You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Mouse Models in PWS Research: Comparison
Please note this is a comparison between Version 2 by Bruce Ren and Version 1 by Timofey S. Rozhdestvensky.

Prader-Willi syndrome (PWS) is a neurogenetic multifactorial disorder caused by the deletion or inactivation of paternally imprinted genes on human chromosome 15q11-q13. The affected homologous locus is on mouse chromosome 7C. The positional conservation and organization of genes including the imprinting pattern between mice and men implies similar physiological functions of this locus. Therefore, considerable efforts to recreate the pathogenesis of PWS have been accomplished in mouse models. We provide a summary of different mouse models that were generated for the analysis of PWS and discuss their impact on our current understanding of corresponding genes, their putative functions and the pathogenesis of PWS. Murine models of PWS unveiled the contribution of each affected gene to this multi-facetted disease, and also enabled the establishment of the minimal critical genomic region (PWScr) responsible for core symptoms, highlighting the importance of non-protein coding genes in the PWS locus. Although the underlying disease-causing mechanisms of PWS remain widely unresolved and existing mouse models do not fully capture the entire spectrum of the human PWS disorder, continuous improvements of genetically engineered mouse models have proven to be very powerful and valuable tools in PWS research.

  • Prader-Willi syndrome (PWS)
  • Snord116
  • U-Ube3a-AS
  • IPW-A
  • 116HG
  • mouse models
  • Magel2
  • PWS imprinting center (IC)
  • non-coding RNAs
  • Snord115
  • 5-Ht2c serotonin receptor
  • Necdin
  • Mkrn3
Please wait, diff process is still running!

References

  1. McCandless, S.E.; Health Supervision for Children With Prader-Willi Syndrome. PEDIATRICS 2010, 127, 195-204, 10.1542/peds.2010-2820.
  2. Suzanne B. Cassidy; Stuart Schwartz; Jennifer L. Miller; Daniel J. Driscoll; Prader-Willi syndrome. Genetics in Medicine 2011, 14, 10-26, 10.1038/gim.0b013e31822bead0.
  3. Louisa Kalsner; Stormy J. Chamberlain; Prader-Willi, Angelman, and 15q11-q13 Duplication Syndromes. Pediatric Clinics of North America 2015, 62, 587-606, 10.1016/j.pcl.2015.03.004.
  4. M. A. Angulo; Merlin G Butler; M. E. Cataletto; Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. Journal of Endocrinological Investigation 2015, 38, 1249-1263, 10.1007/s40618-015-0312-9.
  5. Merlin G. Butler; Jennifer L. Miller; Janice L. Forster; Prader-Willi Syndrome - Clinical Genetics, Diagnosis and Treatment Approaches: An Update. Current Pediatric Reviews 2019, 15, 207-244, 10.2174/1573396315666190716120925.
  6. C.F. Rocha; C.L.A. Paiva; Mini-Review Prader-Willi-like phenotypes: a systematic review of their chromosomal abnormalities. Genetics and Molecular Research 2014, 13, 2290-2298, 10.4238/2014.march.31.9.
  7. Soo-Jeong Kim; Jennifer L Miller; Paul J Kuipers; Jennifer Ruth German; Arthur L Beaudet; Trilochan Sahoo; Daniel J Driscoll; Unique and atypical deletions in Prader–Willi syndrome reveal distinct phenotypes. European Journal of Human Genetics 2011, 20, 283-290, 10.1038/ejhg.2011.187.
  8. Jennifer L. Miller; Christy H. Lynn; Danielle C. Driscoll; Anthony P. Goldstone; June-Anne Gold; Virginia Kimonis; Elisabeth Dykens; Merlin G. Butler; Jonathan J. Shuster; Daniel J. Driscoll; et al. Nutritional phases in Prader-Willi syndrome. American Journal of Medical Genetics Part A 2011, 155, 1040-1049, 10.1002/ajmg.a.33951.
  9. Christina Kanaka-Gantenbein; Christina Kogia; Mohamed Badawy Abdel-Naser; George P. Chrousos; Skin manifestations of growth hormone-induced diseases. Reviews in Endocrine and Metabolic Disorders 2016, 17, 259-267, 10.1007/s11154-016-9378-8.
  10. Antonino Crinò; Danilo Fintini; Sarah Bocchini; Graziano Grugni; Obesity management in Prader–Willi syndrome: current perspectives. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2018, ume 11, 579-593, 10.2147/dmso.s141352.
  11. Elisabeth M. Dykens; Elizabeth Roof; Hailee Hunt-Hawkins; Christopher Daniell; Sarah Jurgensmeyer; Profiles and trajectories of impaired social cognition in people with Prader-Willi syndrome. PLoS ONE 2019, 14, e0223162, 10.1371/journal.pone.0223162.
  12. Régis Afonso Costa; Igor Ribeiro Ferreira; Hiago Azevedo Cintra; Leonardo Henrique Ferreira Gomes; Letícia Da Cunha Guida; Genotype-Phenotype Relationships and Endocrine Findings in Prader-Willi Syndrome. Frontiers in Endocrinology 2019, 10, 864, 10.3389/fendo.2019.00864.
  13. Chong Kun Cheon; Genetics of Prader-Willi syndrome and Prader-Will-Like syndrome. Annals of Pediatric Endocrinology & Metabolism 2016, 21, 126-135, 10.6065/apem.2016.21.3.126.
  14. Driscoll DJ, Miller JL, Schwartz S, Cassidy SB. Prader-Willi Syndrome.; Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, Amemiya A, Eds.; GeneReviews® [Internet].: Seattle (WA): University of Washington, Seattle; 1993–2021., 1998 Oct 6 [updated 2017 Dec 14]; pp. PMID: 20301505.
  15. Tess Lionti; Susan M. Reid; Susan M. White; Margaret M. Rowell; A population-based profile of 160 Australians with Prader-Willi syndrome: Trends in diagnosis, birth prevalence and birth characteristics. American Journal of Medical Genetics Part A 2014, 167, 371-378, 10.1002/ajmg.a.36845.
  16. Annick Vogels; Jenneke Van Den Ende; Kathelijne Keymolen; Geert Mortier; Koenraad Devriendt; Eric Legius; Jean-Pierre Fryns; Minimum prevalence, birth incidence and cause of death for Prader–Willi syndrome in Flanders. European Journal of Human Genetics 2003, 12, 238-240, 10.1038/sj.ejhg.5201135.
  17. J V Butler; J E Whittington; A J Holland; H Boer; D Clarke; T Webb; Prevalence of, and risk factors for, physical ill-health in people with Prader-Willi syndrome: a population-based study. Developmental Medicine & Child Neurology 2007, 44, 248-255, 10.1111/j.1469-8749.2002.tb00800.x.
  18. Merlin G. Butler; Ann M. Manzardo; Janalee Heinemann; Carolyn Loker; James Loker; Causes of death in Prader-Willi syndrome: Prader-Willi Syndrome Association (USA) 40-year mortality survey. Genetics in Medicine 2016, 19, 635-642, 10.1038/gim.2016.178.
  19. Dibia Liz Pacoricona Alfaro; Perrine Lemoine; Virginie Ehlinger; Catherine Molinas; Gwénaëlle Diene; Marion Valette; Graziella Pinto; Muriel Coupaye; Christine Poitou-Bernert; Denise Thuilleaux; et al.Catherine ArnaudMaithé Tauber Causes of death in Prader-Willi syndrome: lessons from 11 years’ experience of a national reference center. Orphanet Journal of Rare Diseases 2019, 14, 1-10, 10.1186/s13023-019-1214-2.
  20. Jennifer Proffitt; Kathryn Osann; Barbara McManus; Virginia E. Kimonis; Janalee Heinemann; Merlin G. Butler; David A. Stevenson; June‐Anne Gold; Contributing factors of mortality in Prader–Willi syndrome. American Journal of Medical Genetics Part A 2018, 179, 196-205, 10.1002/ajmg.a.60688.
  21. Graziano Grugni; Alessandro Sartorio; Antonino Crinò; Growth hormone therapy for Prader–Willi syndrome: challenges and solutions. Therapeutics and Clinical Risk Management 2016, 12, 873-881, 10.2147/tcrm.s70068.
  22. Mikaela Frixou; Diane Vlek; Angela K. Lucas‐Herald; Lindsay Keir; Andreas Kyriakou; M. Guftar Shaikh; The use of growth hormone therapy in adults with Prader‐Willi syndrome: A systematic review. Clinical Endocrinology 2020, 94, 645-655, 10.1111/cen.14372.
  23. Rebecca M. Harris; Diane E.J. Stafford; Prader Willi syndrome. Current Opinion in Endocrinology, Diabetes & Obesity 2020, 27, 56-62, 10.1097/med.0000000000000517.
  24. Qiming Tan; Camila E. Orsso; Edward C. Deehan; Lucila Triador; Catherine J. Field; Hein Min Tun; Joan C. Han; Timo D. Müller; Andrea M. Haqq; Current and emerging therapies for managing hyperphagia and obesity in Prader‐Willi syndrome: A narrative review. Obesity Reviews 2019, 21, e12992, 10.1111/obr.12992.
  25. Robert D. Nicholls; Joan H. M. Knoll; Merlin G. Butler; Susan Karam; Marc Lalande; Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature 1989, 342, 281-285, 10.1038/342281a0.
  26. Merlin G. Butler; Genomic imprinting disorders in humans: a mini-review. Journal of Assisted Reproduction and Genetics 2009, 26, 477-486, 10.1007/s10815-009-9353-3.
  27. Michaela Wawrzik; Unga Arifa Unmehopa; Dick Frans Swaab; Johannes Van De Nes; Karin Buiting; Bernhard Horsthemke; The C15orf2 gene in the Prader–Willi syndrome region is subject to genomic imprinting and positive selection. neurogenetics 2009, 11, 153-161, 10.1007/s10048-009-0231-z.
  28. Elizabeth J. Bhoj; Farrah Rajabi; Samuel W. Baker; Avni Santani; Wen-Hann Tan; Imprinted genes in clinical exome sequencing: Review of 538 cases and exploration of mouse-human conservation in the identification of novel human disease loci. European Journal of Medical Genetics 2020, 63, 103903, 10.1016/j.ejmg.2020.103903.
  29. Emma D. Spikol; Caroline E. Laverriere; Maya Robnett; Gabriela Carter; Erin Wolfe; Eric Glasgow; Zebrafish Models of Prader-Willi Syndrome: Fast Track to Pharmacotherapeutics. Diseases 2016, 4, 13, 10.3390/diseases4010013.
  30. Renée Van Amerongen; Martijn Nawijn; Jonathan Franca-Koh; John Zevenhoven; Hanneke Van Der Gulden; Jos Jonkers; Anton Berns; Frat is dispensable for canonical Wnt signaling in mammals. Genes & Development 2005, 19, 425-430, 10.1101/gad.326705.
  31. Lisa C. Neumann; Nathalie Feiner; Axel Meyer; Karin Buiting; Bernhard Horsthemke; The imprinted NPAP1 gene in the Prader-Willi syndrome region belongs to a POM121-related family of retrogenes.. Genome Biology and Evolution 2014, 6, 344-51, 10.1093/gbe/evu019.
  32. Lisa C. Neumann; Yolanda Markaki; Emil Mladenov; Daniel Hoffmann; Karin Buiting; Bernhard Horsthemke; The imprinted NPAP1/C15orf2 gene in the Prader–Willi syndrome region encodes a nuclear pore complex associated protein. Human Molecular Genetics 2012, 21, 4038-4048, 10.1093/hmg/dds228.
  33. Sandrina Bervini; Herbert Herzog; Mouse models of Prader–Willi Syndrome: A systematic review. Frontiers in Neuroendocrinology 2013, 34, 107-119, 10.1016/j.yfrne.2013.01.002.
  34. Trilochan Sahoo; Daniela Del Gaudio; Jennifer R German; Marwan Shinawi; Sarika U Peters; Richard E Person; Adolfo D Garnica; Sau Wai Cheung; Arthur L Beaudet; Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nature Genetics 2008, 40, 719-721, 10.1038/ng.158.
  35. Adam J. De Smith; Carolin Purmann; Robin G. Walters; Richard J. Ellis; Susan E. Holder; Mieke M. Van Haelst; Angela F. Brady; Una L. Fairbrother; Mehul Dattani; Julia M. Keogh; et al.Elana HenningGiles S.H. YeoStephen O'rahillyPhilippe FroguelI. Sadaf FarooqiAlexandra I.F. Blakemore A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Human Molecular Genetics 2009, 18, 3257-3265, 10.1093/hmg/ddp263.
  36. Angela L Duker; Blake C Ballif; Erawati V Bawle; Richard E Person; Sangeetha Mahadevan; Sarah Alliman; Regina Thompson; Ryan N Traylor; Bassem A Bejjani; Lisa G Shaffer; et al.Jill A RosenfeldAllen N LambTrilochan Sahoo Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader–Willi syndrome. European Journal of Human Genetics 2010, 18, 1196-1201, 10.1038/ejhg.2010.102.
  37. Eric Bieth; Sanaa Eddiry; Véronique Gaston; Françoise Lorenzini; Alexandre Buffet; Françoise Conte Auriol; Catherine Molinas; Dorothée Cailley; Caroline Rooryck; Benoit Arveiler; et al.Jérome CavailléJean Pierre SallesMaïthé Tauber Highly restricted deletion of the SNORD116 region is implicated in Prader–Willi Syndrome. European Journal of Human Genetics 2014, 23, 252-255, 10.1038/ejhg.2014.103.
  38. Paolo Fontana; M. Grasso; Fabio Acquaviva; E. Gennaro; M.L. Galli; M. Falco; F. Scarano; G. Scarano; Fortunato Lonardo; SNORD116 deletions cause Prader-Willi syndrome with a mild phenotype and macrocephaly. Clinical Genetics 2017, 92, 440-443, 10.1111/cge.13005.
  39. Qiming Tan; Kathryn J. Potter; Lisa Cole Burnett; Camila E. Orsso; Mark Inman; Davis C. Ryman; Andrea M. Haqq; Prader–Willi-Like Phenotype Caused by an Atypical 15q11.2 Microdeletion. Genes 2020, 11, 128, 10.3390/genes11020128.
  40. J. M. Gabriel; M. Merchant; T. Ohta; Y. Ji; R. G. Caldwell; M. J. Ramsey; J. D. Tucker; R. Longnecker; R. D. Nicholls; A transgene insertion creating a heritable chromosome deletion mouse model of Prader-Willi and Angelman syndromes. Proceedings of the National Academy of Sciences 1999, 96, 9258-9263, 10.1073/pnas.96.16.9258.
  41. T.-F. Tsai; Y.-H. Jiang; J. Bressler; D. Armstrong; A. L. Beaudet; Paternal Deletion from Snrpn to Ube3a in the Mouse Causes Hypotonia, Growth Retardation and Partial Lethality and Provides Evidence for a Gene Contributing to Prader-Willi Syndrome. Human Molecular Genetics 1999, 8, 1357-1364, 10.1093/hmg/8.8.1357.
  42. Boris V Skryabin; Leonid V Gubar; Birte Seeger; Jana Pfeiffer; Sergej Handel; Thomas Robeck; Elena Karpova; Timofey Rozhdestvensky; Jürgen Brosius; Deletion of the MBII-85 snoRNA Gene Cluster in Mice Results in Postnatal Growth Retardation. PLOS Genetics 2007, 3, e235, 10.1371/journal.pgen.0030235.
  43. Feng Ding; Hong Hua Li; Shengwen Zhang; Nicola M. Solomon; Sally A. Camper; Pinchas Cohen; Uta Francke; SnoRNA Snord116 (Pwcr1/MBII-85) Deletion Causes Growth Deficiency and Hyperphagia in Mice. PLoS ONE 2008, 3, e1709-e1709, 10.1371/journal.pone.0001709.
  44. Jade Hebras; Virginie Marty; Jean Personnaz; Pascale Mercier; Nicolai Krogh; Henrik Nielsen; Marion Aguirrebengoa; Hervé Seitz; Jean-Phillipe Pradere; Bruno P Guiard; et al.Jérôme Cavaille Reassessment of the involvement of Snord115 in the serotonin 2c receptor pathway in a genetically relevant mouse model. eLife 2020, 9, e60862, 10.7554/elife.60862.
  45. Tao Yang; Todd E. Adamson; James L. Resnick; Stuart Leff; Rachel Wevrick; Uta Francke; Nancy A. Jenkins; Neal G. Copeland; Camilynn I. Brannan; A mouse model for Prader-Willi syndrome imprinting-centre mutations. Nature Genetics 1998, 19, 25-31, 10.1038/ng0598-25.
  46. Jan Bressler; Ting-Fen Tsai; Mei-Yi Wu; Shih-Feng Tsai; Maricela A. Ramirez; Dawna Armstrong; Arthur L. Beaudet; The SNRPN promoter is not required for genomic imprinting of the Prader-Willi/Angelman domain in mice. Nature Genetics 2001, 28, 232-240, 10.1038/90067.
  47. Amanda J. DuBose; Emily Y. Smith; Thomas P. Yang; Karen A. Johnstone; James L. Resnick; A new deletion refines the boundaries of the murine Prader-Willi syndrome imprinting center. Human Molecular Genetics 2011, 20, 3461-3466, 10.1093/hmg/ddr262.
  48. Matthieu Gérard; Lidia Hernandez; Rachel Wevrick; Colin L. Stewart; Disruption of the mouse necdin gene results in early post-natal lethality. Nature Genetics 1999, 23, 199-202, 10.1038/13828.
  49. Ken-Ichiro Kuwako; Akari Hosokawa; Isao Nishimura; Taichi Uetsuki; Masashi Yamada; Shigeyuki Nada; Masato Okada; Kazuaki Yoshikawa; Disruption of the Paternal Necdin Gene Diminishes TrkA Signaling for Sensory Neuron Survival. The Journal of Neuroscience 2005, 25, 7090-7099, 10.1523/jneurosci.2083-05.2005.
  50. Françoise Muscatelli; Djoher Nora Abrous; Annick Massacrier; Irène Boccaccio; Michel Le Moal; Pierrre Cau; Harold Cremer; Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome.. Human Molecular Genetics 2000, 9, 3101-3110, 10.1093/hmg/9.20.3101.
  51. Ting-Fen Tsai; Dawna Armstrong; Arthur L. Beaudet; Necdin-deficient mice do not show lethality or the obesity and infertility of Prader-Willi syndrome. Nature Genetics 1999, 22, 15-16, 10.1038/8722.
  52. Fabienne Schaller; Françoise Watrin; Rachel Sturny; Annick Massacrier; Pierre Szepetowski; Françoise Muscatelli; A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Human Molecular Genetics 2010, 19, 4895-4905, 10.1093/hmg/ddq424.
  53. Serguei V Kozlov; James W Bogenpohl; Maureen P Howell; Rachel Wevrick; Satchin Panda; John B HogenEsch; Louis J Muglia; Russell N Van Gelder; Erik D Herzog; Colin L Stewart; et al. The imprinted gene Magel2 regulates normal circadian output. Nature Genetics 2007, 39, 1266-1272, 10.1038/ng2114.
  54. Chuanyin Li; Wenli Lu; Liguang Yang; Zhengwei Li; Xiaoyi Zhou; Rong Guo; Junqi Wang; Zhebao Wu; Zhiya Dong; Guang Ning; et al.Yujiang ShiYinmin GuPeng ChenZijian HaoTianting HanMeiqiang YangWei WangXuehui HuangYixue LiShan GaoRonggui Hu MKRN3 regulates the epigenetic switch of mammalian puberty via ubiquitination of MBD3. National Science Review 2020, 7, 671-685, 10.1093/nsr/nwaa023.
  55. Bruce M. Cattanach; Jacqueline A. Barr; Edward P. Evans; Michael Burtenshaw; Colin V. Beechey; Stuart E. Leff; Camilynn I. Brannan; Neal G. Copeland; Nancy A. Jenkins; Janet Jones; et al. A candidate mouse model for Prader–Willi syndrome which shows an absence of Snrpn expression. Nature Genetics 1992, 2, 270-274, 10.1038/ng1292-270.
  56. Mihaela Stefan; Kathryn C Claiborn; Edyta Stasiek; Jing-Hua Chai; Tohru Ohta; Richard Longnecker; John M Greally; Robert D Nicholls; Genetic mapping of putative Chrna7 and Luzp2 neuronal transcriptional enhancers due to impact of a transgene-insertion and 6.8 Mb deletion in a mouse model of Prader-Willi and Angelman syndromes. BMC Genomics 2005, 6, 157, 10.1186/1471-2164-6-157.
  57. M. Stefan; H. Ji; R. A. Simmons; D. E. Cummings; R. S. Ahima; M. I. Friedman; R. D. Nicholls; Hormonal and Metabolic Defects in a Prader-Willi Syndrome Mouse Model with Neonatal Failure to Thrive. Endocrinology 2005, 146, 4377-4385, 10.1210/en.2005-0371.
  58. Mihaela Stefan; Rebecca A. Simmons; Suzanne Bertera; Massimo Trucco; Farzad Esni; Peter Drain; Robert D. Nicholls; Global deficits in development, function, and gene expression in the endocrine pancreas in a deletion mouse model of Prader-Willi syndrome. American Journal of Physiology-Endocrinology and Metabolism 2011, 300, E909-E922, 10.1152/ajpendo.00185.2010.
  59. Jocelyn M. Bischof; Colin L. Stewart; Rachel Wevrick; Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader-Willi syndrome. Human Molecular Genetics 2007, 16, 2713-2719, 10.1093/hmg/ddm225.
  60. Rebecca E. Mercer; Rachel Wevrick; Loss of Magel2, a Candidate Gene for Features of Prader-Willi Syndrome, Impairs Reproductive Function in Mice. PLOS ONE 2009, 4, e4291, 10.1371/journal.pone.0004291.
  61. Rebecca E. Mercer; Erin M. Kwolek; Jocelyn M. Bischof; Matthijs Van Eede; R. Mark Henkelman; Rachel Wevrick; Regionally reduced brain volume, altered serotonin neurochemistry, and abnormal behavior in mice null for the circadian rhythm output geneMagel2. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 2009, 150B, 1085-1099, 10.1002/ajmg.b.30934.
  62. Rebecca E. Mercer; Sheldon D. Michaelson; Melissa J. S. Chee; Tanya A. Atallah; Rachel Wevrick; William F. Colmers; Magel2 Is Required for Leptin-Mediated Depolarization of POMC Neurons in the Hypothalamic Arcuate Nucleus in Mice. PLOS Genetics 2013, 9, e1003207, 10.1371/journal.pgen.1003207.
  63. Deanna M. Arble; Joshua W. Pressler; Joyce Sorrell; Rachel Wevrick; Darleen A. Sandoval; Sleeve gastrectomy leads to weight loss in the Magel2 knockout mouse. Surgery for Obesity and Related Diseases 2016, 12, 1795-1802, 10.1016/j.soard.2016.04.023.
  64. Julien Maillard; Soyoung Park; Sophie Croizier; Charlotte Vanacker; Joshua H. Cook; Vincent Prevot; Maithe Tauber; Sebastien G. Bouret; Loss of Magel2 impairs the development of hypothalamic Anorexigenic circuits. Human Molecular Genetics 2016, 25, 3208-3215, 10.1093/hmg/ddw169.
  65. Tishani Methsala Wijesuriya; Leentje De Ceuninck; Delphine Masschaele; Matthea R Sanderson; Karin Vanessa Carias; Jan Tavernier; Rachel Wevrick; The Prader-Willi syndrome proteins MAGEL2 and necdin regulate leptin receptor cell surface abundance through ubiquitination pathways. Human Molecular Genetics 2017, 26, 4215-4230, 10.1093/hmg/ddx311.
  66. Merve Oncul; Pelin Dilsiz; Edanur Ates Oz; Tayfun Ates; Iltan Aklan; Esref Celik; Nilufer Sayar Atasoy; Deniz Atasoy; Impaired melanocortin pathway function in Prader–Willi syndrome gene-Magel2 deficient mice. Human Molecular Genetics 2018, 27, 3129-3136, 10.1093/hmg/ddy216.
  67. Saja Baraghithy; Reem Smoum; Adi Drori; Rivka Hadar; Asaad Gammal; Shira Hirsch; Malka Attar-Namdar; Alina Nemirovski; Yankel Gabet; Yshaia Langer; et al.Yehuda PollakChristian Patrick SchaafMegan Elizabeth RechVarda Gross-TsurItai BabRaphael MechoulamJoseph Tam Magel2 Modulates Bone Remodeling and Mass in Prader‐Willi Syndrome by Affecting Oleoyl Serine Levels and Activity. Journal of Bone and Mineral Research 2018, 34, 93-105, 10.1002/jbmr.3591.
  68. Emeline Crutcher; Rituraj Pal; Fatemeh Naini; Ping Zhang; Magdalena Laugsch; Jean Kim; Aleksandar Bajic; Christian P. Schaaf; mTOR and autophagy pathways are dysregulated in murine and human models of Schaaf-Yang syndrome. Scientific Reports 2019, 9, 15935, 10.1038/s41598-019-52287-2.
  69. Miki Igarashi; Vidya Narayanaswami; Virginia Kimonis; Pietro M. Galassetti; Fariba Oveisi; Kwang-Mook Jung; Daniele Piomelli; Dysfunctional oleoylethanolamide signaling in a mouse model of Prader-Willi syndrome. Pharmacological Research 2017, 117, 75-81, 10.1016/j.phrs.2016.12.024.
  70. Chloe Luck; Martha H. Vitaterna; Rachel Wevrick; Dopamine pathway imbalance in mice lacking Magel2, a Prader-Willi syndrome candidate gene.. Behavioral Neuroscience 2016, 130, 448-459, 10.1037/bne0000150.
  71. Tayfun Ates; Merve Oncul; Pelin Dilsiz; Iskalen Cansu Topcu; Cihan Civan Civas; Muhammed Ikbal Alp; Iltan Aklan; Edanur Ates Oz; Yavuz Yavuz; Bayram Yilmaz; et al.Nilufer Sayar AtasoyDeniz Atasoy Inactivation of Magel2 suppresses oxytocin neurons through synaptic excitation-inhibition imbalance. Neurobiology of Disease 2019, 121, 58-64, 10.1016/j.nbd.2018.09.017.
  72. Helen Chen; A. Kaitlyn Victor; Jonathon Klein; Klementina Fon Tacer; Derek J.C. Tai; Celine De Esch; Alexander Nuttle; Jamshid Temirov; Lisa C. Burnett; Michael Rosenbaum; et al.Yiying ZhangLi DingJames J. MorescoJolene K. DiedrichJohn R. YatesHeather S. TillmanRudolph L. LeibelMichael E. TalkowskiDaniel D. BilladeauLawrence T. ReiterPatrick Ryan Potts Loss of MAGEL2 in Prader-Willi syndrome leads to decreased secretory granule and neuropeptide production. JCI Insight 2020, 5, e138576, 10.1172/jci.insight.138576.
  73. Hamid Meziane; Fabienne Schaller; Sylvian Bauer; Claude Villard; Valery Matarazzo; Fabrice Riet; Gilles Guillon; Daniel Lafitte; Michel G. Desarmenien; Maithé Tauber; et al.Françoise Muscatelli An Early Postnatal Oxytocin Treatment Prevents Social and Learning Deficits in Adult Mice Deficient for Magel2, a Gene Involved in Prader-Willi Syndrome and Autism. Biological Psychiatry 2015, 78, 85-94, 10.1016/j.biopsych.2014.11.010.
  74. Daisuke Ieda; Yutaka Negishi; Tomomi Miyamoto; Yoshikazu Johmura; Natsuko Kumamoto; Kohji Kato; Ichiro Miyoshi; Makoto Nakanishi; Shinya Ugawa; Hisashi Oishi; et al.Shinji Saitoh Two mouse models carrying truncating mutations in Magel2 show distinct phenotypes. PLOS ONE 2020, 15, e0237814, 10.1371/journal.pone.0237814.
  75. Sébastien Zanella; Françoise Watrin; Saïda Mebarek; Fabienne Marly; Michel Roussel; Catherine Gire; Gwenaëlle Diene; Maïté Tauber; Françoise Muscatelli; Gérard Hilaire; et al. Necdin Plays a Role in the Serotonergic Modulation of the Mouse Respiratory Network: Implication for Prader-Willi Syndrome. The Journal of Neuroscience 2008, 28, 1745-1755, 10.1523/jneurosci.4334-07.2008.
  76. Jun Ren; Syann Lee; Silvia Pagliardini; Matthieu Gérard; Colin L. Stewart; John J. Greer; Rachel Wevrick; Absence of Ndn, Encoding the Prader-Willi Syndrome-Deleted Gene necdin, Results in Congenital Deficiency of Central Respiratory Drive in Neonatal Mice. The Journal of Neuroscience 2003, 23, 1569-1573, 10.1523/JNEUROSCI.23-05-01569.2003.
  77. Anne Rieusset; Fabienne Schaller; Unga Unmehopa; Valery Matarazzo; Françoise Watrin; Matthias Linke; Béatrice Georges; Jocelyn Bischof; Femke Dijkstra; Monique Bloemsma; et al.Severine CorbyFrançois J. MichelRachel WevrickUlrich ZechnerDick SwaabKeith DudleyLaurent BezinFrançoise Muscatelli Stochastic Loss of Silencing of the Imprinted Ndn/NDN Allele, in a Mouse Model and Humans with Prader-Willi Syndrome, Has Functional Consequences. PLOS Genetics 2013, 9, e1003752, 10.1371/journal.pgen.1003752.
  78. Valéry Matarazzo; Laura Caccialupi; Fabienne Schaller; Yuri Shvarev; Nazim Kourdougli; Alessandra Bertoni; Clément Menuet; Nicolas Voituron; Evan Deneris; Patricia Gaspar; et al.Laurent BezinPascale DurbecGérard HilaireFrançoise Muscatelli Necdin shapes serotonergic development and SERT activity modulating breathing in a mouse model for Prader-Willi syndrome. eLife 2017, 6, e32640, 10.7554/elife.32640.
  79. Rui-Ni Wu; Wei-Chen Hung; Ching-Tsuey Chen; Li-Ping Tsai; Wen-Sung Lai; Ming-Yuan Min; Shi-Bing Wong; Firing activity of locus coeruleus noradrenergic neurons decreases in necdin-deficient mice, an animal model of Prader–Willi syndrome. Journal of Neurodevelopmental Disorders 2020, 12, 1-12, 10.1186/s11689-020-09323-4.
  80. RenBin Lu; Yufan Dong; Jia-Da Li; Necdin regulates BMAL1 stability and circadian clock through SGT1-HSP90 chaperone machinery. Nucleic Acids Research 2020, 48, 7944-7957, 10.1093/nar/gkaa601.
  81. Stormy J. Chamberlain; Karen A. Johnstone; Amanda J. DuBose; Thomas A. Simon; Marisa S. Bartolomei; James L. Resnick; Camilynn I. Brannan; Evidence for genetic modifiers of postnatal lethality in PWS-IC deletion mice. Human Molecular Genetics 2004, 13, 2971-2977, 10.1093/hmg/ddh314.
  82. Dinko Relkovic; Christine M. Doe; Trevor Humby; Karen A. Johnstone; James L. Resnick; Anthony J. Holland; Jim J. Hagan; Lawrence S. Wilkinson; Anthony R. Isles; Behavioural and cognitive abnormalities in an imprinting centre deletion mouse model for Prader–Willi syndrome. European Journal of Neuroscience 2010, 31, 156-164, 10.1111/j.1460-9568.2009.07048.x.
  83. Christine M. Doe; Dinko Relkovic; Alastair S. Garfield; Jeffrey W. Dalley; David E.H. Theobald; Trevor Humby; Lawrence S. Wilkinson; Anthony R. Isles; Loss of the imprinted snoRNA mbii-52 leads to increased 5htr2c pre-RNA editing and altered 5HT2CR-mediated behaviour. Human Molecular Genetics 2009, 18, 2140-2148, 10.1093/hmg/ddp137.
  84. Jennifer R. Davies; Trevor Humby; Dominic M. Dwyer; Alastair S. Garfield; Hannah Furby; Lawrence S. Wilkinson; Timothy N C Wells; Anthony R. Isles; Calorie seeking, but not hedonic response, contributes to hyperphagia in a mouse model for Prader-Willi syndrome. European Journal of Neuroscience 2015, 42, 2105-2113, 10.1111/ejn.12972.
  85. Jennifer R Davies; Lawrence S Wilkinson; Anthony R Isles; Trevor Humby; Prader-Willi syndrome imprinting centre deletion mice have impaired baseline and 5-HT2CR-mediated response inhibition.. Human Molecular Genetics 2019, 28, 3013-3023, 10.1093/hmg/ddz100.
  86. Dinko Relkovic; Trevor Humby; Jim J. Hagan; Lawrence S. Wilkinson; Anthony R. Isles; Enhanced appetitive learning and reversal learning in a mouse model for Prader-Willi syndrome.. Behavioral Neuroscience 2012, 126, 488-492, 10.1037/a0028155.
  87. Karen A. Johnstone; Amanda J. DuBose; Christopher R. Futtner; Michael D. Elmore; Camilynn I. Brannan; James L. Resnick; A human imprinting centre demonstrates conserved acquisition but diverged maintenance of imprinting in a mouse model for Angelman syndrome imprinting defects. Human Molecular Genetics 2005, 15, 393-404, 10.1093/hmg/ddi456.
  88. Marta Pace; Matteo Falappa; Andrea Freschi; Edoardo Balzani; Chiara Berteotti; Viviana Lo Martire; Fatemeh Kaveh; Eivind Hovig; Giovanna Zoccoli; Roberto Amici; et al.Matteo CerriAlfonso UrbanucciValter Tucci Loss of Snord116 impacts lateral hypothalamus, sleep, and food-related behaviors. JCI Insight 2020, 5, e137495, 10.1172/jci.insight.137495.
  89. Glenda Lassi; Lorenzo Priano; Silvia Maggi; Celina Garcia-Garcia; Edoardo Balzani; Nadia El-Assawy; Marco Pagani; Federico Tinarelli; Daniela Giardino; Alessandro Mauro; et al.Jo PetersAlessandro GozziGraziano GrugniValter Tucci Deletion of theSnord116/SNORD116Alters Sleep in Mice and Patients with Prader-Willi Syndrome. Sleep 2016, 39, 637-644, 10.5665/sleep.5542.
  90. Anna Adhikari; Nycole A. Copping; Beth Onaga; Michael C. Pride; Rochelle L. Coulson; Mu Yang; Dag H. Yasui; Janine M. LaSalle; Jill L. Silverman; Cognitive deficits in the Snord116 deletion mouse model for Prader-Willi syndrome. Neurobiology of Learning and Memory 2019, 165, 106874, 10.1016/j.nlm.2018.05.011.
  91. Joseph Polex-Wolf; Brian Y.H. Lam; Rachel Larder; John Tadross; Debra Rimmington; Fatima Bosch; Verónica Jiménez Cenzano; Eduard Ayuso; Marcella K.L. Ma; Kara Rainbow; et al.Anthony P. CollStephen O’RahillyGiles S.H. Yeo Hypothalamic loss of Snord116 recapitulates the hyperphagia of Prader-Willi syndrome.. Journal of Clinical Investigation 2018, 128, 960-969, 10.1172/JCI97007.
  92. Lisa Cole Burnett; Gabriela Hubner; Charles A Leduc; Michael V Morabito; Jayne F Martin Carli; Rudolph L Leibel; Loss of the imprinted, non-coding Snord116 gene cluster in the interval deleted in the Prader Willi syndrome results in murine neuronal and endocrine pancreatic developmental phenotypes. Human Molecular Genetics 2017, 26, 4606-4616, 10.1093/hmg/ddx342.
  93. Lisa C. Burnett; Charles A. LeDuc; Carlos R. Sulsona; Daniel Paull; Richard Rausch; Sanaa Eddiry; Jayne F. Martin Carli; Michael V. Morabito; Alicja A. Skowronski; Gabriela Hubner; et al.Matthew ZimmerLiheng WangRobert DayBrynn LevyIlene FennoyBeatrice DubernChristine PoitouKarine ClementMerlin G. ButlerMichael RosenbaumJean Pierre SallesMaithe TauberDaniel J. DriscollDieter EgliRudolph L. Leibel Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. Journal of Clinical Investigation 2016, 127, 293-305, 10.1172/jci88648.
  94. Weston T. Powell; Rochelle L. Coulson; Florence K. Crary; Spencer S. Wong; Robert A. Ach; Peter Tsang; N. Alice Yamada; Dag H. Yasui; Janine M. LaSalle; A Prader–Willi locus lncRNA cloud modulates diurnal genes and energy expenditure. Human Molecular Genetics 2013, 22, 4318-4328, 10.1093/hmg/ddt281.
  95. Yue Qi; Louise Purtell; Melissa Fu; Nicola J. Lee; Julia Aepler; Lei Zhang; Kim Loh; Ronaldo F. Enriquez; Paul A. Baldock; Sergei Zolotukhin; et al.Lesley V. CampbellHerbert Herzog Snord116 is critical in the regulation of food intake and body weight. Scientific Reports 2016, 6, 18614, 10.1038/srep18614.
  96. Louise Purtell; Yue Qi; Lesley Campbell; Amanda Sainsbury; Herbert Herzog; Adult-onset deletion of the Prader-Willi syndrome susceptibility gene Snord116 in mice results in reduced feeding and increased fat mass. Translational Pediatrics 2017, 6, 88-97, 10.21037/tp.2017.03.06.
  97. Timofey S. Rozhdestvensky; Thomas Robeck; Chenna R. Galiveti; Carsten A. Raabe; Birte Seeger; Anna Wolters; Leonid V. Gubar; Jürgen Brosius; Boris V. Skryabin; Maternal transcription of non-protein coding RNAs from the PWS-critical region rescues growth retardation in mice. Scientific Reports 2016, 6, 20398, 10.1038/srep20398.
  98. Rochelle L Coulson; Weston T Powell; Dag H Yasui; Gayathri Dileep; James Resnick; Janine M LaSalle; Prader–Willi locus Snord116 RNA processing requires an active endogenous allele and neuron-specific splicing by Rbfox3/NeuN. Human Molecular Genetics 2018, 27, 4051-4060, 10.1093/hmg/ddy296.
  99. Mei-Yi Wu; Ming Jiang; Xiaodong Zhai; Arthur L. Beaudet; Ray-Chang Wu; An Unexpected Function of the Prader-Willi Syndrome Imprinting Center in Maternal Imprinting in Mice. PLOS ONE 2012, 7, e34348, 10.1371/journal.pone.0034348.
  100. Y. Qi; L. Purtell; M. Fu; L. Zhang; S. Zolotukhin; L. Campbell; H. Herzog; Hypothalamus Specific Re-Introduction of SNORD116 into Otherwise Snord116 Deficient Mice Increased Energy Expenditure. Journal of Neuroendocrinology 2017, 29, e12457, 10.1111/jne.12457.
  101. Jos Jonkers; Renée Van Amerongen; Martin Van Der Valk; Els Robanus-Maandag; Miranda Molenaar; Olivier Destrée; Anton Berns; In vivo analysis of Frat1 deficiency suggests compensatory activity of Frat3. Mechanisms of Development 1999, 88, 183-194, 10.1016/s0925-4773(99)00187-2.
  102. Shin Kobayashi; Takashi Kohda; Hitoshi Ichikawa; Atsuo Ogura; Misao Ohki; Tomoko Kaneko-Ishino; Fumitoshi Ishino; Paternal Expression of a Novel Imprinted Gene, Peg12/Frat3, in the Mouse 7C Region Homologous to the Prader–Willi Syndrome Region. Biochemical and Biophysical Research Communications 2002, 290, 403-408, 10.1006/bbrc.2001.6160.
  103. Ana Paula Abreu; Andrew Dauber; Delanie B. Macedo; Sekoni D. Noel; Vinicius N. Brito; John C. Gill; Priscilla Cukier; Iain R. Thompson; Victor M. Navarro; Priscila C. Gagliardi; et al.Tânia RodriguesCristiane KochiCarlos Alberto LonguiDominique BeckersFrancis De ZegherLuciana R. MontenegroBerenice B. MendoncaRona S. CarrollJoel N. HirschhornAna Claudia LatronicoUrsula B. Kaiser Central Precocious Puberty Caused by Mutations in the Imprinted Gene MKRN3. New England Journal of Medicine 2013, 368, 2467-2475, 10.1056/nejmoa1302160.
  104. Deniz Kanber; Jacques C Giltay; Dagmar Wieczorek; Corinna Zogel; Ron Hochstenbach; Almuth Caliebe; Alma Kuechler; Bernhard Horsthemke; Karin Buiting; A paternal deletion of MKRN3, MAGEL2 and NDN does not result in Prader–Willi syndrome. European Journal of Human Genetics 2008, 17, 582-590, 10.1038/ejhg.2008.232.
  105. Syann Lee; Christine L. Walker; Rachel Wevrick; Prader–Willi syndrome transcripts are expressed in phenotypically significant regions of the developing mouse brain. Patterns 2003, 3, 599-609, 10.1016/s1567-133x(03)00113-3.
  106. Syann Lee; Serguei Kozlov; Lidia Hernandez; Stormy J. Chamberlain; Camilynn I. Brannan; Colin L. Stewart; Rachel Wevrick; Expression and imprinting of MAGEL2 suggest a role in Prader-willi syndrome and the homologous murine imprinting phenotype.. Human Molecular Genetics 2000, 9, 1813-1819, 10.1093/hmg/9.12.1813.
  107. Yi-Heng Hao; Jennifer M. Doyle; Saumya Ramanathan; Timothy S. Gomez; Da Jia; Ming Xu; Zhijian J. Chen; Daniel D. Billadeau; Michael K. Rosen; Patrick Ryan Potts; et al. Regulation of WASH-Dependent Actin Polymerization and Protein Trafficking by Ubiquitination. Cell 2013, 152, 1051-1064, 10.1016/j.cell.2013.01.051.
  108. Jennifer M. Doyle; Jinlan Gao; Jiawei Wang; Maojun Yang; Patrick Ryan Potts; MAGE-RING Protein Complexes Comprise a Family of E3 Ubiquitin Ligases. Molecular Cell 2010, 39, 963-974, 10.1016/j.molcel.2010.08.029.
  109. John McCarthy; Philip J. Lupo; Erin Kovar; Megan Rech; Bret Bostwick; Daryl Scott; Katerina Kraft; Tony Roscioli; Joel Charrow; Samantha A. Schrier Vergano; et al.Edward LoseRobert SmiegelYves LacassieChristian P. Schaaf Schaaf-Yang syndrome overview: Report of 78 individuals. American Journal of Medical Genetics Part A 2018, 176, 2564-2574, 10.1002/ajmg.a.40650.
  110. Michael D. Fountain; Emmelien Aten; Megan T. Cho; Jane Juusola; Magdalena A. Walkiewicz; Joseph W. Ray; Fan Xia; Yaping Yang; Brett H. Graham Md; Carlos A. Bacino; et al.Lorraine PotockiArie Van HaeringenClaudia A.L. RuivenkampPedro ManciasHope NorthrupMary K. KukolichMarjan M. WeissConny M.A. Van Ravenswaaij-Arts MdInge B. MathijssenSebastien Levesque MdNaomi MeeksJill A. RosenfeldDanielle LemkeAda HamoshSuzanne K. LewisSimone RaceLaura L. StewartBeverly N. HayAndrea M. LewisRita L. GuerreiroJose T. BrasMarcia P. MartinsGerarda Derksen-Lubsen MdEls PeetersConnie Stumpel MdSander StegmannLevinus A. BokGijs W.E. Santen MdChristian P. Schaaf Md The phenotypic spectrum of Schaaf-Yang syndrome: 18 new affected individuals from 14 families. Genetics in Medicine 2016, 19, 45-52, 10.1038/gim.2016.53.
  111. Christian P. Schaaf; Manuel L. Gonzalez-Garay; Fan Xia; Lorraine Potocki; Karen W. Gripp; Baili Zhang; Brock A. Peters; Mark A. McElwain; Radoje Drmanac; Arthur L. Beaudet; et al.C. Thomas CaskeyYaping Yang Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nature Genetics 2013, 45, 1405-1408, 10.1038/ng.2776.
  112. Alysa A. Tennese; Rachel Wevrick; Impaired Hypothalamic Regulation of Endocrine Function and Delayed Counterregulatory Response to Hypoglycemia in Magel2-Null Mice. Endocrinology 2011, 152, 967-978, 10.1210/en.2010-0709.
  113. Michael D. Fountain; Huifang Tao; Chun-An Chen; Jiani Yin; Christian P. Schaaf; Magel2 knockout mice manifest altered social phenotypes and a deficit in preference for social novelty. Genes, Brain and Behavior 2017, 16, 592-600, 10.1111/gbb.12378.
  114. Takaaki Kuwajima; Koichi Hasegawa; Kazuaki Yoshikawa; Necdin Promotes Tangential Migration of Neocortical Interneurons from Basal Forebrain. The Journal of Neuroscience 2010, 30, 3709-3714, 10.1523/jneurosci.5797-09.2010.
  115. Alysa A. Tennese; Christopher B. Gee; Rachel Wevrick; Loss of the Prader‐Willi syndrome protein necdin causes defective migration, axonal outgrowth, and survival of embryonic sympathetic neurons. Developmental Dynamics 2008, 237, 1935-1943, 10.1002/dvdy.21615.
  116. James M. Gabriel; Todd A. Gray; Lisa Stubbs; Shihji Saitoh; Tohru Ohta; Robert D. Nicholls; Structure and function correlations at the imprinted mouse Snrpn locus. Mammalian Genome 1998, 9, 788-793, 10.1007/s003359900868.
  117. Jing-Hua Chai; Devin P. Locke; Tohru Ohta; John M. Greally; Robert D. Nicholls; Retrotransposed genes such as Frat3 in the mouse Chromosome 7C Prader-Willi syndrome region acquire the imprinted status of their insertion site.. Mammalian Genome 2001, 12, 813-821, 10.1007/s00335-001-2083-1.
  118. Jürgen Brosius; Henri Tiedge; Reverse transcriptase: Mediator of genomic plasticity. Virus Genes 1995, 11, 163-179, 10.1007/bf01728656.
  119. C. C. Glenn; S. Saitoh; M. T. Jong; M. M. Filbrandt; U. Surti; D. J. Driscoll; R. D. Nicholls; Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene.. The American Journal of Human Genetics 1996, 58, 335-346.
  120. Todd A. Gray; Shinji Saitoh; Robert D. Nicholls; An imprinted, mammalian bicistronic transcript encodes two independent proteins. Proceedings of the National Academy of Sciences 1999, 96, 5616-5621, 10.1073/pnas.96.10.5616.
  121. Huiping Li; Pingping Zhao; Qiong Xu; Shifang Shan; Chunchun Hu; Zilong Qiu; Xiu Xu; The autism-related gene SNRPN regulates cortical and spine development via controlling nuclear receptor Nr4a1. Scientific Reports 2016, 6, 29878, 10.1038/srep29878.
  122. Keith Grimaldi; Dianne Gerrelli; Neil G. Sharpe; Torben Lund; David S. Latchman; The intronless mouse gene for the tissue specific splicing protein SmN is a processed pseudogene containing a stop codon after thirty-one amino acids. DNA Sequence 1992, 2, 241-246, 10.3109/10425179209020809.
  123. Moon-Sing Lee; Yu-Shan Lin; Yi-Fang Deng; Wan-Ting Hsu; Chiung-Chun Shen; Yi-Hsin Cheng; Yao-Ting Huang; Chin Li; Modulation of alternative splicing by expression of small nuclear ribonucleoprotein polypeptide N. The FEBS Journal 2014, 281, 5194-5207, 10.1111/febs.13059.
  124. Daniela Bettio; N. Rizzi; D. Giardino; G. Grugni; V. Briscioli; A. Selicorni; F. Carnevale; L. Larizza; FISH analysis in Prader-Willi and Angelman syndrome patients. American Journal of Medical Genetics 1995, 56, 224-228, 10.1002/ajmg.1320560222.
  125. Karin Buiting; Shinji Saitoh; Stephanie Gross; Bärbel Dittrich; Stuart Schwartz; Robert D. Nicholls; Bernhard Horsthemke; Inherited microdeletions in the Angelman and Prader–Willi syndromes define an imprinting centre on human chromosome 15. Nature Genetics 1995, 9, 395-400, 10.1038/ng0495-395.
  126. T. Ohta; T.A. Gray; P.K. Rogan; K. Buiting; J.M. Gabriel; S. Saitoh; B. Muralidhar; B. Bilienska; M. Krajewska-Walasek; D.J. Driscoll; et al.B. HorsthemkeM.G. ButlerR.D. Nicholls Imprinting-Mutation Mechanisms in Prader-Willi Syndrome. The American Journal of Human Genetics 1999, 64, 397-413, 10.1086/302233.
  127. Chenna R. Galiveti; Carsten A. Raabe; Zoltan Konthur; Timofey S. Rozhdestvensky; Differential regulation of non-protein coding RNAs from Prader-Willi Syndrome locus. Scientific Reports 2014, 4, 6445, 10.1038/srep06445.
  128. Jérôme Cavaillé; Karin Buiting; Martin Kiefmann; Marc Lalande; Camilynn I. Brannan; Bernhard Horsthemke; Jean-Pierre Bachellerie; Jürgen Brosius; Alexander Hüttenhofer; Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proceedings of the National Academy of Sciences 2000, 97, 14311-14316, 10.1073/pnas.250426397.
  129. Jérôme Cavaillé; Box C/D small nucleolar RNA genes and the Prader-Willi syndrome: a complex interplay. WIREs RNA 2017, 8, e1417, 10.1002/wrna.1417.
  130. M. Meguro; Large-scale evaluation of imprinting status in the Prader-Willi syndrome region: an imprinted direct repeat cluster resembling small nucleolar RNA genes. Human Molecular Genetics 2001, 10, 383-394, 10.1093/hmg/10.4.383.
  131. Feng Ding; Yelena Prints; Madhu S. Dhar; Dabney K. Johnson; Carmen Garnacho–Montero; Robert D. Nicholls; Uta Francke; Lack of Pwcr1/MBII-85 snoRNA is critical for neonatal lethality in Prader–Willi syndrome mouse models. Mammalian Genome 2005, 16, 424-431, 10.1007/s00335-005-2460-2.
  132. Rochelle L. Coulson; Dag H. Yasui; Keith W. Dunaway; Benjamin I. Laufer; Annie Vogel Ciernia; Yihui Zhu; Charles E. Mordaunt; Theresa S. Totah; Janine M. LaSalle; Snord116-dependent diurnal rhythm of DNA methylation in mouse cortex. Nature Communications 2018, 9, 1-11, 10.1038/s41467-018-03676-0.
  133. A. Chagraoui; F. Thibaut; M. Skiba; C. Thuillez; M. Bourin; 5-HT2C receptors in psychiatric disorders: A review. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2016, 66, 120-135, 10.1016/j.pnpbp.2015.12.006.
  134. Jose M. Palacios; Angel Pazos; Daniel Hoyer; A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment. Psychopharmacology 2017, 234, 1395-1418, 10.1007/s00213-017-4545-5.
  135. Michael V. Morabito; Randi J. Ulbricht; Richard T. O'neil; David C. Airey; Pengcheng Lu; Bing Zhang; Lily Wang; Ronald B. Emeson; High-Throughput Multiplexed Transcript Analysis Yields Enhanced Resolution of 5-Hydroxytryptamine2CReceptor mRNA Editing Profiles. Molecular Pharmacology 2010, 77, 895-902, 10.1124/mol.109.061903.
  136. Tim D. Werry; Richard LoIacono; Patrick M. Sexton; Arthur Christopoulos; RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function. Pharmacology & Therapeutics 2008, 119, 7-23, 10.1016/j.pharmthera.2008.03.012.
  137. Shivendra Kishore; The snoRNA HBII-52 Regulates Alternative Splicing of the Serotonin Receptor 2C. Science 2006, 311, 230-232, 10.1126/science.1118265.
  138. Alastair S. Garfield; Jennifer R. Davies; Luke K. Burke; Hannah V. Furby; Lawrence S. Wilkinson; Lora K. Heisler; Anthony R. Isles; Increased alternate splicing of Htr2c in a mouse model for Prader-Willi syndrome leads disruption of 5HT2C receptor mediated appetite. Molecular Brain 2016, 9, 95, 10.1186/s13041-016-0277-4.
  139. Carsten A. Raabe; Reinhard Voss; Delf-Magnus Kummerfeld; Juergen Brosius; Chenna R. Galiveti; Anna Wolters; Jochen Seggewiss; Andreas Huge; Boris V. Skryabin; Timofey S. Rozhdestvensky; et al. Ectopic expression of Snord115 in choroid plexus interferes with editing but not splicing of 5-Ht2c receptor pre-mRNA in mice. Scientific Reports 2019, 9, 4300, 10.1038/s41598-019-39940-6.
  140. Elena G. Bochukova; Katherine Lawler; Sophie Croizier; Julia M. Keogh; Nisha Patel; Garth Strohbehn; Kitty K. Lo; Jack Humphrey; Anita Hokken-Koelega; Layla Damen; et al.Stephany DonzeSebastien G. BouretVincent PlagnolI. Sadaf Farooqi A Transcriptomic Signature of the Hypothalamic Response to Fasting and BDNF Deficiency in Prader-Willi Syndrome. Cell Reports 2018, 22, 3401-3408, 10.1016/j.celrep.2018.03.018.
  141. Patrice Vitali; Eugenia Basyuk; Elodie Le Meur; Edouard Bertrand; Françoise Muscatelli; Jérôme Cavaillé; Alexander Huttenhofer; ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. Journal of Cell Biology 2005, 169, 745-753, 10.1083/jcb.200411129.
  142. Jin Nakatani; Kota Tamada; Fumiyuki Hatanaka; Satoko Ise; Hisashi Ohta; Kiyoshi Inoue; Shozo Tomonaga; Yasuhito Watanabe; Yeun Jun Chung; Ruby Banerjee; et al.Kazuya IwamotoTadafumi KatoMakoto OkazawaKenta YamauchiKoichi TandaKeizo TakaoTsuyoshi MiyakawaAllan BradleyToru Takumi Abnormal Behavior in a Chromosome- Engineered Mouse Model for Human 15q11-13 Duplication Seen in Autism. Cell 2009, 137, 1235-1246, 10.1016/j.cell.2009.04.024.
  143. Dingding Mo; Carsten A. Raabe; Richard Reinhardt; Juergen Brosius; Timofey S. Rozhdestvensky; Alternative Processing as Evolutionary Mechanism for the Origin of Novel Nonprotein Coding RNAs. Genome Biology and Evolution 2013, 5, 2061-2071, 10.1093/gbe/evt155.
  144. Jürgen Brosius; The Fragmented Gene. Annals of the New York Academy of Sciences 2009, 1178, 186-193, 10.1111/j.1749-6632.2009.05004.x.
  145. Qian Zhang; Gerrit J. Bouma; Kristy McClellan; Stuart Tobet; Hypothalamic expression of snoRNA Snord116 is consistent with a link to the hyperphagia and obesity symptoms of Prader–Willi syndrome. International Journal of Developmental Neuroscience 2012, 30, 479-485, 10.1016/j.ijdevneu.2012.05.005.
  146. John C. Castle; Christopher D. Armour; Martin Löwer; David Haynor; Matthew Biery; Heather Bouzek; Ronghua Chen; Stuart Jackson; Jason M. Johnson; Carol A. Rohl; et al.Christopher K. Raymond Digital Genome-Wide ncRNA Expression, Including SnoRNAs, across 11 Human Tissues Using PolyA-Neutral Amplification. PLOS ONE 2010, 5, e11779, 10.1371/journal.pone.0011779.
  147. Boris V. Skryabin; Delf-Magnus Kummerfeld; Leonid Gubar; Birte Seeger; Helena Kaiser; Anja Stegemann; Johannes Roth; Sven G. Meuth; Hermann Pavenstädt; Joanna Sherwood; et al.Thomas PapRoland Wedlich-SöldnerCord SunderkötterYuri B. SchwartzJuergen BrosiusTimofey S. Rozhdestvensky Pervasive head-to-tail insertions of DNA templates mask desired CRISPR-Cas9–mediated genome editing events. Science Advances 2020, 6, eaax2941, 10.1126/sciadv.aax2941.
  148. Alexander Smirnov; Veniamin Fishman; Anastasia Yunusova; Alexey Korablev; Irina Serova; Boris V Skryabin; Timofey S Rozhdestvensky; Nariman Battulin; DNA barcoding reveals that injected transgenes are predominantly processed by homologous recombination in mouse zygote. Nucleic Acids Research 2019, 48, 719-735, 10.1093/nar/gkz1085.
  149. M Sibilia; E F Wagner; Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 1995, 269, 234-238, 10.1126/science.7618085.
  150. K. Vanessa Carias; Rachel Wevrick; Preclinical Testing in Translational Animal Models of Prader-Willi Syndrome: Overview and Gap Analysis. Molecular Therapy - Methods & Clinical Development 2019, 13, 344-358, 10.1016/j.omtm.2019.03.001.
  151. Matthew A. Kocher; Deborah J. Good; Phylogenetic Analysis of the SNORD116 Locus. Genes 2017, 8, 358, 10.3390/genes8120358.
More
Academic Video Service