AML Diagnosis and Prognosis: Comparison
Please note this is a comparison between Version 2 by Lily Guo and Version 1 by Ugo Testa.

The development of molecular studies to define the somatic genetic alterations has revolutionized the diagnostic and therapeutic management of acute myeloid leukemia (AML). AML is a highly heterogenous disease that includes many molecular subtypes; each subtype is heterogeneous both for the presence of variable co-mutations and complex combinations of clones and subclones, changing during disease evolution and in response to treatment. The treatment of AML is changing from standardized schemes of induction and consolidation chemotherapy to tailored approaches according to molecular and genetic profiles and to targeted therapy. Several molecularly targeted therapies have been approved for the treatment of some AML patients, including mutation-specific targeted drugs such as FLT3, IDH1 and IDH2 inhibitors, mutation-independent targeted drugs such as the Bcl2 inhibitor venetoclax, the hedgehog inhibitor glasdegib and the CD33-targeted drug gemtuzumab ozogamicin. Furthermore, recent studies have shown the feasibility of a personalized medicine approach for the treatment of AML patients, where the therapy decisions are guided by the results of genomic studies. 

  • acute myeloid leukemia molecular classification prognosis diagnosis
Please wait, diff process is still running!

References

  1. Cancer Genome Atlas Research Network; Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mingall, A.J.; Robertson, A.G.; Hoadley, A.S.K.; Triche, T.J.; Laird, P.W.; et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 2013, 368, 20959–22074.
  2. Hou, H.A.; Lin, C.C.; Chou, W.C.; Liu, C.Y.; Chen, C.Y.; Tang, J.L.; Lai, Y.J.; Tseng, M.H.; Huang, C.F.; Chiang, Y.C.; et al. Integration of cytogenetic and molecular alterations in risk stratification of 318 patients with de novo non-M3 acute myeloid leukemia. Leukemia 2014, 28, 50–58.
  3. Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, K.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Hauser, M.; Thol, F.; Bolli, N.; et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 2016, 374, 2209–2221.
  4. Bullinger, L.; Dohner, K.; Dohner, H. Genomics of acute myeloid leukemia diagnosis and pathways. J. Clin. Oncol. 2017, 35, 934–946.
  5. Moarii, M.; Papaemmanuil, E. Classification and risk assessment in AML: Integrating cytogenetics and molecular profiling. Hematol. Am. Soc. Hematol. Educ. Program. 2017, 8, 37–44.
  6. Kishtagari, A.; Levine, R.L.; Viny, A.D. Driver mutations in acute myeloid leukemia. Curr. Opin. Hematol. 2020, 27, 9–57.
  7. Short, N.J.; Konopleva, M.; Kadia, T.M.; Borthakur, G.; Ravandi, F.; DiNardo, C.D.; Daver, N. Advances in the treatment of acute myeloid leukemia: New drugs and new challenges. Cancer Discov. 2020, 10, 506–525.
  8. Daver, N.; Wei, A.H.; Pollyea, D.A.; Fathi, A.T.; Vyas, P.; DiNardo, C.D. New directions for emerging therapies in acute myeloid leukemia: The next chapter. Blood Cancer J. 2020, 10, 107.
  9. Yu, J.; Jiang, P.; Sun, H.; Zhang, X.; Jiang, Z.; Li, Y.; Song, Y. Advances in targeted therapy for acute myeloid leukemia. Biomarker Res. 2020, 8, 17.
  10. Samra, B.; Knopleva, M.; Isidori, A.; Daver, N.; DiNardo, C. Venetoclax-based combinations in acute myeloid leukemia: Current evidence and future directions. Front. Oncol. 2020, 10, 562558.
  11. Ganget, N.; Tefferi, A. Venetoclax-based chemotherapy in acute and chronic myeloid neoplasms: Literature survey and practice points. Blood Cancer J. 2020, in press.
  12. Marando, L.; Huntly, B.J.P. Molecular landscape of acute myeloid leukemia: Prognostic and therapeutic implications. Curr. Oncol. Rep. 2020, 22, 61.
  13. Hou, H.A.; Tien, H.F. Genomic landscape in acute myeloid leukemia and its implications in risk classification and targeted therapies. J. Biomed. Sci. 2020, 27, 81.
  14. Dohner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Buchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447.
  15. O’Donnell, M.R.; Tallman, M.S.; Abboud, C.N.; Altman, J.K.; Appelbaum, F.R.; Arber, D.A. Acute myeloid leukemia, version 3.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2017, 15, 926–957.
  16. Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiede, J.; Borowitz, M.J.; Le Beau, M.M. The 2016 revision in the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 1391–2405.
  17. Herold, T.; Rothenberg-Thurley, M.; Grumwald, V.V.; Janke, H.; Goerlich, D.; Sauerland, M.S.; Kostandin, N.P.; Dufour, A.; Schneider, S.; Neusser, M.; et al. Validation and refinement of the revised 2017 European Leukemia Net genetic risk stratification of acute myeloid leukemia. Leukemia 2020, in press.
  18. Wang, M.; Lindberg, J.; Kelvebring, D.; Nillsson, C.; Mer, A.S.; Rantalaien, M.; Lehmann, S.; Gronberg, H. Validation of risk stratification models in acute myeloid leukemia using sequencing-based molecular profiling. Leukemia 2017, 31, 2029–2036.
  19. Wang, M.; Lindberg, J.; Klevebring, D.; Nillsson, C.; Lehmann, S.; Gronberg, H.; Rantalainen, M. Development and validation of a novel RNA sequencing-based prognostic score for acute myeloid leukemia. J. Natl. Cancer Inst. 2018, 110, 1094–1101.
  20. Ma, T.T.; Lin, X.J.; Cheng, W.Y.; Xue, Q.; Wang, S.Y.; Liu, F.J.; Yan, H.; Zhu, Y.M.; Shen, Y. Development and validation of a prognostic model for adult patients with acute myeloid leukemia. EBioMedicine 2020, 62, 103126.
  21. Radakovich, N.; Nagy, M.; Nazha, A. Machine learning in haematological malignancies. Lancet Haematol. 2020, 7, e541–e550.
  22. Radakovich, N.; Cortese, M.; Nazha, A. Acute myeloid leukemia and artificial intelligence, algorithms and new scores. Best Pract. Res. Clin. Hemat. 2020, 33, 101192.
  23. Goecks, J.; Jalili, V.; Heiser, L.M.; Gray, J.W. How machine learning will transform biomedicine. Cell 2020, 181, 92–101.
  24. Eckardt, J.N.; Bornhauser, M.; Wendt, K.; Middeke, J.M. Application of machine learning in the management of acute myeloid leukemic: Current practice and future prospects. Blood Adv. 2020, 4, 6077–6085.
  25. Beau Hilton, C.; Meggendorfer, M.; Sekeres, M.A.; Shreve, J.; Radakovich, N.; Rouphail, Y.; Walter, W.; Hutter, S.; Padron, E.; Savona, M.R.; et al. Geno-clinical model for the diagnosis of bone marrow myeloid neoplasms. Blood 2019, 134 (Suppl. S1), 4238.
  26. Morita, K.; Wang, F.; Makishima, H.; Yan, Y.; Yoshizato, T.; Yoshida, K.; Przychodzen, B.P.; Patel, K.; Bueso-Ramos, C.E.; Gumbs, C.; et al. Pan-myeloid leukemia analysis: Machine learning-based approach to predict phenotype and clinical outcomes using mutation data. Blood 2018, 132 (Suppl. 1), 1801.
  27. Radakovich, N.; Malcovati, L.; Meggendorfer, M.; Sekeres, M.A.; Shreve, J.; Beau Hilton, C.; Rouphail, Y.; Walter, W.; Hutter, S.; Gallì, A.; et al. Henotype-phenotype correlations in patients with myeloid malignancies using explainable artificial intelligence. Blood 2020, 138 (Suppl. S1), 31–32.
  28. Gerstung, M.; Papaemmanuil, E.; Martincorena, I.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Heuser, M.; Thol, F.; Bolli, N.; Ganly, P.; et al. Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat. Genet. 2017, 49, 332–340.
  29. Fleming, S.; Tsai, C.H.; Dohner, H.; Dohner, K.; Papaemmanuil, E.; Tien, H.F.; Reynolds, J.; Wei, A.H.; Hou, H.A. Use of machine-learning in 2074 cases of acute myeloid leukemia for genetic risk profiling. Blood 2019, 134 (Suppl. S1), 1392.
  30. Shreve, J.; Meggendorfer, M.; Awada, H.; Mukherjee, S.; Walter, W.; Hutter, S.; Makhoul, A.; Beau Hilton, C.; Radakovich, N.; Nagata, Y.; et al. A personalized prediction model to risk stratify patients with acute myeloid leukemia (AML) using artificial intelligence. Blood 2019, 134 (Suppl. S1), 2091.
  31. Awada, H.; Durmaz, A.; Gurnari, C.; Kishtagari, A.; Meggendorfer, M.; Kerr, C.M.; Kuzmanoviuc, T.; Durrani, J.; Nagata, Y.; Rdivoyevitch, T.; et al. The application of machine learning to improve the subclassification and prognostication of acute myeloid leukemia. Blood 2020, 136 (Suppl. S1), 28.
  32. Siddiqui, N.S.; Klein, A.; Godara, A.; Varga, C.; Buchsbaum, R.J.; Hughes, M.C. Supervised machine learning algorithms using patient related factors to predict in-hospital mortality following acute myeloid leukemia therapy. Blood 2019, 134 (Suppl. S1), 3435.
  33. Shaikh, A.F.; Kakirde, C.; Dhamne, C.; Bhanshe, P.; Joshi, S.; Chaudhary, S.; Chatterjee, G.; Tembhare, P.; Prasad, M.; Roy Moulik, N.; et al. Machine learning derived genomics driven prognostication for acute myeloid leukemia with RUNX1-RUNX1T1. Leuk. Lymphoma 2020, 61, 3154–3160.
  34. Patkar, N.; Shaikh, A.F.; Kakirde, C.; Nathany, S.; Ramesh, H.; Bhanshe, P.; Joshi, S.; Chaudhary, S.; Kannan, S.; Khizer, S.H.; et al. A novel machine-learning-derived genetic score correlates with measurable residual disease and is highly predictive of outcome in acute myeloid leukemia with mutated NPM1. Blood Cancer J. 2019, 9, 79.
  35. Bullinger, L.; Dohner, K.; Bair, E.; Frohling, S.; Schlenk, R.F.; Tibshirani, R.; Dohner, H.; Pollack, J.R. Use of gene-expression profiling to identify prognostic subclones in adult acute myeloid leukemia. N. Engl. J. Med. 2004, 350, 1605–1616.
  36. Li, Z.; Herold, T.; He, C.; Valk, P.; Chen, P.; Jurinovic, V.; Mansmann, U.; Radmacher, M.; Maharry, K.; Sun, M.; et al. Identification of a 24-gene prognostic signature that improves the European LeukemiaNet risk classification of acute myeloiud leukemia: An international collaborative study. J. Clin. Oncol. 2013, 31, 1172–1181.
  37. Marcucci, G.; Yan, P.; Maharry, K.; Frankhouser, D.; Nicolet, D.E.; Metzler, K.H.; Kohlschmidt, J.; Mrozek, K.; Wu, Y.Z.; Bussi, D.; et al. Epigenetics meets genetics in acute myeloid leukemia: Clinical impact of a novel seven-gene score. J. Clin. Oncol. 2013, 32, 548–556.
  38. Ng, S.; Mitchell, A.; Kennedy, J.; Chen, W.C.; McLeod, J.; Ibrahimova, N.; Arruda, A.; Popescu, A.; Gupta, V.; Schimmer, A.D.; et al. A 17-gene stemness score for rapid determination of risk in acute leukemia. Nature 2016, 540, 433–437.
  39. Warnat-Herresthal, S.; Perrakis, K.; Taschler, B.; Becker, M.; Babler, K.; Beyer, M.; Gunther, P.; Schulte-Schrepping, J.; Seep, L.; Klee, K.; et al. Scalable prediction of acute myeloid leukemia using high-dimensional machine learning and blood transcriptomics. iScience 2020, 23, 100780.
  40. Wagner, S.; Vadakekolathu, J.; Taisan, S.K.; Altmann, H.; Bornhauser, M.; Pockley, A.G.; Ball, G.R.; Rutella, S. A parsimonius 3-gene signature predicts clinical outcomes in an acute myeloid leukemia multicohort study. Blood Adv. 2019, 3, 1330–1340.
  41. Rouphail, Y.; Radakovich, N.; Shreve, J.; Mukherejee, S.; Jha, B.K.; Maciejewski, J.P.; Sekeres, M.A.; Nazha, A. Personalized transcriptomic analyses identify unique signatures that correlate with genomic subtypes in acute myeloid leukemia (AML) using explainable artificial intelligence. Blood 2020, 136 (Suppl. S1), 33–34.
  42. Gandelman, J.S.; Byrne, M.T.; Mistry, A.M.; Polikowsky, H.G.; Diggins, K.E.; Chen, H.; Lee, S.J.; Arora, M.; Cutler, C.; Flowers, M.; et al. Machine learning reveals chronic graft-versus host disease phenotypes and stratifies survival after stem cell transplant for hematologic malignancies. Haematologica 2019, 104, 189–196.
  43. Choi, E.J.; Lee, J.H.; Park, J.H.; Park, H.S.; Lee, J.H.; Lee, Y.; Kang, Y.A.; Jeon, M.; Woo, J.M.; Kang, H.; et al. Machine learning-based approach to predict survival after allogeneic hematopoietic cell transplantation in hematologic malignancies. Blood 2020, 136 (Suppl. S1), 33–34.
  44. Nazha, A.; Hu, Z.H.; Wang, T.; Lindsley, R.C.; Abdel-Azim, H.; Aljurf, M.; Bacher, U.; Bashley, A.; Cahn, J.Y.; Cerny, J.; et al. A personalized prediction model for outcomes after allogeneic hematopoietic cell transplant in patients with myelodysplastic syndromes. Biol. Blood Marrow Transplant. 2020, 26, 2139–2146.
  45. Lee, S.; Celik, S.; Logsdon, B.A.; Lundberg, S.M.; Martins, T.J.; Oehler, V.G.; Estey, E.H.; Miller, C.P.; Chien, S.; Dai, J.; et al. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat. Commun. 2018, 9, 42.
  46. Chen, X.; Chen, H.Y.; Chen, Z.D.; Gong, J.N.; Chen, C.Y.N. A novel artificial intelligence protocol for finding potential inhibitors of acute myeloid leukemia. J. Mater. Chem. B Mater Biol. Med. 2020, 8, 2063–2081.
  47. Cutler, G.; Fridman, J.S. A machine-learning analysis suggests that FLX925, a FLT3/CDK4/6 kinase inhibitor, is potent against FLT3-wild type tumors via its CDK4/6 activity. Blood 2016, 128, 3520.
  48. Ko, B.S.; Wang, Y.F.; Li, J.L.; Weng, P.F.; Hsu, S.C.; Hou, H.A.; Huang, H.H.; Yao, M.; Lin, C.T.; Liu, J.H.; et al. Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome. EBioMedicine 2018, 37, 91–100.
  49. Haferlach, T.; Schmidts, I. The power and potential of integrated diagnostics in acute myeloid leukemia. Br. J. Haematol. 2020, 188, 36–48.
  50. Letai, A. Functional precision cancer medicine -moving beyond pure genomic. Nat. Med. 2017, 23, 1028–1035.
  51. Tyner, J.W.; Tognon, C.E.; Bottomly, D.; Wilmot, B.; Kurtz, S.E.; Savage, S.L.; Long, N.; Schultz, A.R.; Traer, E.; Abel, M.; et al. Functional genomic landscape of acute myeloid leukaemia. Nature 2018, 562, 526–531.
  52. Kurtz, S.E.; Eide, C.A.; Kaempf, A.; Khanna, V.; Savage, S.L.; Rofelty, A.; English, I.; Ho, H.; Pandya, R.; Bolosky, W.J.; et al. Molecularly targeted drug combinations demonstrate selective effectiveness for myeloid- and lymphoid- derived hematologic malignancies. Proc. Natl. Acad. Sci. USA 2017, 114, E7554–E7563.
  53. Lin, L.; Tong, Y.; Straube, J.; Zhao, J.; Gao, Y.; Bai, P.; Li, J.; Wang, J.; Wang, H.; Wang, X.; et al. Ex-vivo drug testing predicts chemosensitivity in acute myeloid leukemia. J. Leukoc. Biol. 2020, 107, 859–870.
  54. Erkers, T.; Seashore-Ludlow, B.; Struyf, N.; Marabita, F.; James, T.; Malani, D.; Vesterlund, M.; Pawitan, Y.; Lehmann, S.; Ostling, P.; et al. High-throughput functional ex-vivo drug testing and multi-omics profiling in patients with acute myeloid leukemia. Blood 2019, 134 (Suppl. S1), 4641.
  55. Martinez-Cuadròn, D.; Gil, C.; Serrano, J.; Rodriguez, G.; Perez-Oteyza, J.; Garcia-Boyero, R.; Jimenez-Bravo, S.; Vives, S.; Vidriales, M.B.; Lavilla, E.; et al. A precision medicine test predicts clinical response after idarubicin and cytarabine induction therapy in AML patients. Leukemia Res. 2019, 76, 1–10.
  56. Simon, L.; Lavallée, V.P.; Bordeleau, M.E.; Krosl, J.; Baccelli, I.; Boucher, G.; Lenhertz, B.; Chagraoul, J.; MacRae, T.; Ruel, R.; et al. Chemogenomic landscape of RUNX1-mutated AML reveals importance of RUNX1 allele dosage in genetics and glucocorticoid sensitivity. Clin. Cancer Res. 2017, 23, 6969–6983.
  57. Moison, C.; Lavallée, J.P.; Thiollier, C.; Spinella, J.F.; Boivin, I.; Lemiux, S.; Marinier, A.; Hébert, J.; Savageau, G. Chemogenomic profiling of complex karyotype AML reveals a novel susceptibility to G2/M checkpoint inhibition mediated by HMGA2 overexpression. Blood 2018, 132 (Suppl. S1), 3925.
  58. Zhang, H.; Wilmot, B.; Bottomly, D.; Kurtz, S.E.; Eide, C.A.; Damnernsawad, A.; Romine, K.; Patel, S.; Druker, B.J.; Mcweeney, S.K.; et al. Biomarkers predicting venetoclax sensitivity and strategies for venetoclax combination treatment. Blood 2018, 132 (Suppl. S1), 175.
  59. Zhang, H.; Nakauchi, Y.; Kohnkie, T.; Stafford, M.; Bottomly, D.; Thomas, R.; Wilmot, B.; McWeeney, S.K.; Majketi, R.; Tyner, J.W. Integrated analysis of patients samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. Nat. Cancer 2020, 1, 826–839.
  60. Stevens, B.M.; Jones, C.L.; Winters, A.; Gugan, J.; Abbott, D.; Savona, M.R.; Fesik, S.W.; Pollyea, D.A.; Jordan, C.T. PTPN11 mutations confer unique metabolic properties and increase resistance to venetoclax and azacytidine in acute myeloid leukemia. Blood 2018, 132 (Suppl. S1), 909.
  61. Alfayez, M.; Issa, G.C.; Patel, K.P.; Wang, F.; Wang, X.; Short, N.J.; Cortes, J.E.; Kadia, T.; Ravandi, F.; Pierce, S.; et al. The clinical impact of PTPN11 mutations in adults with acute myeloid leukemia. Leukemia 2020, in press.
  62. Pei, S.; Pollyea, D.A.; Gustafson, A.; Stevens, B.M.; Minhajuddin, M.; Fu, R.; Riemondy, K.A.; Gillen, A.E.; Sheridan, R.M.; Kim, J.; et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia. Cancer Discov. 2020, 10, 536–551.
  63. Spinner, M.A.; Alishin, A.; Santaguida, M.T.; Schaffert, S.A.; Zehnder, J.L.; Patterson, A.S.; Gekas, C.; Heiser, D.; Greenberg, P.L. Wx vivo drug screening defines novel drug sensitivity patterns informing personalized therapy in myeloid neoplasms. Blood Adv. 2020, 4, 2768–2778.
  64. Snijder, B.; Vladimer, G.I.; Krall, N.; Miura, K.; Schmolke, A.S.; Kornauth, C.; de la Fuente, I.O.L.; Choi, H.S.; van der Kouwe, E.; Gultekin, S.; et al. Image-based ex-vivo drug screening for patients with aggressive haematological malignancies: Interim results from a single-arm, open-label, pilot study. Lancet Haematol. 2017, 4, e595–e606.
  65. Collignon, A.; Hospital, M.A.; Montersino, C.; Courtier, F.; Charbonnier, A.; Saillard, C.; D’Incan, E.; Mohty, B.; Guille, A.; Adelaide, J.; et al. A chemogenomic approach to identify personalized therapy for patients with relapse or refractory acute myeloid leukemia: Results of a prospective feasibility study. Blood Cancer J. 2020, 10, 64.
More