TRIM Proteins: Comparison
Please note this is a comparison between Version 2 by Vicky Zhou and Version 1 by Flaviana Marzano.

The TRIpartite Motifs (TRIM) protein family is composed of more than 70 known TRIM proteins in humans and mice, which are encoded by approximately 71 genes in humans.

  • CRC
  • chemoresistance
  • TRIM8
  • miR-17-5p

1. Introduction

The TRIpatite Motif is composed by three zinc-binding domains, a RING domain (R), a B-box type 1 (B1) and a B-box type 2 (B2), followed by a coiled-coil (CC) region [1][2]. Functionally, the RING finger domain is involved in the ubiquitination system, mediating the transfer of ubiquitin from E2-Ub ligase enzyme to its substrates: this domain is therefore a characteristic signature of many E3 ubiquitin ligases [3]. Genes encoding for TRIM proteins are present in all metazoans [4] and mutations in these genes are implicated in a variety of human diseases including cancer.

This is not surprising if we consider that TRIM family proteins are involved in a plethora of cellular functions, such as regulation of gene expression, signal transduction pathways, autophagy, cell growth, migration, protein stability through the ubiquitination system, regulation of development and immune response, effects on cell survival and metabolism and direct antiviral action. Alterations of TRIM expression levels represent biomarker and prognostic factors of specific cancers including osteosarcoma, gastric, liver, breast, ovarian, prostate, lung, cervical and CRC [5][6][7].

Depending on tumor type and on their deregulation mechanisms, TRIMs proteins can exert their action both as onco-protein and tumor-suppressor proteins in cancers. To date, many TRIMs proteins have resulted to be overexpressed in one or more cancers. TRIMs 11, 14, 22, 24, 25, 27, 28, 32, 37, 44, 47, 49, 59, 65 are upregulated in some of the high incidence cancers (breast, gastric, liver, lung, osteosarcoma, prostate, kidney) [8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49], while some others TRIM are upregulated in a cancer-specific way (e.g., TRIM22 in lung, TRIM31 and TRIM35 in liver, TRIM63 in breast, TRIM66 in osteosarcoma, TRIM68 in prostate). The altered expression of this TRIMs has been correlated with poor prognosis [50][51][52][53][54] (Table 1). On the contrary, there are also many TRIMs downregulated in tumors. TRIMs 3, 8, 13, 16, 21, 62 are downregulated in many of the main cancers worldwide (breast, gastric, liver, lung, osteosarcoma, prostate, kidney) [55][56][57][58][59][60][61][62][63][64][65][66], while some TRIMs are under-expressed in a cancer-specific way (e.g., TRIM15 in gastric cancer, TRIM26 in liver, TRIM58 in lung). In these cases, their downregulation is correlated with early-onset and poor overall survival among cancer patients [67][68][69] (Table 1).

Table 1. TRIM proteins in tumors. Tripartite motif (TRIM) proteins described in the manuscript are listed based on their expression levels in the main cancer types worldwide.

Cancer Type Upregulated TRIMs Downregulated TRIMs
Breast 11 [47], 24 [12], 25 [8], 27 [10],

28 [9], 32 [42], 33 [70], 37 [17],

44 [32], 47 [48], 59 [39], 63 [54]
8 [66], 13 [65], 16 [62],

21 [63], 62 [55]
Gastric 14 [71], 24 [19], 28 [11],

32 [31], 37 [41], 44 [14], 59 [40]
3 [72], 15 [69]
Liver 11 [27], 14 [36], 24 [43],

28 [25], 31 [52], 32 [20],

35 [51], 37 [18], 65 [35]
3 [56], 16 [60], 21 [58],

26 [67], 29 [73], 33 [74]
Lung 11 [44], 22 [33], 24 [15],

25 [23], 27 [13], 28 [16],

29 [75], 32 [46], 37 [37],

44 [26], 47 [28], 59 [29], 65 [24]
13 [64], 16 [59], 58 [68],

62 [57]
Osteosarcoma 2 [76][77], 29 [78], 37 [34],

59 [22], 66 [53]
8 [79]
Prostate 24 [45], 25 [80], 28 [38],

47 [21], 68 [50]
16 [61], 29 [81]
Renal 44 [49], 59 [30] 2 [82], 8 [83][84], 33 [85][86]

Interestingly, there are some TRIM proteins, which result in being up- or down- regulated depending on cancer type. Among them are TRIM2 (up-regulated in osteosarcoma, down-regulated in kidney cancer), TRIM29 (up-regulated in lung cancer and osteosarcoma, down-regulated in liver and prostate cancers), TRIM33 (up-regulated in breast cancer, down-regulated in liver and kidney cancers) [74][81][85][70][75][86][82][76][77].

At the basis of the correlation between TRIMs, altered expression and tumor onset, there are, generally, several mechanisms, not fully understood, such as chromosomal translocations (resulting in oncogenic gain-of-function fusion genes), that likely contribute to oncogenesis through the constitutive activation of oncogenic signaling pathways, hyper- or hypo- methylation of CpG islands present in the TRIMs promoter regions [5][87][88][89][90][91]. Alternatively, the low expression of the tumor-suppressive TRIMs is inversely correlated with specific micro RNAs (miRs) overexpression (e.g., TRIM8 vs. miR17-92 family). On the contrary, overexpression of some oncogenic TRIMs in various cancers is frequently due to the loss of miR dependent gene suppression (e.g., TRIM11, TRIM14, TRIM24, TRIM25, and TRIM44) [71][83][92][93][94][95][96][97][98].

The pivotal role of TRIMs, in the pathological as well as in the physiological cellular life, is now clear if we consider that one or more TRIM members can influence diverse key downstream effector cellular pathways, such as p53 controlled pathways, the Wnt/β-catenin signaling, Transforming Growth Factor-β (TGF-β), Phosphoinositide-3-kinase /Protein Kinase B (PI3K/Akt) pathways and the pro-inflammatory Signal transducer and activator of transcription 3- Nuclear Factor kappa-light-chain-enhancer of activated B cells (STAT3-NF-κB) pathways.

2. TRIMs Involved in Colorectal Cancer (CRC)

Different TRIM proteins are involved in development and progression of CRC. They can regulate various aspects of tumorigenesis, including proliferation, apoptosis, autophagy, transcriptional regulation, chromatin remodeling, invasion, metastasis and chemoresistance [99]. Cancer cells, through different mechanisms such as inactivation of the tumor suppressor gene p53, may acquire resistance to chemotherapy. For this reason, the reactivation of wild type p53, through the TRIM proteins, could be a promising strategy to restore sensitivity to the treatment of chemotherapy in all tumors including CRC [100][101]. Below we describe the role and the levels of the different TRIMs in the CRC.

TRIM23 is upregulated in CRC, it binds p53, inducing its ubiquitination and promoting colorectal cell proliferation [80]; TRIM24 (transcription intermediary factor 1α-TIF1α), mRNA and protein levels were higher in CRC tissues compared to controls, indicating this TRIM is a potential negative prognostic marker. In particular, TRIM24 promotes the degradation of p53 via ubiquitination [102].

The literature reports that TRIM25 negatively regulates the expression of Caspase-2, and consequently the reduction of TRIM25 levels in the colorectal cell increases their sensibility to drugs [102]; moreover, TRIM25 reduction induces p53 acetylation and p53-dependent cell death in HCT116 cells [103][104][105]. This TRIM regulates p53 levels and activity in the HCT116 cell line in two opposite ways. From one side, TRIM25 prevents the formation of the ternary complex constituted by p53, MDM2, and p300, which is essential for p53-polyubiquitination and degradation, leading to the increase in p53 stability. Despite this, from another side, p53 transcriptional activity is inhibited in the presence of TRIM25, since the same p53-MDM2-p300 complex is required for p53 acetylation and, consequently, it is able to block the p53-dependent activation of p53-controlled apoptotic genes, following DNA damage [103].

TRIM59 is upregulated in CRC patients and correlates with a poor prognosis. Therefore, the reduction of TRIM59 levels reversed the expression of epithelial-mesenchymal transformation-related proteins vimentin, in p53 wild-type and p53 mutated cells, demonstrating that the TRIM59 oncogenic action is p53 independent [106][107]. In CRC, it has not been studied whether the oncogenic role of TRIM59 is through direct degradation of p53; only in stomach cancer does the literature report a direct TRIM59-p53 interaction and subsequent p53 degradation [108].

TRIM28 and TRIM29 are markers for patient survival in CRC. TRIM28 binds MDM2 and promotes the degradation of p53 [109]. In addition, TRIM28, in concert with MDM2, promotes the formation of a p53 complex with histone deacetylase 1 (HDAC1), thus preventing acetylation of p53 [110]. To date, it is unclear by which molecular mechanism TRIM29 regulates the development of CRC; in fact, this TRIM could prevent p53-mediated transcription of its target genes in the nucleus by sequestering p53 outside the nucleus and thus preventing its p300-dependent acetylation [111]. Alternatively, it could promote p53 degradation by degrading and/or changing the localization of TIP60, a transcriptional coactivator of p53, consequently reducing TIP60-dependent p53 acetylation [73]. In contrast, histone deacetylase9 (HDAC9) can inhibit the action of TRIM29, resulting in increased p53 activity and reduced cell survival [111].

Some TRIM proteins behave like oncogenes because they are involved in the activation of pro-proliferative pathways such as Akt/mTOR and NF-κB signaling pathways. In particular, TRIM2 and TRIM47 are potential targets for therapy in CRC, since they promote cell proliferation, epithelial-mesenchymal transition (EMT) and metastasis in vitro and in vivo [77][112]. TRIM6 is upregulated in CRC and its reduction increases the anti-proliferative effects of 5-fluorouracil and oxaliplatin [113]. TRIM27 and TRIM44 are involved in activation of the Akt/mTOR signaling pathway inducing cell proliferation, migration, invasion and metastasis in CRC [114][115]. Additionally, TRIM66, TRIM52 and TRIM14 also play an oncogenic role in CRC, since they are involved in cancer proliferation and metastasis through the regulation of STAT3 pathway expression [53][71][116][117]. Instead, TRIM27 is involved in proliferation, invasion and metastasis of CRC in vitro and in vivo regulating AKT [114]. TRIM14, together with TRIM1, have a role in autophagy. Indeed, TRIM14 negatively interferes with the autophagic degradation of the NF-κB family member p100/p52, inducing a non-canonical NF-κB signaling pathway [118]. By contrast, TRIM11 mediates the degradation of the receptor-interacting protein kinase 3 (RIPK3). RIPK3 activation is linked to necrotic cell death and represents a causative role for both pediatric and adult IBDs (inflammatory bowel diseases). TRIM11 counteracts mTOR-induced activation of RIPK3, inducing RIPK3 degradation through autophagy and thus representing a novel regulatory mechanism important for antagonizing necroptosis [119]. In this way, TRIM11 shows a protective role in the gut, mainly through antagonizing intestinal inflammation and cancer.

Finally, TRIM31 and TRIM40 interfere with the canonical NF–κB pathway, promoting invasion and metastasis in CRC [120][118]. In particular, TRIM40 is downregulated in gastrointestinal cancers. It is able to inhibit the NF-κB activity by promoting the neddylation of the IKKγ, also called NEMO (NF–κB essential modulator), a key regulator for NF-κB activation, thus preventing inflammation-associated carcinogenesis in the GI tract [121]. In contrast to the oncogenic action of the TRIMs described so far, TRIM67, TRIM58 and TRIM8 are downregulated in CRC, playing a tumor suppressor role. The reduction of TRIM67 levels in CRC is caused by methylation of two loci (cg21178978 and cg27504802). Mechanistically, TRIM67 binds p53, thus inhibiting MDM2 binding to p53 and following ubiquitination [122]. TRIM58 plays a critical role of tumor suppressor by limiting Wnt/β-catenin dependent EMT; indeed, the recovery of TRIM58 reduces tumor invasion [123]. TRIM8 seems to be down-regulated in CRC and in restoring TRIM8 levels, p53 is stabilized, and cells become sensitive again to chemotherapeutics (The Human protein Atlas, available from http://www.proteinatlas.org, accessed on 25 February 2021) [84][124][99][125].

References

  1. Reddy, B.A.; Etkin, L.D.; Freemont, P.S. A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends Biochem. Sci. 1992, 17, 344–345.
  2. Borden, K.L.; Boddy, M.N.; Lally, J.; O’Reilly, N.J.; Martin, S.; Howe, K.; Solomon, E.; Freemont, P.S. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J. 1995, 14, 1532–1541.
  3. Joazeiro, C.A.; Weissman, A.M. RING finger proteins: Mediators of ubiquitin ligase activity. Cell 2000, 102, 549–552.
  4. Meroni, G.; Diez-Roux, G. TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases. Bioessays 2005, 27, 1147–1157.
  5. Watanabe, M.; Hatakeyama, S. TRIM proteins and diseases. J. Biochem. 2017, 161, 135–144.
  6. Park, J.S.; Burckhardt, C.J.; Lazcano, R.; Solis, L.M.; Isogai, T.; Li, L.; Chen, C.S.; Gao, B.; Minna, J.D.; Bachoo, R.; et al. Mechanical regulation of glycolysis via cytoskeleton architecture. Nature 2020, 578, 621–626.
  7. Mandell, M.A.; Saha, B.; Thompson, T.A. The Tripartite Nexus: Autophagy, Cancer, and Tripartite Motif-Containing Protein Family Members. Front Pharmacol. 2020, 11, 308.
  8. Suzuki, T. Estrogen-responsive finger protein as a new potential biomarker for breast cancer. Clin. Cancer Res. 2005, 11, 6148–6154.
  9. Ho, J.; Kong, J.W.F.; Choong, L.Y.; Loh, M.C.S.; Toy, W.; Chong, P.K.; Wong, C.H.; Wong, C.Y.; Shah, N.; Lim, Y.P. Novel Breast Cancer Metastasis-Associated Proteins. J. Proteome Res. 2009, 8, 583–594.
  10. Tezel, G.G.; Uner, A.; Yildiz, I.; Guler, G.; Takahashi, M. RET finger protein expression in invasive breast carcinoma: Relationship between RFP and ErbB2 expression. Pathol. Res. Pract. 2009, 205, 403–408.
  11. Yokoe, T.; Toiyama, Y.; Okugawa, Y.; Tanaka, K.; Ohi, M.; Inoue, Y.; Mohri, Y.; Miki, C.; Kusunoki, M. KAP1 is associated with peritoneal carcinomatosis in gastric cancer. Ann. Surg. Oncol. 2010, 17, 821–828.
  12. Tsai, W.W.; Wang, Z.; Yiu, T.T.; Akdemir, K.C.; Xia, W.; Winter, S.; Tsai, C.Y.; Shi, X.; Schwarzer, D.; Plunkett, W.; et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature 2010, 468, 927–932.
  13. Iwakoshi, A.; Murakumo, Y.; Kato, T.; Kitamura, A.; Mii, S.; Saito, S.; Yatabe, Y.; Takahashi, M. RET finger protein expression is associated with prognosis in lung cancer with epidermal growth factor receptor mutations. Pathol. Int. 2012, 62, 324–330.
  14. Kashimoto, K.; Komatsu, S.; Ichikawa, D.; Arita, T.; Konishi, H.; Nagata, H.; Takeshita, H.; Nishimura, Y.; Hirajima, S.; Kawaguchi, T.; et al. Overexpression of TRIM44 contributes to malignant outcome in gastric carcinoma. Cancer Sci. 2012, 103, 2021–2026.
  15. Li, H.; Tang, Z.; Fu, L.; Xu, Y.; Li, Z.; Luo, W.; Qiu, X.; Wang, E. Overexpression of TRIM24 Correlates with Tumor Progression in Non-Small Cell Lung Cancer. PLoS ONE 2012, 7, e37657.
  16. Liu, L.; Zhao, E.; Li, C.; Huang, L.; Xiao, L.; Cheng, L.; Huang, X.; Song, Y.; Xu, D. TRIM28, a new molecular marker predicting metastasis and survival in early-stage non-small cell lung cancer. Cancer Epidemiol. 2013, 37, 71–78.
  17. Bhatnagar, S.; Gazin, C.; Chamberlain, L.; Ou, J.; Zhu, X.; Tushir, J.S.; Virbasius, C.M.; Lin, L.; Zhu, L.J.; Wajapeyee, N.; et al. TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein. Nature 2014, 516, 116–120.
  18. Jiang, J.; Yu, C.; Chen, M.; Tian, S.; Sun, C. Over-expression of TRIM37 promotes cell migration and metastasis in hepatocellular carcinoma by activating Wnt/b-catenin signaling. Biochem. Biophys. Res. Commun. 2015, 464, 1120–1127.
  19. Miao, Z.F.; Wang, Z.N.; Zhao, T.T.; Xu, Y.Y.; Wu, J.H.; Liu, X.Y.; Xu, H.; You, Y.; Xu, H.M. TRIM24 is upregulated in human gastric cancer and promotes gastric cancer cell growth and chemoresistance. Virchows Arch. 2015, 466, 525–532.
  20. Cui, X.; Lin, Z.; Chen, Y.; Mao, X.; Ni, W.; Liu, J.; Zhou, H.; Shan, X.; Chen, L.; Lv, J.; et al. Upregulated TRIM32 correlates with enhanced cell proliferation and poor prognosis in hepatocellular carcinoma. Mol. Cell Biochem. 2016, 421, 127–137.
  21. Fujimura, T.; Inoue, S.; Urano, T.; Takayama, K.; Yamada, Y.; Ikeda, K.; Obinata, D.; Ashikari, D.; Takahashi, S.; Homma, Y. Increased expression of tripartite motif (TRIM) 47 is a negative prognostic predictor in human prostate cancer. Clin. Genitourin. Cancer 2016, 14, 298–303.
  22. Liang, J.; Xing, D.; Li, Z.; Shen, J.; Zhao, H.; Li, S. TRIM59 is upregulated and promotes cell proliferation and migration in human osteosarcoma. Mol. Med. Rep. 2016, 13, 5200–5206.
  23. Qi, Y.; Cui, C.; Zhang, H. Overexpression of TRIM25 in Lung Cancer Regulates Tumor Cell Progression. Technol. Cancer Res. Treat. 2016, 15, 707–715.
  24. Wang, X.L.; Shi, W.P.; Shi, H.C.; Lu, S.C.; Wang, K.; Sun, C.; He, J.S.; Jin, W.G.; Lv, X.X.; Zou, H.; et al. Knockdown of TRIM65 inhibits lung cancer cell proliferation, migration and invasion: A therapeutic target in human lung cancer. Oncotarget 2016, 7, 81527–81540.
  25. Wang, Y.; Jiang, J.; Li, Q.; Ma, H.; Xu, Z.; Gao, Y. KAP1 is overexpressed in hepatocellular carcinoma and its clinical significance. Int. J. Clin. Oncol. 2016, 21, 927–933.
  26. Xing, Y.; Meng, Q.; Chen, X.; Zhao, Y.; Liu, W.; Hu, J.; Xue, F.; Wang, X.; Cai, L. TRIM44 promotes proliferation and metastasis in nonsmall cell lung cancer via mTOR signaling pathway. Oncotarget 2016, 7, 30479–30491.
  27. Chen, Y.; Li, L.; Qian, X.; Ge, Y.; Xu, G. High expression of TRIM11 correlates with poor prognosis in patients with hepatocellular carcinoma. Clin. Res. Hepatol. Gastroenterol. 2017, 41, 190–196.
  28. Han, Y.; Tian, H.; Chen, P.; Lin, Q. TRIM47 overexpression is a poor prognostic factor and contributes to carcinogenesis in non-small cell lung carcinoma. Oncotarget 2017, 8, 22730–22740.
  29. Hao, L.; Du, B.; Xi, X. TRIM59 is a novel potential prognostic biomarker in patients with non-small cell lung cancer: A research based on bioinformatics analysis. Oncol. Lett. 2017, 14, 2153–2164.
  30. Hu, S.H.; Zhao, M.J.; Wang, W.X.; Xu, C.W.; Wang, G.D. TRIM59 is a key regulator of growth and migration in renal cell carcinoma. Cell Mol. Biol. 2017, 63, 68–74.
  31. Ito, M.; Migita, K.; Matsumoto, S.; Wakatsuki, K.; Tanaka, T.; Kunishige, T.; Nakade, H.; Nakatani, M.; Nakajima, Y. Overexpression of E3 ubiquitin ligase tripartite motif 32 correlates with a poor prognosis in patients with gastric cancer. Oncol. Lett. 2017, 13, 3131–3138.
  32. Kawabata, H.; Azuma, K.; Ikeda, K.; Sugitani, I.; Kinowaki, K.; Fujii, T.; Osaki, A.; Saeki, T.; Horie-Inoue, K.; Inoue, S. TRIM44 Is a Poor Prognostic Factor for Breast Cancer Patients as a Modulator of NF-kappaB Signaling. Int. J. Mol. Sci. 2017, 18, 1931.
  33. Liu, L.; Zhou, X.M.; Yang, F.F.; Miao, Y.; Yin, Y.; Hu, X.J.; Hou, G.; Wang, Q.Y.; Kang, J. TRIM22 confers poor prognosis and promotes epithelial-mesenchymal transition through regulation of AKT/GSK3beta/beta-catenin signaling in non-small cell lung cancer. Oncotarget 2017, 8, 62069–62080.
  34. Tao, Y.; Xin, M.; Cheng, H.; Huang, Z.; Hu, T.; Zhang, T.; Wang, J. TRIM37 promotes tumor cell proliferation and drug resistance in pediatric osteosarcoma. Oncol. Lett. 2017, 14, 6365–6372.
  35. Yang, Y.F.; Zhang, M.F.; Tian, Q.H.; Zhang, C.Z. TRIM65 triggers b-catenin signaling via ubiquitylation of Axin1 to promote hepatocellular carcinoma. J. Cell Sci. 2017, 130, 3108–3115.
  36. Dong, B.; Zhang, W. High Levels of TRIM14 Are Associated with poor prognosis in hepatocellular carcinoma. Oncol. Res. Treat. 2018, 41, 129–134.
  37. Dong, S.; Pang, X.; Sun, H.; Yuan, C.; Mu, C.; Zheng, S. TRIM37 targets AKT in the growth of lung cancer cells. OncoTargets Ther. 2018, 11, 7935–7945.
  38. Fong, K.W.; Zhao, J.C.; Song, B.; Zheng, B.; Yu, J. TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression. Nat. Commun. 2018, 9, 5007.
  39. Liu, Y.; Dong, Y.; Zhao, L.; Su, L.; Diao, K.; Mi, X. TRIM59 overexpression correlates with poor prognosis and contributes to breast cancer progression through AKT signaling pathway. Mol. Carcinog. 2018, 57, 1792–1802.
  40. Wang, Y.; Zhou, Z.; Wang, X.; Zhang, X.; Chen, Y.; Bai, J.; Di, W. TRIM59 is a novel marker of poor prognosis and promotes malignant progression of ovarian cancer by inducing annexin A2 expression. Int. J. Biol. Sci. 2018, 14, 2073–2082.
  41. Wu, G.; Song, L.; Zhu, J.; Hu, Y.; Cao, L.; Tan, Z.; Zhang, S.; Li, Z.; Li, J. An ATM/TRIM37/NEMO axis counteracts genotoxicity by activating nuclear-to-cytoplasmic NFkB signaling. Cancer Res. 2018, 78, 6399–6412.
  42. Zhao, T.T.; Jin, F.; Li, J.G.; Xu, Y.Y.; Dong, H.T.; Liu, Q.; Xing, P.; Zhu, G.L.; Xu, H.; Yin, S.C.; et al. TRIM32 promotes proliferation and confers chemoresistance to breast cancer cells through activation of the NF-kappaB pathway. J. Cancer 2018, 9, 1349–1356.
  43. Zhu, Y.; Zhao, L.; Shi, K.; Huang, Z.; Chen, B. TRIM24 promotes hepatocellular carcinoma progression via AMPK signaling. Exp. Cell Res. 2018, 367, 274–281.
  44. Huang, J.; Tang, L.; Zhao, Y.; Ding, W. TRIM11 promotes tumor angiogenesis via activation of STAT3/VEGFA signaling in lung adenocarcinoma. Am. J. Cancer Res. 2019, 9, 2019–2027.
  45. Offermann, A.; Roth, D.; Hupe, M.C.; Hohensteiner, S.; Becker, F.; Joerg, V.; Carlsson, J.; Kuempers, C.; Ribbat-Idel, J.; Tharun, L.; et al. TRIM24 as an independent prognostic biomarker for prostate cancer. Urol. Oncol. Semin. Orig. Investig. 2019, 37, 576.e1–576.e10.
  46. Yin, H.; Li, Z.; Chen, J.; Hu, X. Expression and the potential functions of TRIM32 in lung cancer tumorigenesis. J. Cell. Biochem. 2019, 120, 5232–5243.
  47. Song, W.; Wang, Z.; Gu, X.; Wang, A.; Chen, X.; Miao, H.; Chu, J.F.; Tian, Y. TRIM11 promotes proliferation and glycolysis of breast cancer cells via targeting AKT/GLUT1 pathway. OncoTargets Ther. 2019, 12, 4975–4984.
  48. Wang, Y.; Liu, C.; Xie, Z.; Lu, H. Knockdown of TRIM47 inhibits breast cancer tumorigenesis and progression through the inactivation of PI3K/ Akt pathway. Chem. Biol. Interact. 2020, 317, 108960.
  49. Yamada, Y.; Kimura, N.; Takayama, K.I.; Sato, Y.; Suzuki, T.; Azuma, K.; Fujimura, T.; Ikeda, K.; Kume, H.; Inoue, S. TRIM44 promotes cell proliferation and migration by inhibiting FRK in renal cell carcinoma. Cancer Sci. 2020, 111, 881–890.
  50. Miyajima, N.; Maruyama, S.; Bohgaki, M.; Kano, S.; Shigemura, M.; Shinohara, N.; Nonomura, K.; Hatakeyama, S. TRIM68 regulates ligand-dependent transcription of androgen receptor in prostate cancer cells. Cancer Res. 2008, 68, 3486–3494.
  51. Jia, D.; Wei, L.; Guo, W.; Zha, R.; Bao, M.; Chen, Z.; Zhao, Y.; Ge, C.; Zhao, F.; Chen, T.; et al. Genome-wide copy number analyses identified novel cancer genes in hepatocellular carcinoma. Hepatology 2011, 54, 1227–1236.
  52. Guo, P.; Ma, X.; Zhao, W.; Huai, W.; Li, T.; Qiu, Y.; Zhang, Y.; Han, L. TRIM31 is upregulated in hepatocellular carcinoma and promotes disease progression by inducing ubiquitination of TSC1–TSC2 complex. Oncogene 2018, 37, 478–488.
  53. He, T.; Cui, J.; Wu, Y.; Sun, X.; Chen, N. Knockdown of TRIM66 inhibits cell proliferation, migration and invasion in colorectal cancer through JAK2/STAT3 pathway. Life Sci. 2019, 235, 116799.
  54. Li, K.; Pan, W.; Ma, Y.; Xu, X.; Gao, Y.; He, Y.; Wei, L.; Zhang, J. A novel oncogene TRIM63 promotes cell proliferation and migration via activating Wnt/b-catenin signaling pathway in breast cancer. Pathol. Res. Pract. 2019, 215, 152573.
  55. Lott, S.T.; Chen, N.; Chandler, D.S.; Yang, Q.; Wang, L.; Rodriguez, M.; Xie, H.; Balasenthil, S.; Buchholz, T.A.; Sahin, A.A.; et al. DEAR1 is a dominant regulator of acinar morphogenesis and an independent predictor of local recurrence-free survival in early-onset breast cancer. PLoS Med. 2009, 6, e1000068.
  56. Chao, J.; Zhang, X.-F.; Pan, Q.-Z.; Zhao, J.-J.; Jiang, S.-S.; Wang, Y.; Zhang, J.H.; Xia, J.C. Decreased expression of TRIM3 is associated with poor prognosis in patients with primary hepatocellular carcinoma. Med. Oncol. 2014, 31, 102.
  57. Quintás-Cardama, A.; Post, S.M.; Solis, L.M.; Xiong, S.; Yang, P.; Chen, N.; Wistuba, I.I.; Killary, A.M.; Lozano, G. Loss of the novel tumour suppressor and polarity gene Trim62 (Dear1) synergizes with oncogenic Ras in invasive lung cancer. J. Pathol. 2014, 234, 108–119.
  58. Ding, Q.; He, D.; He, K.; Zhang, Q.; Tang, M.; Dai, J.; Lv, H.; Wang, X.; Xiang, G.; Yu, H. Downregulation of TRIM21 contributes to hepatocellular carcinoma carcinogenesis and indicates poor prognosis of cancers. Tumour Biol. 2015, 36, 8761–8772.
  59. Huo, X.; Li, S.; Shi, T.; Suo, A.; Ruan, Z.; Yao, Y. Tripartite motif 16 inhibits epithelial-mesenchymal transition and metastasis by down-regulating sonic hedgehog pathway in non-small cell lung cancer cells. Biochem. Biophys. Res. Commun. 2015, 460, 1021–1028.
  60. Li, L.; Dong, L.; Qu, X.; Jin, S.; Lv, X.; Tan, G. Tripartite motif 16 inhibits hepatocellular carcinoma cell migration and invasion. Int. J. Oncol. 2016, 48, 1639–1649.
  61. Qi, L.; Lu, Z.; Sun, Y.H.; Song, H.T.; Xu, W.K. TRIM16 suppresses the progression of prostate tumors by inhibiting the Snail signaling pathway. Int. J. Mol. Med. 2016, 38, 1734–1742.
  62. Yao, J.; Xu, T.; Tian, T.; Fu, X.; Wang, W.; Li, S.; Shi, T.; Suo, A.; Ruan, Z.; Guo, H.; et al. Tripartite motif 16 suppresses breast cancer stem cell properties through regulation of Gli-1 degradation via the ubiquitin-proteasome pathway. Oncol. Rep. 2016, 35, 1204–1212.
  63. Zhou, W.; Zhang, Y.; Zhong, C.; Hu, J.; Hu, H.; Zhou, D.; Cao, M.Q. Decreased expression of TRIM21 indicates unfavorable outcome and promotes cell growth in breast cancer. Cancer Manag. Res. 2018, 10, 3687–3696.
  64. Xu, L.; Wu, Q.; Zhou, X.; Wu, Q.; Fang, M. TRIM13 inhibited cell proliferation and induced cell apoptosis by regulating NF-kappaB pathway in nonsmall-cell lung carcinoma cells. Gene 2019, 715, 144015.
  65. Chen, W.X.; Cheng, L.; Xu, L.Y.; Qian, Q.; Zhu, Y.L. Bioinformatics analysis of prognostic value of TRIM13 gene in breast cancer. Biosci. Rep. 2019, 39, BSR20190285–BSR20190294.
  66. Tian, Z.; Tang, J.; Liao, X.; Gong, Y.; Yang, Q.; Wu, Y.; Wu, G. TRIM8 inhibits breast cancer proliferation by regulating estrogen signaling. Am. J. Cancer Res. 2020, 10, 3440–3457.
  67. Wang, Y.; He, D.; Yang, L.; Wen, B.; Dai, J.; Zhang, Q.; Kang, J.; He, W.; Ding, Q.; He, D. TRIM26 functions as a novel tumor suppressor of hepatocellular carcinoma and its downregulation contributes to worse prognosis. Biochem. Biophys. Res. Commun. 2015, 463, 458–465.
  68. Diaz-Lagares, A.; Mendez-Gonzalez, J.; Hervas, D.; Saigi, M.; Pajares, M.J.; Garcia, D.; Crujerias, A.B.; Pio, R.; Montuenga, L.M.; Zulueta, J.; et al. A Novel Epigenetic Signature for Early Diagnosis in Lung Cancer. Clin. Cancer Res. Cancer Res. 2016, 22, 3361–3371.
  69. Chen, W.; Lu, C.; Hong, J. TRIM15 exerts anti-tumor effects through suppressing cancer cell invasion in gastric adenocarcinoma. Med. Sci. Monit. 2018, 24, 8033–8041.
  70. Kassem, L.; Deygas, M.; Fattet, L.; Lopez, J.; Goulvent, T.; Lavergne, E.; Chabaud, S.; Carrabin, N.; Chopin, N.; Bachelot, T.; et al. TIF1γ interferes with TGFβ1/SMAD4 signaling to promote poor outcome in operable breast cancer patients. BMC Cancer 2015, 15, 453.
  71. Wang, F.; Ruan, L.; Yang, J.; Zhao, Q.; Wei, W. TRIM14 promotes the migration and invasion of gastric cancer by regulating epithelial-to-mesenchymal transition via activation of AKT signaling regulated by miR-195-5p. Oncol. Rep. 2018, 40, 3273–3284.
  72. Piao, M.Y.; Cao, H.L.; He, N.N.; Xu, M.Q.; Dong, W.X.; Wang, W.Q.; Wang, B.M.; Zhou, B. Potential role of TRIM3 as a novel tumour suppressor in colorectal cancer (CRC) development. Scand. J. Gastroenterol. 2016, 51, 572–582.
  73. Sho, T.; Tsukiyama, T.; Sato, T.; Kondo, T.; Cheng, J.; Saku, T.; Asaka, M.; Hatakeyama, S. TRIM29 negatively regulates p53 via inhibition of Tip60. Biochim. Biophys. Acta 2011, 1813, 1245–1253.
  74. Ding, Z.; Jin, G.; Wang, W.; Chen, W.; Wu, Y.; Ai, X.; Chen, L.; Zhang, W.; Liang, H.F.; Laurence, A.; et al. Reduced expression of transcriptional intermediary factor 1 gamma promotes metastasis and indicates poor prognosis of hepatocellular carcinoma. Hepatology 2014, 60, 1620–1636.
  75. Song, X.; Fu, C.; Yang, X.; Sun, D.; Zhang, X.; Zhang, J. Tripartite motif-containing 29 as a novel biomarker in non-small cell lung cancer. Oncol. Lett. 2015, 10, 2283–2288.
  76. Qin, Y.; Ye, J.; Zhao, F.; Hu, S.; Wang, S. TRIM2 regulates the development and metastasis of tumorous cells of osteosarcoma. Int. J. Oncol. 2018, 53, 1643–1656.
  77. Cao, H.; Fang, Y.; Liang, Q.; Wang, J.; Luo, B.; Zeng, G.; Zhang, T.; Jing, X.; Wang, X. TRIM2 is a novel promoter of human colorectal cancer. Scand. J. Gastroenterol. 2019, 54, 210–218.
  78. Sun, J.; Zhang, T.; Cheng, M.; Hong, L.; Zhang, C.; Xie, M.; Sun, P.; Fan, R.; Wang, Z.; Wang, L.; et al. TRIM29 facilitates the epithelial-to-mesenchymal transition and the progression of colorectal cancer via the activation of the Wnt/β-catenin signaling pathway. J. Exp. Clin. Cancer Res. 2019, 38, 104.
  79. Carinci, F.; Arcelli, D.; Lo Muzio, L.; Francioso, F.; Valentini, D.; Evangelisti, R.; Volinia, S.; D’Angelo, A.; Meroni, G.; Zollo, M.; et al. Molecular classification of nodal metastasis in primary larynx squamous cell carcinoma. Transl. Res. 2007, 150, 233–245.
  80. Takayama, K.I.; Suzuki, T.; Tanaka, T.; Fujimura, T.; Takahashi, S.; Urano, T.; Ikeda, K.; Inoue, S. TRIM25 enhances cell growth and cell survival by modulating p53 signals via interaction with G3BP2 in prostate cancer. Oncogene 2018, 37, 2165–2180.
  81. Kanno, Y.; Watanabe, M.; Kimura, T.; Nonomura, K.; Tanaka, S.; Hatakeyama, S. TRIM29 as a novel prostate basal cell marker for diagnosis of prostate cancer. Acta Histochem. 2014, 116, 708–712.
  82. Xiao, W.; Wang, X.; Wang, T.; Xing, J. TRIM2 downregulation in clear cell renal cell carcinoma affects cell proliferation, migration, and invasion and predicts poor patients’ survival. Cancer Manag. Res. 2018, 10, 5951–5964.
  83. Mastropasqua, F.; Marzano, F.; Valletti, A.; Aiello, I.; Di Tullio, G.; Morgano, A.; Liuni, S.; Ranieri, E.; Guerrini, L.; Gasparre, G.; et al. TRIM8 restores p53 tumour suppressor function by blunting N-MYC activity in chemo-resistant tumours. Mol. Cancer 2017, 16, 67.
  84. Caratozzolo, M.F.; Valletti, A.; Gigante, M.; Aiello, I.; Mastropasqua, F.; Marzano, F.; Ditonno, P.; Carrieri, G.; Simonnet, H.; D’Erchia, A.M.; et al. TRIM8 anti-proliferative action against chemo-resistant renal cell carcinoma. Oncotarget 2014, 5, 7446–7457.
  85. Jingushi, K.; Ueda, Y.; Kitae, K.; Hase, H.; Egawa, H.; Ohshio, I.; Kawakami, R.; Kashiwagi, Y.; Tsukada, Y.; Kobayashi, T.; et al. miR629 targets TRIM33 to promote TGFβ/Smad signaling and metastatic phenotypes in ccRCC. Mol. Cancer Res. 2015, 13, 565–574.
  86. Xue, J.; Chen, Y.; Wu, Y.; Wang, Z.; Zhou, A.; Zhang, S.; Lin, K.; Aldape, K.; Majumder, S.; Lu, Z.; et al. Tumour suppressor TRIM33 targets nuclear β-catenin degradation. Nat. Commun. 2015, 6, 6156.
  87. Cambiaghi, V.; Giuliani, V.; Lombardi, S.; Marinelli, C.; Toffalorio, F.; Pelicci, P.G. TRIM proteins in cancer. Adv. Exp. Med. Biol. 2012, 770, 77–91.
  88. Hutchinson, K.E.; Lipson, D.; Stephens, P.J.; Otto, G.; Lehmann, B.D.; Lyle, P.L.; Vnencak-Jones, C.L.; Ross, J.S.; Pietenpol, J.A.; Sosman, J.A.; et al. BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition. Clin. Cancer Res. 2013, 19, 6696–6702.
  89. Nakaoku, T.; Tsuta, K.; Ichikawa, H.; Shiraishi, K.; Sakamoto, H.; Enari, M.; Furuta, K.; Shimada, Y.; Ogiwara, H.; Watanabe, S.; et al. Druggable oncogene fusions in invasive mucinous lung adenocarcinoma. Clin. Cancer Res. 2014, 20, 3087–3093.
  90. Shim, H.S.; Kenudson, M.; Zheng, Z.; Liebers, M.; Cha, Y.J.; Hoang Ho, Q.; Onozato, M.; Phi Le, L.; Heist, R.S.; Iafrate, A.J. Unique Genetic and Survival Characteristics of Invasive Mucinous Adenocarcinoma of the Lung. J. Thorac. Oncol. 2015, 10, 1156–1162.
  91. Alfonso, A.; Montalban-Bravo, G.; Takahashi, K.; Jabbour, E.J.; Kadia, T.; Ravandi, F.; Cortes, J.; Estrov, Z.; Borthakur, G.; Pemmaraju, N.; et al. Natural history of chronic myelomonocytic leukemia treated with hypomethylating agents. Am. J. Hematol. 2017, 92, 599–606.
  92. Yin, Y.; Zhong, J.; Li, S.W.; Li, J.Z.; Zhou, M.; Chen, Y.; Sang, Y.; Liu, L. TRIM11, a direct target of miR-24-3p, promotes cell proliferation and inhibits apoptosis in colon cancer. Oncotarget 2016, 7, 86755–86765.
  93. Fang, Z.; Zhang, L.; Liao, Q.; Wang, Y.; Yu, F.; Feng, M.; Xiang, X.; Xiong, J. Regulation of TRIM24 by miR-511 modulates cell proliferation in gastric cancer. J. Exp. Clin. Cancer Res. 2017, 36, 17.
  94. Li, Y.H.; Zhong, M.; Zang, H.L.; Tian, X.F. The E3 ligase for metastasis associated 1 protein, TRIM25, is targeted by microRNA-873 in hepatocellular carcinoma. Exp. Cell Res. 2018, 368, 37–41.
  95. Han, Q.; Cheng, P.; Yang, H.; Liang, H.; Lin, F. Altered expression of microRNA-365 is related to the occurrence and development of non-small-cell lung cancer by inhibiting TRIM25 expression. J. Cell. Physiol. 2019, 234, 22321–22330.
  96. Zhang, W.; Zhu, L.; Yang, G.; Zhou, B.; Wang, J.; Qu, X.; Yan, Z.; Qian, S.; Liu, R. Hsa_circ_0026134 expression promoted TRIM25- and IGF2BP3-mediated hepatocellular carcinoma cell proliferation and invasion via sponging miR-127-5p. Biosci. Rep. 2020, 40.
  97. Sun, S.; Li, W.; Ma, X.; Luan, H. Long Noncoding RNA LINC00265 Promotes Glycolysis and Lactate Production of Colorectal Cancer through Regulating of miR-216b-5p/TRIM44 Axis. Digestion 2020, 101, 391–400.
  98. Lei, R.; Feng, L.; Hong, D. ELFN1-AS1 accelerates the proliferation and migration of colorectal cancer via regulation of miR-4644/TRIM44 axis. Cancer Biomark. Sect. Dis. Markers. 2020, 27, 433–443.
  99. Eberhardt, W.; Haeussler, K.; Nasrullah, U.; Pfeilschifter, J. Multifaceted Roles of TRIM Proteins in Colorectal Carcinoma. Int. J. Mol. Sci. 2020, 21, 7532.
  100. Elabd, S.; Meroni, G.; Blattner, C. TRIMming p53′s anticancer activity. Oncogene 2016, 35, 5577–5584.
  101. Valletti, A.; Marzano, F.; Pesole, G.; Sbisà, E.; Tullo, A. Targeting Chemoresistant Tumors: Could TRIM Proteins-p53 Axis Be a Possible Answer? Int. J. Mol. Sci. 2019, 20, 20.
  102. Wang, F.Q.; Han, Y.; Yao, W.; Yu, J. Prognostic relevance of tripartite motif containing 24 expression in colorectal cancer. Pathol. Res. Pract. 2017, 213, 1271–1275.
  103. Zhang, P.; Elabd, S.; Hammer, S.; Solozobova, V.; Yan, H.; Bartel, F.; Inoue, S.; Henrich, T.; Wittbrodt, J.; Loosli, F.; et al. TRIM25 has a dual function in the p53/MDM2 circuit. Oncogene 2015, 34, 5729–5738.
  104. Nasrullah, U.; Haeussler, K.; Biyanee, A.; Wittig, I.; Pfeilschifter, J.; Eberhardt, W. Identification of TRIM25 as a Negative Regulator of Caspase-2 Expression Reveals a Novel Target for Sensitizing Colon Carcinoma Cells to Intrinsic Apoptosis. Cells 2019, 8, 1622.
  105. Barlev, N.A.; Liu, L.; Chehab, N.H.; Mansfield, K.; Harris, K.G.; Halazonetis, T.D.; Berger, S.L. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell 2001, 8, 1243–1254.
  106. Wang, M.; Chao, C.; Luo, G.; Wang, B.; Zhan, X.; Di, D.; Qian, Y.; Zhang, X. Prognostic significance of TRIM59 for cancer patient survival: A systematic review and meta-analysis. Medicine 2019, 98, e18024.
  107. Wu, W.; Chen, J.; Wu, J.; Lin, J.; Yang, S.; Yu, H. Knockdown of tripartite motif-59 inhibits the malignant processes in human colorectal cancer cells. Oncol. Rep. 2017, 38, 2480–2488.
  108. Zhou, Z.; Ji, Z.; Wang, Y.; Li, J.; Cao, H.; Zhu, H.H.; Gao, W.Q. TRIM59 is up-regulated in gastric tumors, promoting ubiquitination and degradation of p53. Gastroenterology 2014, 147, 1043–1054.
  109. Fitzgerald, S.; Espina, V.; Liotta, L.; Sheehan, K.M.; O’Grady, A.; Cummins, R.; O’Kennedy, R.; Kay, E.W.; Kijanka, G.S. Stromal TRIM28-associated signaling pathway modulation within the colorectal cancer microenvironment. J. Transl. Med. 2018, 16, 89.
  110. Wang, C.; Ivanov, A.; Chen, L.; Fredericks, W.J.; Seto, E.; Rauscher, F.J.; Chen, J. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J. 2005, 24, 3279–3290.
  111. Yuan, Z.; Villagra, A.; Peng, L.; Coppola, D.; Glozak, M.; Sotomayor, E.M.; Chen, J.; Lane, W.S.; Seto, E. The ATDC (TRIM29) protein binds p53 and antagonizes p53-mediated functions. Mol. Cell. Biol. 2010, 30, 3004–3015.
  112. Lee, H.-J. The Role of Tripartite Motif Family Proteins in TGF-β Signaling Pathway and Cancer. J. Cancer Prev. 2018, 23, 162–169.
  113. Zheng, S.; Zhou, C.; Wang, Y.; Li, H.; Sun, Y.; Shen, Z. TRIM6 promotes colorectal cancer cells proliferation and response to thiostrepton by TIS21/FoxM1. J. Exp. Clin. Cancer Res. 2020, 39, 23.
  114. Zhang, Y.; Feng, Y.; Ji, D.; Wang, Q.; Qian, W.; Wang, S.; Zhang, Z.; Ji, B.; Zhang, C.; Sun, Y.; et al. TRIM27 functions as an oncogene by activating epithelial-mesenchymal transition and p-AKT in colorectal cancer. Int. J. Oncol. 2018, 53, 620–632.
  115. Li, C.G.; Hu, H.; Yang, X.J.; Huang, C.Q.; Yu, X.Q. TRIM44 Promotes Colorectal Cancer Proliferation, Migration, and Invasion through the Akt/mTOR Signaling Pathway. OncoTargets Ther. 2019, 12, 10693–10701.
  116. Jin, Z.; Li, H.; Hong, X.; Ying, G.; Lu, X.; Zhuang, L.; Wu, S. TRIM14 promotes colorectal cancer cell migration and invasion through the SPHK1/STAT3 pathway. Cancer Cell Int. 2018, 18, 202.
  117. Pan, S.; Deng, Y.; Fu, J.; Zhang, Y.; Zhang, Z.; Ru, X.; Qin, X. TRIM52 promotes colorectal cancer cell proliferation through the STAT3 signaling. Cancer Cell Int. 2019, 19, 57.
  118. Chen, M.; Zhao, Z.; Meng, Q.; Liang, P.; Su, Z.; Wu, Y.; Huang, J.; Cui, J. TRIM14 Promotes Noncanonical NF-κB Activation by Modulating p100/p52 Stability via Selective Autophagy. Adv. Sci. Weinh. Baden Wurtt. Ger. 2020, 7, 1901261.
  119. Xie, Y.; Zhao, Y.; Shi, L.; Li, W.; Chen, K.; Li, M.; Chen, X.; Zhang, H.; Li, T.; Matsuzawa-Ishimoto, Y.; et al. Gut epithelial TSC1/mTOR controls RIPK3-dependent necroptosis in intestinal inflammation and cancer. J. Clin. Investig. 2020, 130, 2111–2128.
  120. Wang, H.; Yao, L.; Gong, Y.; Zhang, B. TRIM31 regulates chronic inflammation via NF-κB signal pathway to promote invasion and metastasis in colorectal cancer. Am. J. Transl. Res. 2018, 10, 1247–1259.
  121. Papadatos-Pastos, D.; Rabbie, R.; Ross, P.; Sarker, D. The role of the PI3K pathway in colorectal cancer. Crit. Rev. Oncol. Hematol. 2015, 94, 18–30.
  122. Wang, S.; Zhang, Y.; Huang, J.; Wong, C.C.; Zhai, J.; Li, C.; Wei, G.; Zhao, L.; Wang, G.; Wei, H.; et al. TRIM67 Activates p53 to Suppress Colorectal Cancer Initiation and Progression. Cancer Res. 2019, 79, 4086–4098.
  123. Liu, M.; Zhang, X.; Cai, J.; Li, Y.; Luo, Q.; Wu, H.; Yang, Z.; Wang, L.; Chen, D. Downregulation of TRIM58 expression is associated with a poor patient outcome and enhances colorectal cancer cell invasion. Oncol. Rep. 2018, 40, 1251–1260.
  124. Caratozzolo, M.F.; Micale, L.; Turturo, M.G.; Cornacchia, S.; Fusco, C.; Marzano, F.; Augello, B.; D’Erchia, A.M.; Guerrini, L.; Pesole, G.; et al. TRIM8 modulates p53 activity to dictate cell cycle arrest. Cell Cycle 2012, 11, 511–523.
  125. Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-based map of the human proteome. Science 2015, 347, 1260419, The Human protein Atlas.
More
Video Production Service