and cell-mediated immunity. Lipids 1998, 33, 171–180.
  109. Yaqoob, P.; Calder, P. Effects of dietary lipid manipulation upon inflammatory mediator production by murine macrophages. Cell. Immunol. 1995, 163, 120–128.
  110. Chapkin, R.S.; Akoh, C.C.; Miller, C.C. Influence of dietary n-3 fatty acids on macrophage glycerophospholipid molecular species and peptidoleukotriene synthesis. J. Lipid Res. 1991, 32, 1205–1213.
  111. Wada, M.; DeLong, C.J.; Hong, Y.H.; Rieke, C.J.; Song, I.; Sidhu, R.S.; Yuan, C.; Warnock, M.; Schmaier, A.H.; Yokoyama, C.; et al. Enzymes and receptors of prostaglandin pathways with arachidonic acid-derived versus eicosapentaenoic acid-derived substrates and products. J. Biol. Chem. 2007, 282, 22254–22266.
  112. Dona, M.; Fredman, G.; Schwab, J.M.; Chiang, N.; Arita, M.; Goodarzi, A.; Cheng, G.; von Andrian, U.H.; Serhan, C.N. Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood 2008, 112, 848–855.
  113. Oh, S.F.; Pillai, P.S.; Recchiuti, A.; Yang, R.; Serhan, C.N. Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation. J. Clin. Investig. 2011, 121, 569–581.
  114. Spite, M.; Norling, L.V.; Summers, L.; Yang, R.; Cooper, D.; Petasis, N.A.; Flower, R.J.; Perretti, M.; Serhan, C.N. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 2009, 461, 1287–1291.
  115. Spite, M.; Summers, L.; Porter, T.F.; Srivastava, S.; Bhatnagar, A.; Serhan, C.N. Resolvin D1 controls inflammation initiated by glutathione-lipid conjugates formed during oxidative stress. Br. J. Pharmacol. 2009, 158, 1062–1073.
  116. Kasuga, K.; Yang, R.; Porter, T.F.; Agrawal, N.; Petasis, N.A.; Irimia, D.; Toner, M.; Serhan, C.N. Rapid appearance of resolvin precursors in inflammatory exudates: Novel mechanisms in resolution. J. Immunol. 2008, 181, 8677–8687.
  117. Ariel, A.; Li, P.L.; Wang, W.; Tang, W.X.; Fredman, G.; Hong, S.; Gotlinger, K.H.; Serhan, C.N. The docosatriene protectin D1 is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering. J. Biol. Chem. 2005, 280, 43079–43086.
  118. Zuniga, J.; Cancino, M.; Medina, F.; Varela, P.; Vargas, R.; Tapia, G.; Videla, L.A.; Fernandez, V. N-3 PUFA supplementation triggers PPAR-alpha activation and PPAR-alpha/NF-kappaB interaction: Anti-inflammatory implications in liver ischemia-reperfusion injury. PLoS ONE 2011, 6, e28502.
  119. Song, S.; Attia, R.R.; Connaughton, S.; Niesen, M.I.; Ness, G.C.; Elam, M.B.; Hori, R.T.; Cook, G.A.; Park, E.A. Peroxisome proliferator activated receptor alpha (PPARalpha) and PPAR gamma coactivator (PGC-1alpha) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements. Mol. Cell. Endocrinol. 2010, 325, 54–63.
  120. Ip, E.; Farrell, G.; Hall, P.; Robertson, G.; Leclercq, I. Administration of the potent PPARalpha agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology 2004, 39, 1286–1296.
  121. Wolfram, G. Medium-chain triglycerides (MCT) for total parenteral nutrition. World J. Surg. 1986, 10, 33–37.
  122. Bach, A.C.; Storck, D.; Meraihi, Z. Medium-chain triglyceride-based fat emulsions: An alternative energy supply in stress and sepsis. J. Parenter. Enter. Nutr. 1988, 12, 82S–88S.
  123. Ulrich, H.; Pastores, S.M.; Katz, D.P.; Kvetan, V. Parenteral use of medium-chain triglycerides: A reappraisal. Nutrition 1996, 12, 231–238.
  124. Li, Q.; Zhong, W.; Qiu, Y.; Kang, X.; Sun, X.; Tan, X.; Zhao, Y.; Sun, X.; Jia, W.; Zhou, Z. Preservation of hepatocyte nuclear factor-4alpha contributes to the beneficial effect of dietary medium chain triglyceride on alcohol-induced hepatic lipid dyshomeostasis in rats. Alcohol. Clin. Exp. Res. 2013, 37, 587–598.
  125. Ronis, M.J.; Baumgardner, J.N.; Sharma, N.; Vantrease, J.; Ferguson, M.; Tong, Y.; Wu, X.; Cleves, M.A.; Badger, T.M. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of non-alcoholic fatty liver disease. Exp. Biol. Med. 2013, 238, 151–162.
  126. Kono, H.; Fujii, H.; Asakawa, M.; Maki, A.; Amemiya, H.; Hirai, Y.; Matsuda, M.; Yamamoto, M. Medium-chain triglycerides enhance secretory IgA expression in rat intestine after administration of endotoxin. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286, G1081–G1089.
  127. Kono, H.; Fujii, H.; Asakawa, M.; Yamamoto, M.; Matsuda, M.; Maki, A.; Matsumoto, Y. Protective effects of medium-chain triglycerides on the liver and gut in rats administered endotoxin. Ann. Surg. 2003, 237, 246–255.
  128. Zhang, L.; Wang, X.; Chen, S.; Wang, S.; Tu, Z.; Zhang, G.; Zhu, H.; Li, X.; Xiong, J.; Liu, Y. Medium-Chain Triglycerides Attenuate Liver Injury in Lipopolysaccharide-Challenged Pigs by Inhibiting Necroptotic and Inflammatory Signaling Pathways. Int. J. Mol. Sci. 2018, 19, 3697.
  129. Zeisel, S.H.; da Costa, K.A. Choline: An essential nutrient for public health. Nutr. Rev. 2009, 67, 615–623.
  130. Li, Z.; Vance, D.E. Phosphatidylcholine and choline homeostasis. J. Lipid Res. 2008, 49, 1187–1194.
  131. Fischer, L.M.; da Costa, K.A.; Kwock, L.; Stewart, P.W.; Lu, T.S.; Stabler, S.P.; Allen, R.H.; Zeisel, S.H. Sex and menopausal status influence human dietary requirements for the nutrient choline. Am. J. Clin. Nutr. 2007, 85, 1275–1285.
  132. Hebbard, L.; George, J. Animal models of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 35–44.
  133. Noga, A.A.; Zhao, Y.; Vance, D.E. An unexpected requirement for phosphatidylethanolamine N-methyltransferase in the secretion of very low density lipoproteins. J. Biol. Chem. 2002, 277, 42358–42365.
  134. van der Veen, J.N.; Lingrell, S.; Vance, D.E. The membrane lipid phosphatidylcholine is an unexpected source of triacylglycerol in the liver. J. Biol. Chem. 2012, 287, 23418–23426.
  135. Listenberger, L.; Townsend, E.; Rickertsen, C.; Hains, A.; Brown, E.; Inwards, E.G.; Stoeckman, A.K.; Matis, M.P.; Sampathkumar, R.S.; Osna, N.A.; et al. Decreasing Phosphatidylcholine on the Surface of the Lipid Droplet Correlates with Altered Protein Binding and Steatosis. Cells 2018, 7, 230.
  136. Walker, A.K.; Jacobs, R.L.; Watts, J.L.; Rottiers, V.; Jiang, K.; Finnegan, D.M.; Shioda, T.; Hansen, M.; Yang, F.; Niebergall, L.J.; et al. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 2011, 147, 840–852.
  137. Vanek, V.W.; Borum, P.; Buchman, A.; Fessler, T.A.; Howard, L.; Jeejeebhoy, K.; Kochevar, M.; Shenkin, A.; Valentine, C.J.; Novel Nutrient Task Force, Parenteral Multi-Vitamin and Multi–Trace Element Working Group; et al. A.S.P.E.N. position paper: Recommendations for changes in commercially available parenteral multivitamin and multi-trace element products. Nutr. Clin. Pract. 2012, 27, 440–491.
  138. Buchman, A.L.; Moukarzel, A.; Jenden, D.J.; Roch, M.; Rice, K.; Ament, M.E. Low plasma free choline is prevalent in patients receiving long term parenteral nutrition and is associated with hepatic aminotransferase abnormalities. Clin. Nutr. 1993, 12, 33–37.
  139. Buchman, A.L.; Ament, M.E.; Sohel, M.; Dubin, M.; Jenden, D.J.; Roch, M.; Pownall, H.; Farley, W.; Awal, M.; Ahn, C. Choline deficiency causes reversible hepatic abnormalities in patients receiving parenteral nutrition: Proof of a human choline requirement: A placebo-controlled trial. J. Parenter. Enter. Nutr. 2001, 25, 260–268.
  140. Buchman, A.L.; Dubin, M.; Jenden, D.; Moukarzel, A.; Roch, M.H.; Rice, K.; Gornbein, J.; Ament, M.E.; Eckhert, C.D. Lecithin increases plasma free choline and decreases hepatic steatosis in long-term total parenteral nutrition patients. Gastroenterology 1992, 102, 1363–1370.
  141. Misra, S.; Ahn, C.; Ament, M.E.; Choi, H.J.; Jenden, D.J.; Roch, M.; Buchman, A.L. Plasma choline concentrations in children requiring long-term home parenteral nutrition: A case control study. J. Parenter. Enter. Nutr. 1999, 23, 305–308.
  142. Sentongo, T.A.; Kumar, P.; Karza, K.; Keys, L.; Iyer, K.; Buchman, A.L. Whole-blood-free choline and choline metabolites in infants who require chronic parenteral nutrition therapy. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 194–199.
  143. Buchman, A.L.; Sohel, M.; Moukarzel, A.; Bryant, D.; Schanler, R.; Awal, M.; Burns, P.; Dorman, K.; Belfort, M.; Jenden, D.J.; et al. Plasma choline in normal newborns, infants, toddlers, and in very-low-birth-weight neonates requiring total parenteral nutrition. Nutrition 2001, 17, 18–21.
  144. Nilsson, A.K.; Pedersen, A.; Malmodin, D.; Lund, A.M.; Hellgren, G.; Lofqvist, C.; Pupp, I.H.; Hellstrom, A. Serum choline in extremely preterm infants declines with increasing parenteral nutrition. Eur. J. Nutr. 2020.
  145. Zhu, J.; Lu, T.; Chen, F.; Yan, J.; Chen, F.; Zhang, Q.; Wang, J.; Yan, W.; Yu, T.; Tang, Q.; et al. Choline Protects Against Intestinal Failure-Associated Liver Disease in Parenteral Nutrition-Fed Immature Rats. J. Parenter. Enter. Nutr. 2018, 42, 436–445.
  146. Zhu, J.; Wu, Y.; Guo, Y.; Tang, Q.; Lu, T.; Cai, W.; Huang, H. Choline Alleviates Parenteral Nutrition-Associated Duodenal Motility Disorder in Infant Rats. J. Parenter. Enter. Nutr. 2016, 40, 995–1005.
  147. Longo, N.; Amat di San Filippo, C.; Pasquali, M. Disorders of carnitine transport and the carnitine cycle. Am. J. Med. Genet. Part C 2006, 142, 77–85.
  148. Infante, J.P. A function for the vitamin E metabolite alpha-tocopherol quinone as an essential enzyme cofactor for the mitochondrial fatty acid desaturases. FEBS Lett. 1999, 446, 1–5.
  149. Shenai, J.P.; Borum, P.R. Tissue carnitine reserves of newborn infants. Pediatr. Res. 1984, 18, 679–682.
  150. Schmidt-Sommerfeld, E.; Penn, D.; Wolf, H. Carnitine deficiency in premature infants receiving total parenteral nutrition: Effect of L-carnitine supplementation. J. Pediatr. 1983, 102, 931–935.
  151. Guthrie, G.; Kulkarni, M.; Vlaardingerbroek, H.; Stoll, B.; Ng, K.; Martin, C.; Belmont, J.; Hadsell, D.; Heird, W.; Newgard, C.B.; et al. Multi-omic profiles of hepatic metabolism in TPN-fed preterm pigs administered new generation lipid emulsions. J. Lipid Res. 2016, 57, 1696–1711.
  152. Wieser, P.B.; Buch, M.; Novak, M. 224 effect of carnitine on ketone body production in human newborns. Pediatr. Res. 1978, 12, 401.
  153. Chapoy, P.R.; Angelini, C.; Brown, W.J.; Stiff, J.E.; Shug, A.L.; Cederbaum, S.D. Systemic carnitine deficiency—A treatable inherited lipid-storage disease presenting as Reye’s syndrome. N. Engl. J. Med. 1980, 303, 1389–1394.
  154. Glasgow, A.M.; Engel, A.G.; Bier, D.M.; Perry, L.W.; Dickie, M.; Todaro, J.; Brown, B.I.; Utter, M.F. Hypoglycemia, hepatic dysfunction, muscle weakness, cardiomyopathy, free carnitine deficiency and long-chain acylcarnitine excess responsive to medium chain triglyceride diet. Pediatr. Res. 1983, 17, 319–326.
  155. Cho, H.-S.; Choo, Y.K.; Lee, H.J.; Lee, H.-S. Transient carnitine transport defect with cholestatic jaundice: Report of one case in a premature baby. Korean J. Pediatr. 2012, 55, 58–62.
  156. Pande, S.; Brion, L.P.; Campbell, D.E.; Gayle, Y.; Esteban-Cruciani, N.V. Lack of effect of L-carnitine supplementation on weight gain in very preterm infants. J. Perinatol. 2005, 25, 470–477.
  157. Crill, C.M.; Storm, M.C.; Christensen, M.L.; Hankins, C.T.; Bruce Jenkins, M.; Helms, R.A. Carnitine supplementation in premature neonates: Effect on plasma and red blood cell total carnitine concentrations, nutrition parameters and morbidity. Clin. Nutr. 2006, 25, 886–896.
  158. Seong, S.H.; Cho, S.C.; Park, Y.; Cha, Y.S. L-carnitine-supplemented parenteral nutrition improves fat metabolism but fails to support compensatory growth in premature Korean infants. Nutr. Res. 2010, 30, 233–239.
  159. Winter, S.C. Treatment of carnitine deficiency. J. Inherit. Metab. Dis. 2003, 26, 171–180.
  160. Roulet, M.; Pichard, C.; Rossle, C.; Bretenstein, E.; Schutz, Y.; Chiolero, R.; Furst, P.; Jequier, E. Adverse effects of high dose carnitine supplementation of total parenteral nutrition on protein and fat oxidation in the critically ill. Clin. Nutr. 1989, 8, 83–87.
  161. Sandstedt, S.; Cederblad, G.; Lindholm, M.; Larsson, J. The effect of carnitine supplemented total parenteral nutrition on lipid, energy and nitrogen metabolism in severely ill patients. Clin. Nutr. 1991, 10, 97–104.
  162. Zlotkin, S.H.; Anderson, G.H. The development of cystathionase activity during the first year of life. Pediatr. Res. 1982, 16, 65–68.
  163. Vina, J.; Vento, M.; Garcia-Sala, F.; Puertes, I.R.; Gasco, E.; Sastre, J.; Asensi, M.; Pallardo, F.V. L-cysteine and glutathione metabolism are impaired in premature infants due to cystathionase deficiency. Am. J. Clin. Nutr. 1995, 61, 1067–1069.
  164. Miller, R.G.; Jahoor, F.; Jaksic, T. Decreased cysteine and proline synthesis in parenterally fed, premature infants. J. Pediatr. Surg. 1995, 30, 953–957; discussion 957–958.
  165. Lu, S.C. Regulation of glutathione synthesis. Mol. Asp. Med. 2009, 30, 42–59.
  166. Han, D.; Hanawa, N.; Saberi, B.; Kaplowitz, N. Mechanisms of liver injury. III. Role of glutathione redox status in liver injury. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 291, G1–G7.
  167. Meister, A.; Anderson, M.E. Glutathione. Annu. Rev. Biochem. 1983, 52, 711–760.
  168. Kaplowitz, N.; Eberle, D.E.; Petrini, J.; Touloukian, J.; Corvasce, M.C.; Kuhlenkamp, J. Factors influencing the efflux of hepatic glutathione into bile in rats. J. Pharm. Exp. 1983, 224, 141–147.
  169. Lauterburg, B.H.; Smith, C.V.; Hughes, H.; Mitchell, J.R. Biliary excretion of glutathione and glutathione disulfide in the rat. Regulation and response to oxidative stress. J. Clin. Investig. 1984, 73, 124–133.
  170. Ballatori, N.; Krance, S.M.; Marchan, R.; Hammond, C.L. Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol. Asp. Med. 2009, 30, 13–28.
  171. Ballatori, N.; Truong, A.T. Glutathione as a primary osmotic driving force in hepatic bile formation. Am. J. Physiol. 1992, 263, G617–G624.
  172. Ballatori, N.; Jacob, R.; Barrett, C.; Boyer, J.L. Biliary catabolism of glutathione and differential reabsorption of its amino acid constituents. Am. J. Physiol. 1988, 254, G1–G7.
  173. Ballatori, N.; Jacob, R.; Boyer, J.L. Intrabiliary glutathione hydrolysis. A source of glutamate in bile. J. Biol. Chem. 1986, 261, 7860–7865.
  174. Hanigan, M.H.; Ricketts, W.A. Extracellular glutathione is a source of cysteine for cells that express gamma-glutamyl transpeptidase. Biochemistry 1993, 32, 6302–6306.
  175. Van Goudoever, J.B.; Carnielli, V.; Darmaun, D.; Sainz de Pipaon, M. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Amino acids. Clin. Nutr. 2018, 37, 2315–2323.
  176. Hardwick, D.F.; Applegarth, D.A.; Cockcroft, D.M.; Ross, P.M.; Cder, R.J. Pathogenesis of methionine-induced toxicity. Metab. Clin. Exp. 1970, 19, 381–391.
  177. Moss, R.L.; Haynes, A.L.; Pastuszyn, A.; Glew, R.H. Methionine infusion reproduces liver injury of parenteral nutrition cholestasis. Pediatr. Res. 1999, 45, 664–668.
  178. Squires, R.H.; Dhawan, A.; Alonso, E.; Narkewicz, M.R.; Shneider, B.L.; Rodriguez-Baez, N.; Olio, D.D.; Karpen, S.; Bucuvalas, J.; Lobritto, S.; et al. Intravenous N-acetylcysteine in pediatric patients with nonacetaminophen acute liver failure: A placebo-controlled clinical trial. Hepatology 2013, 57, 1542–1549.
  179. Ahola, T.; Fellman, V.; Laaksonen, R.; Laitila, J.; Lapatto, R.; Neuvonen, P.J.; Raivio, K.O. Pharmacokinetics of intravenous N-acetylcysteine in pre-term new-born infants. Eur. J. Clin. Pharmacol. 1999, 55, 645–650.
  180. Mager, D.R.; Marcon, M.; Wales, P.; Pencharz, P.B. Use of N-acetyl cysteine for the treatment of parenteral nutrition-induced liver disease in children receiving home parenteral nutrition. J. Pediatr. Gastroenterol. Nutr. 2008, 46, 220–223.
  181. Smilkstein, M.J.; Bronstein, A.C.; Linden, C.; Augenstein, W.L.; Kulig, K.W.; Rumack, B.H. Acetaminophen overdose: A 48-hour intravenous N-acetylcysteine treatment protocol. Ann. Emerg. Med. 1991, 20, 1058–1063.
  182. Nabi, T.; Nabi, S.; Rafiq, N.; Shah, A. Role of N-acetylcysteine treatment in non-acetaminophen-induced acute liver failure: A prospective study. Saudi J. Gastroenterol. 2017, 23, 169–175.
  183. Tessier, M.E.M.; Shneider, B.L.; Brandt, M.L.; Cerminara, D.N.; Harpavat, S. A phase 2 trial of N-Acetylcysteine in Biliary atresia after Kasai portoenterostomy. Contemp. Clin. Trials Commun. 2019, 15, 100370.
More
Video Production Service