Cationic Polymer devices against Multidrug Resistant Gram-Negative Bacteria: A Review: Comparison
Please note this is a comparison between Version 6 by Silvana Alfei and Version 13 by Lily Guo.

Antibiotic resistance has increased markedly in Gram-negative bacteria, causing severe infections intractable with traditional drugs and amplifying mortality and healthcare costs. Consequently, to find novel antimicrobial compounds, active on multidrug resistant bacteria, is mandatory. In this regard, cationic antimicrobial peptides (CAMPs)—able to kill pathogens on contact—could represent an appealing solution. However, low selectivity, hemolytic toxicity and cost of manufacturing, hamper their massive clinical application. In the recent years—starting from CAMPs as template molecules—less toxic and lower-cost synthetic mimics of CAMPs, including cationic peptides, polymers and dendrimers, have been developed. Although the pending issue of hemolytic toxicity and biodegradability is still left not completely solved, cationic antimicrobial polymers (CAPs), compared to small drug molecules, thanks to their high molecular weight, own appreciable selectivity, reduced toxicity toward eukaryotic cells, more long-term activity, stability and non-volatility. With this background, an updated overview concerning the state of the art of the main manufactured types of CAPs, active on Gram-negative bacteria, is herein reported, including synthetic procedure and action’s mechanism. Information about their structures, antibacterial activity, advantages and drawbacks of the most appeal, was reported in the form of tables, which allow faster consultation and quicker learning compounds was also providedncerning current CAPs state of the art, in order not to retrace reviews already available.

  • antibiotic resistance
  • Gram-negative bacteria
  • hemolytic cytotoxicity
  • membrane disruption
  • positively charged polymers
Please wait, diff process is still running!

References

  1. S.M. Pouch; C.J. Kubin; M.J. Satlin; D.S. Tsapepas; J.R. Lee; G. Dube; M.R. Pereira; Epidemiology and outcomes of carbapenem-resistant Klebsiella pneumoniae bacteriuria in kidney transplant recipients.. Transplant Infectious Disease 2015, 17, 800-9, 10.1111/tid.12450.
  2. Joshua T. Thaden; Yanhong Li; Felicia Ruffin; Stacey A. Maskarinec; Jonathan M. Hill-Rorie; Lisa C. Wanda; Shelby D. Reed; Jr. Vance G. Fowler; Increased Costs Associated with Bloodstream Infections Caused by Multidrug-Resistant Gram-Negative Bacteria Are Due Primarily to Patients with Hospital-Acquired Infections. Antimicrobial Agents and Chemotherapy 2016, 61, e01709-16, 10.1128/aac.01709-16.
  3. Anton Peleg; David C. Hooper; Hospital-acquired infections due to gram-negative bacteria.. New England Journal of Medicine 2010, 362, 1804-13, 10.1056/NEJMra0904124.
  4. WHO. Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline; WHO: Geneva, Switzerland, 2019. [Google Scholar]
  5. WHO. Antibacterial Agents in Preclinical Development: An Open Access Database; WHO: Geneva, Switzerland, 2019. [Google Scholar]
  6. WHO. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug Resistant Bacterial Infections, Including Tuberculosis; WHO: Geneva, Switzerland, 2017. [Google Scholar]
  7. Elizabeth Peterson; Parjit Kaur; Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Frontiers in Microbiology 2018, 9, , 10.3389/fmicb.2018.02928.
  8. Claudio U Köser; Matthew J. Ellington; Sharon J. Peacock; Whole-genome sequencing to control antimicrobial resistance.. Trends in Genetics 2014, 30, 401-7, 10.1016/j.tig.2014.07.003.
  9. R Benveniste; J Davies; Mechanisms of Antibiotic Resistance in Bacteria. Annual Review of Biochemistry 1973, 42, 471-506, 10.1146/annurev.bi.42.070173.002351.
  10. Leeson, P. Drug discovery: Chemical beauty contest. Nature 2012, 481, 455–456. [Google Scholar] [CrossRef]
  11. Michael Zasloff; Antimicrobial Peptides of Multicellular Organisms: My Perspective.. Single Molecule and Single Cell Sequencing 2019, 1117, 3-6, 10.1007/978-981-13-3588-4_1.
  12. Kang, H.K.; Kim, C.; Seo, C.H.; Park, Y. The therapeutic applications of antimicrobial peptides (AMPs): A patent review. J. Microbiol. 2017, 55, 1–12. [Google Scholar] [CrossRef]
  13. Hyung Tae Lee; Se Kye Kim; Jang Won Yoon; Antisense peptide nucleic acids as a potential anti-infective agent. Journal of Microbiology 2019, 57, 423-430, 10.1007/s12275-019-8635-4.
  14. David Calfee; Jayol A; Nordmann P; Poirel L; Faculty Opinions recommendation of Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes.. Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature 2017, 30, , 10.3410/f.727386083.793536901.
  15. T Ikeda; H Yamaguchi; S Tazuke; New polymeric biocides: synthesis and antibacterial activities of polycations with pendant biguanide groups.. Antimicrobial Agents and Chemotherapy 1984, 26, 139-144, 10.1128/aac.26.2.139.
  16. Jafar Hasan; Russell Crawford; Elena P. Ivanova; Antibacterial surfaces: the quest for a new generation of biomaterials. Trends in Biotechnology 2013, 31, 295-304, 10.1016/j.tibtech.2013.01.017.
  17. Lihua Yang; Vernita D. Gordon; Dallas Trinkle; Nathan W. Schmidt; Matthew A. Davis; Clarabelle Devries; Abhigyan Som; John E. Cronan; Gregory N. Tew; Gerard C. L. Wong; Mechanism of a prototypical synthetic membrane-active antimicrobial: Efficient hole-punching via interaction with negative intrinsic curvature lipids. Proceedings of the National Academy of Sciences 2008, 105, 20595-20600, 10.1073/pnas.0806456105.
  18. Willy Chin; Chuan Yang; Victor Wee Lin Ng; Yuan Huang; Junchi Cheng; Yen Wah Tong; Daniel J. Coady; Weimin Fan; James Hedrick; Yi Yan Yang; Biodegradable Broad-Spectrum Antimicrobial Polycarbonates: Investigating the Role of Chemical Structure on Activity and Selectivity. Macromolecules 2013, 46, 8797-8807, 10.1021/ma4019685.
  19. Xingyun Liu; Zhe Wang; Xueqiong Feng; Enhe Bai; Yi Xiong; Xiangcheng Zhu; Ben Shen; Yanwen Duan; Yong Huang; Platensimycin-Encapsulated Poly(lactic-co-glycolic acid) and Poly(amidoamine) Dendrimers Nanoparticles with Enhanced Anti-Staphylococcal Activity in Vivo. Bioconjugate Chemistry 2020, 31, 1425-1437, 10.1021/acs.bioconjchem.0c00121.
  20. El-Refaie Kenawy; S. D. Worley; Roy Broughton; The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review. Biomacromolecules 2007, 8, 1359-1384, 10.1021/bm061150q.
  21. Manohara Dhulappa Jalageri; Yashoda Malgar Puttaiahgowda; Ajithkumar Manayan Parambil; Thivaharan Varadavenkatesan; Synthesis and fabrication of highly functionalized Jeffamine antimicrobial polymeric coating. Polymers for Advanced Technologies 2019, 30, 1616-1627, 10.1002/pat.4592.
  22. Margit Mahlapuu; Joakim Hakansson; Lovisa Ringstad; Camilla Björn; Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Frontiers in Microbiology 2016, 6, 194, 10.3389/fcimb.2016.00194.
  23. Michael J. Trimble; Patrik Mlynárčik; Milan Kolář; Robert E.W. Hancock; Polymyxin: Alternative Mechanisms of Action and Resistance. Cold Spring Harbor Perspectives in Medicine 2016, 6, a025288, 10.1101/cshperspect.a025288.
  24. Nannette Yount; Michael R Yeaman; Immunocontinuum: perspectives in antimicrobial peptide mechanisms of action and resistance.. Protein & Peptide Letters 2005, 12, 49-67, 10.2174/0929866053405959.
  25. Aqeel Ahmad; Ejaz Ahmad; Gulam Rabbani; Shafiul Haque; Arshad; Rizwan H. Khan; Identification and design of antimicrobial peptides for therapeutic applications.. Current Protein & Peptide Science 2012, 13, 211-223, 10.2174/138920312800785076.
  26. Alexandra Marr; W Gooderham; Robert E.W. Hancock; Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Current Opinion in Pharmacology 2006, 6, 468-472, 10.1016/j.coph.2006.04.006.
  27. Axel Hollmann; Melina Martinez; Patricia Maturana; Liliana C. Semorile; Paulo César Maffía; Antimicrobial Peptides: Interaction With Model and Biological Membranes and Synergism With Chemical Antibiotics. Frontiers in Chemistry 2018, 6, 204, 10.3389/fchem.2018.00204.
  28. Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef]
  29. Pramod Shah; Felix Shih-Hsiang Hsiao; Yu-Hsuan Ho; Chien-Sheng Chen; The proteome targets of intracellular targeting antimicrobial peptides. PROTEOMICS 2016, 16, 1225-1237, 10.1002/pmic.201500380.
  30. Ziqing Jiang; Adriana I. Vasil; Michael L. Vasil; Robert S. Hodges; “Specificity Determinants” Improve Therapeutic Indices of Two Antimicrobial Peptides Piscidin 1 and Dermaseptin S4 Against the Gram-negative Pathogens Acinetobacter baumannii and Pseudomonas aeruginosa. Pharmaceuticals 2014, 7, 366-391, 10.3390/ph7040366.
  31. Leonard T. Nguyen; Evan F. Haney; Hans J. Vogel; The expanding scope of antimicrobial peptide structures and their modes of action. Trends in Biotechnology 2011, 29, 464-472, 10.1016/j.tibtech.2011.05.001.
  32. J.M. Pogue; J.K. Ortwine; K.S. Kaye; Clinical considerations for optimal use of the polymyxins: A focus on agent selection and dosing. Clinical Microbiology and Infection 2017, 23, 229-233, 10.1016/j.cmi.2017.02.023.
  33. Réka Spohn; Lejla Daruka; Viktória Lázár; Ana Martins; Fanni Vidovics; Gábor Grézal; Orsolya Méhi; Bálint Kintses; Mónika Számel; Pramod K. Jangir; Bálint Csörgő; Ádám Györkei; Zoltán Bódi; Anikó Faragó; László Bodai; Imre Földesi; Diána Kata; Gergely Maróti; Bernadett Pap; Roland Wirth; Balázs Papp; Csaba Pál; Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance.. Nature Communications 2019, 10, 4538-13, 10.1038/s41467-019-12364-6.
  34. Nicole J. Afacan; Amy T.Y. Yeung; Olga M. Pena; Robert E.W. Hancock; Therapeutic potential of host defense peptides in antibiotic-resistant infections.. Current Pharmaceutical Design 2012, 18, 807-819, 10.2174/138161212799277617.
  35. Barzic, A.I.; Ioan, S. Concepts, Compounds and the Alternatives of Antibacterials Antibacterial Drugs, 1st ed.; Bobbarala, V., Ed.; Science, Technology and Medicine: London, UK, 2015; pp. 3–28. [Google Scholar]
  36. El-Refaie Kenawy; Sherif Kandil; CHAPTER 3. Synthesis, Antimicrobial Activity and Applications of Polymers with Ammonium and Phosphonium Groups. Miktoarm Star Polymers 2013, null, 54-74, 10.1039/9781782624998-00054.
  37. Shuzhen Yan; Shuai Chen; Xiangbo Gou; Jie Yang; Jinxia An; Xiaoyu Jin; Ying-Wei Yang; Li Chen; Hui Gao; Biodegradable Supramolecular Materials Based on Cationic Polyaspartamides and Pillar[5]arene for Targeting Gram‐Positive Bacteria and Mitigating Antimicrobial Resistance. Advanced Functional Materials 2019, 29, , 10.1002/adfm.201904683.
  38. Franklin, T.J.; Snow, G.A. Biochemistry and Molecular Biology of Antimicrobial Drug Action, 6th ed.; Springer: New York, NY, USA, 2005; pp. 15–41. [Google Scholar]
  39. Peter A. Lambert; Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. Journal of Applied Microbiology 2002, 92, 46S-54S, 10.1046/j.1365-2672.92.5s1.7.x.
  40. Peter Gilbert; L.E. Moore; Cationic antiseptics: diversity of action under a common epithet. Journal of Applied Microbiology 2005, 99, 703-715, 10.1111/j.1365-2672.2005.02664.x.
  41. Gregory J. Gabriel; Abhigyan Som; Ahmad E. Madkour; Tarik Eren; Gregory N. Tew; Infectious disease: Connecting innate immunity to biocidal polymers. Materials Science and Engineering: R: Reports 2007, 57, 28-64, 10.1016/j.mser.2007.03.002.
  42. Sang-Hoon Lim; Samuel M. Hudson; Review of Chitosan and Its Derivatives as Antimicrobial Agents and Their Uses as Textile Chemicals. Journal of Macromolecular Science, Part C 2003, 43, 223-269, 10.1081/mc-120020161.
  43. Rejane C. Goy; Douglas De Britto; O.B.G. Assis; A review of the antimicrobial activity of chitosan. Polímeros 2009, 19, 241-247, 10.1590/s0104-14282009000300013.
  44. Takamasa Nonaka; Eishiroh Noda; Seiji Kurihara; Graft copolymerization of vinyl monomers bearing positive charges or episulfide groups onto loofah fibers and their antibacterial activity. Journal of Applied Polymer Science 2000, 77, 1077-1086, 10.1002/1097-4628(20000801)77:5<1077::aid-app15>3.0.co;2-q.
  45. Li, G.; Shen, J.; A study of pyridinium‐type functional polymers. IV. Behavioral features of the antibacterial activity of insoluble pyridinium‐type polymers. J. App. Polym. Sci. 2000, 78, 676-684, https://doi.org/10.1002/1097-4628(20001017)78:3%3C676::AID-APP240%3E3.0.CO;2-E.
  46. Li, G.; Shen, J.; Zhu, Y.; A study of pyridinium‐type functional polymers. III. Preparation and characterization of insoluble pyridinium‐type polymers. J. App. Polym. Sci 2000, 78, 668-675, https://doi.org/10.1002/1097-4628(20001017)78:3%3C668::AID-APP230%3E3.0.CO;2-A.
  47. Joerg C. Tiller; Chun-Jen Liao; Kim Lewis; Alexander M Klibanov; Designing surfaces that kill bacteria on contact. Proceedings of the National Academy of Sciences 2001, 98, 5981-5985, 10.1073/pnas.111143098.
  48. Joerg C. Tiller; Sang Beom Lee; Kim Lewis; Alexander M Klibanov; Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnology and Bioengineering 2002, 79, 465-471, 10.1002/bit.10299.
  49. Jun Hiraki; Takafumi Ichikawa; Shin-Ichi Ninomiya; Hideaki Seki; Katsumi Uohama; Hiroshi Seki; Shigemi Kimura; Yukio Yanagimoto; James W Barnett; Use of ADME studies to confirm the safety of epsilon-polylysine as a preservative in food.. Regulatory Toxicology and Pharmacology 2003, 37, , null.
  50. Ashish Punia; Edward He; Kevin Lee; Probal Banerjee; Nan-Loh Yang; Cationic amphiphilic non-hemolytic polyacrylates with superior antibacterial activity.. Chemical Communications 2014, 50, 7071, 10.1039/c4cc01583e.
  51. I. M. Helander; H.-L. Alakomi; K. Latva-Kala; P. Koski; Polyethyleneimine is an effective permeabilizer of Gram-negative bacteria. Microbiology 1997, 143, 3193-3199, 10.1099/00221287-143-10-3193.
  52. Jian Lin; Shuyi Qiu; Kim Lewis; Alexander M Klibanov; Bactericidal Properties of Flat Surfaces and Nanoparticles Derivatized with Alkylated Polyethylenimines. Biotechnology Progress 2002, 18, 1082-1086, 10.1021/bp025597w.
  53. Jian Lin; Shuyi Qiu; Kim Lewis; Alexander M Klibanov; Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnology and Bioengineering 2003, 83, 168-172, 10.1002/bit.10651.
  54. Alessandro F. Martins; Suelen P. Facchi; Heveline D.M. Follmann; Antonio G. B. Pereira; Adley F. Rubira; Edvani C. Muniz; Antimicrobial Activity of Chitosan Derivatives Containing N-Quaternized Moieties in Its Backbone: A Review. International Journal of Molecular Sciences 2014, 15, 20800-20832, 10.3390/ijms151120800.
  55. Vishnukant Mourya; Nazma N. Inamdar; Trimethyl chitosan and its applications in drug delivery. Journal of Materials Science: Materials in Electronics 2008, 20, 1057-1079, 10.1007/s10856-008-3659-z.
  56. Riccardo Muzzarelli; Fabio Tanfani; The N-permethylation of chitosan and the preparation of N-trimethyl chitosan iodide. Carbohydrate Polymers 1985, 5, 297-307, 10.1016/0144-8617(85)90037-2.
  57. Yong Ping Han; Qiang Lin; Synthesis,Characterization, and Antibacterial Activity of Quaternized of N-Aromatic Chitosan Derivatives. Applied Mechanics and Materials 2011, 138, 1202-1208, 10.4028/www.scientific.net/amm.138-139.1202.
  58. Piras, A.M.; Esin, S.; Benedetti, A.; Maisetta, G.; Fabiano, A.; Zambito, Y.; Batoni, G. Antibacterial, Antibiofilm, and Antiadhesive Properties of Dierent Quaternized Chitosan Derivatives. Int. J. Mol. Sci. 2019, 20, 6297. [Google Scholar] [CrossRef] [PubMed]
  59. Xiaowei Zhang; Ce Shi; Zuojia Liu; Fengguang Pan; Rizeng Meng; Xiujuan Bu; Heqin Xing; Yanhong Deng; Na Guo; Lu Yu; Antibacterial activity and mode of action of ε-polylysine against Escherichia coli O157:H7. Journal of Medical Microbiology 2018, 67, 838-845, 10.1099/jmm.0.000729.
  60. Shoji Shima; Hiroyoshi Matsuoka; Toshiro Iwamoto; Heiichi Sakai; Antimicrobial action of .EPSILON.-poly-L-lysine.. The Journal of Antibiotics 1984, 37, 1449-1455, 10.7164/antibiotics.37.1449.
  61. Kito, M.; Onji, Y.; Yoshida, T.; Nagasawa, T. Occurrence of ɛ-poly-L-lysine-degrading enzyme in ε-poly-L-lysine-tolerant Sphingobacterium multivorum OJ10: Purification and characterization. FEMS Microbiol. Lett. 2002, 207, 147–151. [Google Scholar] [CrossRef]
  62. Chang, Y.; McLandsborough, L.; McClements, D.J. Antimicrobial delivery systems based on electrostatic complexes of cationic ε-polylysine and anionic gum arabic. Food Hydrocoll. 2014, 35, 137–143. [Google Scholar] [CrossRef]
  63. Ruosong Ye; Hengyi Xu; Cuixiang Wan; Shanshan Peng; Lijun Wang; Hong Xu; Zoraida P. Aguilar; Yonghua Xiong; Zheling Zeng; Hua Wei; Antibacterial activity and mechanism of action of ε-poly-l-lysine. Biochemical and Biophysical Research Communications 2013, 439, 148-153, 10.1016/j.bbrc.2013.08.001.
  64. Ikeda, T.; Tazuke, S.; Suzuki, Y. Biologically active polycations 4: Synthesis and antimicrobial activity of poly(trialkylvinylbenzylammonium chloride)s. Makromol. Chem. 1984, 185, 869–876. [Google Scholar] [CrossRef]
  65. Larisa M. Timofeeva; Natalia Kleshcheva; Antimicrobial polymers: mechanism of action, factors of activity, and applications. Applied Microbiology and Biotechnology 2010, 89, 475-492, 10.1007/s00253-010-2920-9.
  66. Efstathia Kougia; Maria Tselepi; Gavriil Vasilopoulos; Georgia Ch. Lainioti; Nikos D. Koromilas; Denisa Druvari; Georgios Bokias; Apostolos Vantarakis; Joannis K. Kallitsis; Evaluation of Antimicrobial Efficiency of New Polymers Comprised by Covalently Attached and/or Electrostatically Bound Bacteriostatic Species, Based on Quaternary Ammonium Compounds. Molecules 2015, 20, 21313-21327, 10.3390/molecules201219768.
  67. Yan Xue; Huining Xiao; Characterization and antipathogenic evaluation of a novel quaternary phosphonium tripolyacrylamide and elucidation of the inactivation mechanisms. Journal of Biomedical Materials Research Part A 2015, 104, 747-757, 10.1002/jbm.a.35613.
  68. Yan Xue; Yuanfeng Pan; Huining Xiao; Yi Zhao; Novel quaternary phosphonium-type cationic polyacrylamide and elucidation of dual-functional antibacterial/antiviral activity. RSC Advances 2014, 4, 46887-46895, 10.1039/c4ra08634a.
  69. Mitra S. Ganewatta; Chuanbing Tang; Controlling macromolecular structures towards effective antimicrobial polymers. Polymer 2015, 63, A1-A29, 10.1016/j.polymer.2015.03.007.
  70. Subrata Chattopadhyay; Elisabeth Heine; H. Keul; Martin Möller; Multifunctional Poly(Vinyl Amine)s Bearing Azetidinium Groups: One Pot Preparation in Water and Antimicrobial Properties. Macromolecular Bioscience 2014, 14, 1116-1124, 10.1002/mabi.201300576.
  71. Michael A. Gelman; Bernard Weisblum; David M. Lynn; Katrina T. Forest; Biocidal Activity of Polystyrenes That Are Cationic by Virtue of Protonation. Organic Letters 2004, 6, 557-560, 10.1021/ol036341+.
  72. Edmund F. Palermo; Kenichi Kuroda; Chemical Structure of Cationic Groups in Amphiphilic Polymethacrylates Modulates the Antimicrobial and Hemolytic Activities. Biomacromolecules 2009, 10, 1416-1428, 10.1021/bm900044x.
  73. Xin Yang; Kan Hu; Guantai Hu; Danyao Shi; Yunjiang Jiang; Liwei Hui; Rui Zhu; Yuntao Xie; Lihua Yang; Long Hydrophilic-and-Cationic Polymers: A Different Pathway toward Preferential Activity against Bacterial over Mammalian Membranes. Biomacromolecules 2014, 15, 3267-3277, 10.1021/bm5006596.
  74. Katherine E.S. Locock; Thomas D. Michl; Jules D. P. Valentin; Krasimir Vasilev; J. D. Hayball; Yue Qu; Ana Traven; Hans Griesser; Laurence Meagher; Matthias Haeussler; Guanylated Polymethacrylates: A Class of Potent Antimicrobial Polymers with Low Hemolytic Activity. Biomacromolecules 2013, 14, 4021-4031, 10.1021/bm401128r.
  75. P. Gilbert; D. Pemberton; Diane E. Wilkinson; Barrier properties of the Gram-negative cell envelope towards high molecular weight polyhexamethylene biguanides. Journal of Applied Bacteriology 1990, 69, 585-592, 10.1111/j.1365-2672.1990.tb01552.x.
  76. Vointseva, I.I.; Gembitsky, P.A. Polyguanidines—Disinfecting Agents and Multifunctional Additives to Composite Materials; LKM-Press: Moscow, Russia, 2009; p. 300. (In Russian) [Google Scholar]
  77. P. Broxton; P.M. Woodcock; P. Gilbert; A study of the antibacterial activity of some polyhexamethylene biguanides towardsEscherichia coliATCC 8739. Journal of Applied Bacteriology 1983, 54, 345-353, 10.1111/j.1365-2672.1983.tb02627.x.
  78. Zhongxin Zhou; Dafu Wei; Yong Guan; Anna Zheng; Jian-Jiang Zhong; Corrigendum to “Extensive in vitro activity of guanidine hydrochloride polymer analogs against antibiotics-resistant clinically isolated strains” [Material Science and Engineering C 31/8 (2011) 1836–1843]. Materials Science and Engineering: C 2012, 32, 395, 10.1016/j.msec.2011.12.014.
  79. Larisa M. Timofeeva; Natalia A. Kleshcheva; Antonina F. Moroz; Lyubov V. Didenko; Secondary and Tertiary Polydiallylammonium Salts: Novel Polymers with High Antimicrobial Activity. Biomacromolecules 2009, 10, 2976-2986, 10.1021/bm900435v.
  80. Sanches, L.M.; Petri, D.F.S.; de Melo Carrasco, L.D.; Carmona-Ribeiro, A.M. The antimicrobial activity of free and immobilized poly (diallyldimethylammonium) chloride in nanoparticles of poly (methylmethacrylate). J. Nanobiotechnol. 2015, 13, e58. [Google Scholar] [CrossRef] [PubMed]
  81. Jinyu Huang; Hironobu Murata; Richard Koepsel; Alan J. Russell; Krzysztof Matyjaszewski; Antibacterial Polypropylene via Surface-Initiated Atom Transfer Radical Polymerization. Biomacromolecules 2007, 8, 1396-1399, 10.1021/bm061236j.
  82. Ana Maria Carmona-Ribeiro; Leticia Carrasco; Cationic Antimicrobial Polymers and Their Assemblies. International Journal of Molecular Sciences 2013, 14, 9906-9946, 10.3390/ijms14059906.
  83. Letícia D. Melo; Elsa M. Mamizuka; Ana Maria Carmona-Ribeiro; Antimicrobial Particles from Cationic Lipid and Polyelectrolytes. Langmuir 2010, 26, 12300-12306, 10.1021/la101500s.
  84. Melo, L.D.; Carmona-Ribeiro, A.M. Fungicidal nanoparticles of low toxicity from cationic lipid and polyelectrolytes. NSTI Nanotech. 2012, 3, 350–353. [Google Scholar]
  85. Gregory J. Gabriel; Janet A. Maegerlein; Christopher F. Nelson; Jeffrey M. Dabkowski; Tarik Eren; Klaus Nüsslein; Gregory N. Tew; Comparison of facially amphiphilic versus segregated monomers in the design of antibacterial copolymers.. Chemistry - A European Journal 2009, 15, 433-9, 10.1002/chem.200801233.
  86. M. Firat Ilker; Klaus Nüsslein; Gregory N. Tew; E. Bryan Coughlin; Tuning the Hemolytic and Antibacterial Activities of Amphiphilic Polynorbornene Derivatives. Journal of the American Chemical Society 2004, 126, 15870-15875, 10.1021/ja045664d.
  87. Gregory J. Gabriel; Ahmad E. Madkour; Jeffrey M. Dabkowski; Christopher F. Nelson; Klaus Nüsslein; Gregory N. Tew; Synthetic Mimic of Antimicrobial Peptide with Nonmembrane-Disrupting Antibacterial Properties. Biomacromolecules 2008, 9, 2980-2983, 10.1021/bm800855t.
  88. Tarik Eren; Abhigyan Som; Jason R. Rennie; Christopher F. Nelson; Yelena Urgina; Klaus Nusslein; E. Bryan Coughlin; Gregory N. Tew; Antibacterial and Hemolytic Activities of Quaternary Pyridinium Functionalized Polynorbornenes. Macromolecular Chemistry and Physics 2008, 209, 516-524, 10.1002/macp.200700418.
  89. Victor Wee Lin Ng; Jeremy Pang Kern Tan; Jiayu Leong; Zhi Xiang Voo; James L. Hedrick; Yi Yan Yang; Antimicrobial Polycarbonates: Investigating the Impact of Nitrogen-Containing Heterocycles as Quaternizing Agents. Macromolecules 2014, 47, 1285-1291, 10.1021/ma402641p.
  90. Philippe H. Sellenet; Bradley Allison; Bruce M. Applegate; Jeffrey P. Youngblood; Synergistic Activity of Hydrophilic Modification in Antibiotic Polymers. Biomacromolecules 2007, 8, 19-23, 10.1021/bm0605513.
  91. F. X. Hu; Koon Gee Neoh; L. Cen; En-Tang Kang; Antibacterial and antifungal efficacy of surface functionalized polymeric beads in repeated applications. Biotechnology and Bioengineering 2005, 89, 474-484, 10.1002/bit.20384.
  92. Yingchun He; Elisabeth Heine; Nina Keusgen; H. Keul; Martin Möller; Synthesis and Characterization of Amphiphilic Monodisperse Compounds and Poly(ethylene imine)s: Influence of Their Microstructures on the Antimicrobial Properties. Biomacromolecules 2012, 13, 612-623, 10.1021/bm300033a.
  93. Luminita Marin; Daniela Ailincai; Mihai Mares; Elena Stoleru; Mariana Cristea; Valentin Nica; Bogdan C. Simionescu; Imino-chitosan biopolymeric films. Obtaining, self-assembling, surface and antimicrobial properties. Carbohydrate Polymers 2015, 117, 762-770, 10.1016/j.carbpol.2014.10.050.
  94. Garry Kerch; Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends in Food Science & Technology 2015, 46, 159-166, 10.1016/j.tifs.2015.10.010.
  95. Ming Kong; Xiguang Chen; Ke Xing; Hyun Jin Park; Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology 2010, 144, 51-63, 10.1016/j.ijfoodmicro.2010.09.012.
  96. Ana Patricia Martínez-Camacho; Mario Onofre Cortez-Rocha; Maria Monica Castillo Ortega; Armando Burgos-Hernández; Josafat Marina Ezquerra-Brauer; Maribel Plascencia-Jatomea; Antimicrobial activity of chitosan nanofibers obtained by electrospinning. Polymer International 2011, 60, 1663-1669, 10.1002/pi.3174.
  97. Madson R. E. Santos; Ana C. Fonseca; Patrícia Mendonça; Rita Branco; Arménio C. Serra; Paula V. Morais; Jorge F.J. Coelho; Recent Developments in Antimicrobial Polymers: A Review. Materials 2016, 9, 599, 10.3390/ma9070599.
  98. Dan Zhu; Honghao Cheng; Jianna Li; Wenwen Zhang; Yuanyuan Shen; Shaojun Chen; Zaochuan Ge; Shiguo Chen; Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt. Materials Science and Engineering: C 2016, 61, 79-84, 10.1016/j.msec.2015.12.024.
  99. Chun-Hua Wang; Wen-Shuai Liu; Ju-Feng Sun; Gui-Ge Hou; Qin Chen; Wei Cong; Feng Zhao; Non-toxic O-quaternized chitosan materials with better water solubility and antimicrobial function. International Journal of Biological Macromolecules 2016, 84, 418-427, 10.1016/j.ijbiomac.2015.12.047.
  100. Yi Zhang; Mingming Ding; Lijuan Zhou; Hong Tan; Jiehua Li; Huining Xiao; Jianshu Li; James Snow; Synthesis and antibacterial characterization of gemini surfactant monomers and copolymers. Polymer Chemistry 2012, 3, 907, 10.1039/c2py00558a.
  101. Huining Xiao; Liying Qian; CHAPTER 4. Water-Soluble Antimicrobial Polymers for Functional Cellulose Fibres and Hygiene Paper Products. Miktoarm Star Polymers 2013, null, 75-96, 10.1039/9781782624998-00075.
  102. Peter Gilbert; Andrew J. McBain; Potential Impact of Increased Use of Biocides in Consumer Products on Prevalence of Antibiotic Resistance. Clinical Microbiology Reviews 2003, 16, 189-208, 10.1128/cmr.16.2.189-208.2003.
  103. Jinyu Huang; Richard Koepsel; Hironobu Murata; Wei Wu; Sang Beom Lee; Tomasz Kowalewski; Alan J. Russell; Krzysztof Matyjaszewski; Nonleaching Antibacterial Glass Surfaces via “Grafting Onto”: The Effect of the Number of Quaternary Ammonium Groups on Biocidal Activity. Langmuir 2008, 24, 6785-6795, 10.1021/la8003933.
  104. Muhammad Jawwad Saif; Jamil Anwar; Munawar Ali Munawar; A Novel Application of Quaternary Ammonium Compounds as Antibacterial Hybrid Coating on Glass Surfaces. Langmuir 2009, 25, 377-379, 10.1021/la802878p.
  105. Ira Yudovin-Farber; Nurit Beyth; Abraham Nyska; Ervin I. Weiss; Jacob Golenser; Abraham J. Domb; Surface Characterization and Biocompatibility of Restorative Resin Containing Nanoparticles. Biomacromolecules 2008, 9, 3044-3050, 10.1021/bm8004897.
  106. Evdokia Oikonomou; Zacharoula Iatridi; Maria Moschakou; Petros Damigos; Georgios Bokias; Joannis K. Kallitsis; Development of Cu2+- and/or phosphonium-based polymeric biocidal materials and their potential application in antifouling paints. Progress in Organic Coatings 2012, 75, 190-199, 10.1016/j.porgcoat.2012.04.019.
  107. Zhiyun Zhang; Jianchun Wang; Qin Tu; Nan Nie; Jun Sha; Wenming Liu; Rui Liu; Yanrong Zhang; Jinyi Wang; Surface modification of PDMS by surface-initiated atom transfer radical polymerization of water-soluble dendronized PEG methacrylate. Colloids and Surfaces B: Biointerfaces 2011, 88, 85-92, 10.1016/j.colsurfb.2011.06.019.
  108. Biologically Active Polymers. Encyclopedic Dictionary of Polymers 2011, null, 80-80, 10.1007/978-1-4419-6247-8_1316.
  109. Akihiko Kanazawa; Tomiki Ikeda; Takeshi Endo; Novel polycationic biocides: Synthesis and antibacterial activity of polymeric phosphonium salts. Journal of Polymer Science Part A: Polymer Chemistry 1993, 31, 335-343, 10.1002/pola.1993.080310205.
  110. Madson R. E. Santos; Patrícia Mendonça; Mariana Cruz Almeida; Rita Branco; Arménio C. Serra; Paula V. Morais; Jorge F.J. Coelho; Increasing the Antimicrobial Activity of Amphiphilic Cationic Copolymers by the Facile Synthesis of High Molecular Weight Stars by Supplemental Activator and Reducing Agent Atom Transfer Radical Polymerization. Biomacromolecules 2018, 20, 1146-1156, 10.1021/acs.biomac.8b00685.
  111. Lino Ferreira; Andreas Zumbuehl; Non-leaching surfaces capable of killing microorganisms on contact. Journal of Materials Chemistry 2009, 19, 7796, 10.1039/b905668h.
  112. Yan Xue; Huining Xiao; Yi Zhang; Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts. International Journal of Molecular Sciences 2015, 16, 3626-3655, 10.3390/ijms16023626.
  113. Felix Siedenbiedel; Joerg C. Tiller; Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles. Polymers 2012, 4, 46-71, 10.3390/polym4010046.
  114. Yuanfeng Pan; Qiuyang Xia; Huining Xiao; Cationic Polymers with Tailored Structures for Rendering Polysaccharide-Based Materials Antimicrobial: An Overview.. Polymers 2019, 11, 1283, 10.3390/polym11081283.
  115. Koromilas, N.D.; Lainioti, G.C.; Oikonomou, E.K.; Bokias, G.; Kallitsis, J.K. Synthesis and self-organization in dilute aqueous solution of hydrophobically modified polycations and polyampholytes based on 4-vinyl benzyl chloride. Eur. Polym. J. 2014, 54, 39–51. [Google Scholar] [CrossRef]
  116. Shih-Wa Wang; Wenjuan Liu; Ralph H. Colby; Counterion Dynamics in Polyurethane-Carboxylate Ionomers with Ionic Liquid Counterions. Chemistry of Materials 2011, 23, 1862-1873, 10.1021/cm103548t.
  117. Chainika Jangu; Timothy E. Long; Phosphonium cation-containing polymers: From ionic liquids to polyelectrolytes. Polymer 2014, 55, 3298-3304, 10.1016/j.polymer.2014.04.015.
  118. P Broxton; P M Woodcock; F Heatley; P Gilbert; Interaction of some polyhexamethylene biguanides and membrane phospholipids in Escherichia coli.. Journal of Applied Bacteriology 1984, 57, , null.
  119. Karen Lienkamp; Ahmad E. Madkour; Ashlan Musante; Christopher F. Nelson; Klaus Nüsslein; Gregory N. Tew; Antimicrobial Polymers Prepared by ROMP with Unprecedented Selectivity: A Molecular Construction Kit Approach. Journal of the American Chemical Society 2008, 130, 9836-9843, 10.1021/ja801662y.
  120. Evan F. Haney; Suzana K. Straus; Robert E. W. Hancock; Reassessing the Host Defense Peptide Landscape. Frontiers in Chemistry 2019, 7, 43, 10.3389/fchem.2019.00043.
  121. Edmund F. Palermo; Iva Sovadinová; Kenichi Kuroda; Structural Determinants of Antimicrobial Activity and Biocompatibility in Membrane-Disrupting Methacrylamide Random Copolymers. Biomacromolecules 2009, 10, 3098-3107, 10.1021/bm900784x.
  122. Leticia Carrasco; Jorge Luiz Mello Sampaio; Ana Maria Carmona-Ribeiro; Supramolecular Cationic Assemblies against Multidrug-Resistant Microorganisms: Activity and Mechanism of Action. International Journal of Molecular Sciences 2015, 16, 6337-6352, 10.3390/ijms16036337.
  123. Akihiko Kanazawa; Tomiki Ikeda; Takeshi Endo; Antibacterial activity of polymeric sulfonium salts. Journal of Polymer Science Part A: Polymer Chemistry 1993, 31, 2873-2876, 10.1002/pola.1993.080311126.
  124. Michiasa Hirayama; The antimicrobial activity, hydrophobicity and toxicity of sulfonium compounds, and their relationship.. Biocontrol Science 2011, 16, 23-31, 10.4265/bio.16.23.
  125. Bradley C. Allison; Bruce M. Applegate; Jeffrey P. Youngblood; Hemocompatibility of Hydrophilic Antimicrobial Copolymers of Alkylated 4-Vinylpyridine. Biomacromolecules 2007, 8, 2995-2999, 10.1021/bm7004627.
  126. Thomas R. Stratton; Jenna Rickus; Jeffrey P. Youngblood; In Vitro Biocompatibility Studies of Antibacterial Quaternary Polymers. Biomacromolecules 2009, 10, 2550-2555, 10.1021/bm9005003.
  127. Davidson, R.L. Water-Soluble Resins, 2nd ed.; Reinhold Book Corp.: New York, NY, USA, 1968; pp. 1–240. [Google Scholar]
  128. Alexander A. Yaroslavov; Nikolay Melik-Nubarov; Fredric M. Menger; Polymer-Induced Flip-Flop in Biomembranes. Accounts of Chemical Research 2006, 39, 702-710, 10.1021/ar050078q.
  129. T Ikeda; H Hirayama; H Yamaguchi; S Tazuke; M Watanabe; Polycationic biocides with pendant active groups: molecular weight dependence of antibacterial activity.. Antimicrobial Agents and Chemotherapy 1986, 30, 132-136, 10.1128/aac.30.1.132.
  130. Martin Albert; Petra Feiertag; Gertraud Hayn; Robert Saf; Helmut Hönig; Structure−Activity Relationships of OligoguanidinesInfluence of Counterion, Diamine, and Average Molecular Weight on Biocidal Activities. Biomacromolecules 2003, 4, 1811-1817, 10.1021/bm0342180.
  131. Alexander M. Klibanov; Permanently microbicidal materials coatings. Journal of Materials Chemistry 2007, 17, 2479, 10.1039/b702079a.
  132. E. F. Panarin; M. V. Solovskii; N. A. Zaikina; G. E. Afinogenov; Biological activity of cationic polyelectrolytes. Die Makromolekulare Chemie 1985, 9, 25-33, 10.1002/macp.1985.020091985104.
  133. Kim Lewis; Alexander M. Klibanov; Surpassing nature: rational design of sterile-surface materials. Trends in Biotechnology 2005, 23, 343-348, 10.1016/j.tibtech.2005.05.004.
  134. Varun Sambhy; Blake R. Peterson; Ayusman Sen; Antibacterial and Hemolytic Activities of Pyridinium Polymers as a Function of the Spatial Relationship between the Positive Charge and the Pendant Alkyl Tail. Angewandte Chemie International Edition 2008, 47, 1250-1254, 10.1002/anie.200702287.
  135. Nebojša M. Milović; Jun Wang; Kim Lewis; Alexander M Klibanov; ImmobilizedN-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnology and Bioengineering 2005, 90, 715-722, 10.1002/bit.20454.
  136. Timofeeva, L.M.; Kleshcheva, N.A.; Vasilieva, Y.A.; Gromova, G.L.; Timofeeva, G.I.; Filatova, M.P. Synthesis of novel polymers based on monomers of the diallylamine series: Mechanistic and kinetic study. Polym. Sci. Ser. A 2005, 47, 273–282. [Google Scholar]
  137. Glukhov, E.; Stark, M.; Burrows, L.L.; Deber, C.M. Basis for selectivity of cationic antimicrobial peptides for bacterial vs. mammalian membranes. J. Biol. Chem. 2005, 280, 33960–33967. [Google Scholar] [CrossRef]
More
ScholarVision Creations