Recent Advances in PLA/TiO2 Composites: Comparison
Please note this is a comparison between Version 2 by Nicole Yin and Version 1 by Mosab Kaseem.

Polylactic acid/titanium oxide (PLA/TiO2) composites as multifunctional materials have

been studied extensively by couple of research groups owing to their outstanding mechanical, thermal,

photocatalytic, and antimicrobial properties. This review describes the experimental approaches

used to improve the compatibility of PLA/TiO2 composites. The mechanical, thermal, photocatalytic,

and antimicrobial properties of PLA/TiO2 composites are discussed. The potential applications arising

from the structural and functional properties of PLA/TiO2 composites were also reviewed. Finally,

it is concluded that a deep understanding of the impacts of TiO2 filler with available improvement

approaches in the dispersibility of this filler in the PLA matrix would be the key for the effective usage

of PLA/TiO2 composites and to expand their suitability with worldwide application requirements.

Polylactic acid/titanium oxide (PLA/TiO2) composites as multifunctional materials havebeen studied extensively by couple of  research groups owing to their outstanding mechanical, thermal, photocatalytic, and antimicrobial properties. This review describes the experimental approaches used to improve the compatibility of PLA/TiO2 composites. The mechanical, thermal, photocatalytic,  and antimicrobial properties of PLA/TiO2 composites are discussed. The potential applications arising from the structural and functional properties of PLA/TiO2 composites were also reviewed. Finally,  it is concluded that a deep understanding of the impacts of TiO2 filler with available improvement approaches in the dispersibility of this filler in the PLA matrix would be the key for the effective usage of PLA/TiO2 composites and to expand their suitability with worldwide application requirements.

  • polylactic acid
  • titania
  • mechanical properties
  • crystallization
  • photocatalytic activity
  • antimicrobal properties
Please wait, diff process is still running!

References

  1. Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
  2. Docekal, B.; Vojtková, B. Determination of trace impurities in titanium dioxide by direct solid sampling electrothermal atomic absorption spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 304–308. [Google Scholar] [CrossRef]
  3. Allodi, V.; Brutti, S.; Giarola, M.; Sgambetterra, M.; Navarra, M.A.; Panero, S.; Mariotto, G. Structural and spectroscopic characterization of a nanosized sulfated TiO2 filler and of nanocomposite nafion membranes. Polymers 2016, 8, 68. [Google Scholar] [CrossRef] [PubMed]
  4. Zapata, P.A.; Palza, H.; Rabagliati, F.M. Novel antimicrobial polyethylene composites prepared by metallocenic “in-situ” polymerization with TiO2 based nanoparticles. J. Polym. Sci. A Polym. Chem. 2012, 50, 4055–4062. [Google Scholar] [CrossRef]
  5. Li, Y.; Chen, C.; Li, J.; Sun, X. Photoactivity of poly(lactic acid) nanocomposites modulated by TiO2 nanofillers. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
  6. Wang, Z.; Wang, X.; Xie, G.; Li, G.; Zhnag, Z. Preparation and characterization of polyethylene/TiO2 nanocomposites. Compos. Interfaces 2006, 13, 623–632. [Google Scholar] [CrossRef]
  7. Althan, M.; Yildirim, H. Mechanical and Antibacterial Properties of Injection Molded Polypropylene/TiO2 Nano-Composites: Effects of Surface Modification. J. Mater. Sci. Technol. 2012, 28, 686–692. [Google Scholar] [CrossRef]
  8. Xuefeng, L.; Shijie, D.; Han, Y. Fabrication and properties of PVA-TiO2 hydrogel composites. Procedia Eng. 2012, 27, 1488–1491. [Google Scholar]
  9. Hanemann, T.; Szabo, D.V. Polymer-nanoparticle composites: From synthesis to modern applications. Materials 2010, 3, 3468–3517. [Google Scholar] [CrossRef]
  10. Basu, A.; Nazarkovsky, M.; Ghadi, R.; Khan, W.; Domb, A.J. Poly(lactic acid)-based nanocomposites. Polym. Adv. Technol. 2017, 28, 919–930.
  11. Xu, N.; Shi, Z.; Fan, Y.; Dong, J.; Sji, J.; Hu, M.Z.C. Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions. Ind. Eng. Chem. Res. 1999, 38, 373–379.
  12. Hamad, K.; Kaseem, M.; Ayyoob, M.; Joo, J.; Deri, F. Polylactic acid blends: The future of green, light and tough. Prog. Polym. Sci. 2018, 85, 83–127.
  13. Raquez, J.M.; Habibi, Y.; Murariu, M.; Doubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 2013, 38, 1504–1542.
  14. Kaseem, M.; Hamad, K.; Deri, F.; Ko, Y.G. A review on recent researches on polylactic acid/carbon nanotube composites. Polym. Bull. 2017, 74, 2921–2937.
  15. Luo, Y.B.; Wang, X.L.; Wang, Y.Z. Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA. Polym. Degrad. Stab. 2012, 97, 721–728.
  16. Kaseem, M.; Hamad, K.; Ko, Y.G. Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: A review. Eur. Polym. J. 2016, 79, 36–62.
  17. Nakayama, N.; Hayashi, T. Preparation and characterization of poly(l-lactic acid)/ TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym. Degrad. Stabil. 2007, 92, 1255–1264.
  18. Hojjati, B.; Sui, R.; Charpentier, P.A. Synthesis of TiO2/PAA nanocomposite by RAFT polymerization. Polymer 2007, 48, 5850–5858.
  19. Luo, Y.B.; Li, W.D.; Wang, X.L.; Xu, D.Y.; Wang, Y.Z. Preparation and properties of nanocomposites based on poly (lactic acid) and functionalized Tioacta. Acta Mater. 2009, 57, 3182–3191.
  20. Li, Y.; Chen, C.; Li, J.; Sun, X.S. Synthesis and characterization of bio-nanocomposites of poly(lactic acid) and TiO2 nanowires by in situ polymerization. Polymer 2011, 52, 2367–2375.
  21. Lu, X. Nanocomposites of poly(L-lactide) and surface-grafted TiO2 nanoparticles: Synthesis and characterization, People’s Republic of China. Eur. Polym. J. 2008, 44, 2476–2481.
  22. Tabriz, K.R.; Katbab, A.A. Preparation of modified-TiO2/PLA nanocomposite films: Micromorphology, photo-degradability and antibacterial studies. AIP Conf. Proc. 2017, 1914, 070009.
  23. Alberton, J.; Martelli, S.M.; Fakhouri, F.M.; Soldi, V. Mechanical and moisture barrier properties of titanium dioxide nanoparticles and halloysite nanotubes reinforced polylactic acid (PLA). IOP Conf. Ser. Mater. Sci. Eng. 2014, 64, 01201.
  24. Xiu, H.; Bai, H.W.; Huang, C.M.; Xu, C.L.; Li, X.Y.; Fu, Q. Selective localization of titanium dioxide nanoparticles at the interface and its effect on the impact toughness of poly(L-lactide)/poly(ether)urethane blends. Express. Polym. Lett. 2013, 7, 261–271.
  25. Athanasoulia, I.G.; Mikropoulou, M.; Karapati, S.; Tarantili, P.; Trapalis, C. Study of thermomechanical and antibacterial properties of TiO2/poly(lactic acid) nanocomposites. Mater. Today Proc. 2018, 5, 27553–27562.
  26. Zhang, Q.; Li, D.; Zhang, H.; Su, G.; Li, G. Preparation and properties of poly(lactic acid)/sesbania gum/nano-TiO2 composites. Polym. Bull. 2018, 75, 623–635.
  27. Foruzanmehr, M.; Vuillaume, P.Y.; Elkoun, S.; Robert, M. Physical and mechanical properties of PLA composites reinforced by TiO2 grafted flax fibers. Mater. Des. 2016, 106, 295–304.
  28. Baek, N.; Kim, Y.T.; Marcy, J.E.; Duncan, S.E.; O’Keefe, S.F. Physical properties of nanocomposite polylactic acid films prepared with oleic acid modified titanium dioxide. Food. Packag. Shelf. 2018, 17, 30–38.
  29. Zhuang, W.; Liu, J.; Zhang, J.H.; Hu, B.X.; Shen, J. Preparation characterization and properties of TiO2/PLA nanocomposites by in situ polymerization. Polym. Compos. 2009, 30, 1074–1080.
  30. Marra, A.; Silvestre, C.; Kujundziski, A.P.; Chamovska, D.; Duraccio, D. Preparation and characterization of nanocomposites based on PLA and TiO2 nanoparticles functionalized with fluorocarbons. Polym. Bull. 2017, 74, 3027–3041.
  31. Mallick, S.; Ahmad, Z.; Touati, F.; Bhadra, J.; Shakoor, R.A.; Al-Thani, N.J. PLA-TiO2 nanocomposites: Thermal, morphological, structural, and humidity sensing properties. Ceram. Int. 2018, 44, 16507–16513.
  32. Yang, C.; Zhu, B.; Wang, J.; Qin, Y. Structural changes and nano-TiO2 migration of poly(lactic acid)-based food packaging film contacting with ethanol as food simulant. Int. J. Biol. Macromol. 2019, 139, 85–93.
  33. Nomai, J.; Suksut, B.; Schlab, A.K. Crystallization behavior of poly(lactic acid)/titanium dioxide nanocomposites. Int. J. Appl. Sci. Technol. 2015, 8, 251–258.
  34. Farhoodi, M.; Daddashi, S.; Mohammad, M.A.; Mousavi, A.; Djomeh, Z. Influence of TiO2 Nanoparticle Filler on the Properties of PET and PLA Nano composites. Polymer (Korean) ISSN 2012, 36, 745–755.
  35. Zhang, H.; Huang, J.; Yang, L.; Chen, R.; Zou, W.; Lin, X.; Qu, J. Preparation, characterization and properties of PLA/TiO2 nanocomposites based on a novel vane extruder. RSC Adv. 2015, 5, 4639–4647.
  36. Buzarovska, A.; Grozdanov, A. Biodegradable poly(l-lactic acid)/TiO2 nanocomposites: Thermal properties and degradation. J. Appl. Polym. Sci. 2011, 123, 2187–2193.
  37. Athanasoulia, I.G.I.; Tarantili, P.A. Thermal transitions and stability of melt mixed TiO2/poly(L-lactic acid) nanocomposites. Polym. Eng. Sci. 2019, 59, 704–713.
  38. Buzarovska, A. PLA Nanocomposites with Functionalized TiO2 Nanoparticles. Polym. Plast. Technol. Eng. 2013, 52, 280–286. [
  39. Fonseca, C.; Ochoa, A.; Ulloa, M.T.; Alvarez, E.; Canales, D.; Zapata, P.A. Poly(lactic acid)/TiO2 nanocomposites as alternative biocidal and antifungal materials. Mater. Sci. Eng. C 2015, 57, 314–320.
  40. Wang, X.J.; Huang, Z.; Wei, M.Y.; Lu, T.; Nong, D.D.; Zhao, J.X.; Gao, X.Y.; Teng, L.J. Catalytic effect of nanosized ZnO and TiO2 on thermal degradation of poly (lactic acid) and isoconversional kinetic analysis. Thermochim. Acta. 2019, 672, 14–24.
  41. Martín-Alfonsoa, J.E.; Urbanob, J.; Cuadria, A.A.; Franco, J.M. The combined effect of H2O2 and light emitting diodes (LED) process assisted by TiO2 on the photooxidation behavior of PLA. Polym. Test. 2019, 73, 268–275.
  42. Joost, U.; Juganson, K.; Visnapuu, M.; Mortimer, M.; Kahru, A.; Nõmmiste, E.; Joost, U.; Kisand, V.; Ivask, A. Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: Effects on Escherichia coli cells and fatty acids. J. Photochem. Photobiol. B Biol. 2015, 142, 178–185.
  43. Shaikh, T.; Rathore, A.; Kaur, H. Poly (lactic acid) grafting of TiO2 nanoparticles: A shift in dye degradation performance of TiO2 from UV to solar light. Chem. Select 2017, 2, 6901–6908.
  44. Zhu, Y.; Buonocore, G.G.; Lavorgna, M.; Ambrosio, L. Poly(lactic acid)/titanium dioxide nanocomposite films: Influence of processing procedure on dispersion of titanium dioxide and photocatalytic activity. Polym. Compos. 2011, 32, 519–528.
  45. Zhu, Y.; Buonocore, G.G.; Lavorgna, M. Photocatalytic activity of PLA/TiO2 nanocomposites and TiO2-active multilayered hybrid coatings. Ital. J. Food. Sci. 2012, 24, 102–106.
  46. Hou, X.B.; Cai, Y.B.; Mushtaq, M.; Song, X.; Yang, Q.; Huang, F.; Wei, Q. Deposition of TiO2 nanoparticles on porous polylactic acid fibrous substrates and its photocatalytic capability. J. Nanosci. Nanotechnol. 2018, 18, 5617–5623.
  47. Garcia, C.V.; Shin, G.H.; Kim, J.T. Metal oxide-based nanocomposites in food packaging: Applications, migration, and regulations. Trends. Food. Sci. Technol. 2018, 82, 21–31. [Google Scholar] [CrossRef]
  48. Girdthep, S.; Worajittiphon, P.; Molloy, R.; Lumyong, S.; Leejarkpai, T.; Punyodom, W. Biodegradable nanocomposite blown films based on poly(lactic acid) containing silver-loaded kaolinite: A route to controlling moisture barrier property and silver ion release with a prediction of extended shelf life of dried longan. Polymer. 2014, 55, 6776–6788.
  49. Lantano, C.; Alfieri, I.; Cavazza, A.; Corradini, C.; Lorenzi, A.; Zucchetto, N.; Montenero, A. Natamycin based sol-gel antimicrobial coatings on polylactic acid films for food packaging. Food. Chem. 2014, 165, 342–347.
  50. Li, W.; Li, L.; Zhang, H.; Yuan, M.; Qin, Y. Evaluation of PLA nanocomposite films on physicochemical and microbiological properties of refrigerated cottage cheese. J. Food. Process. Pres. 2018, 42, e13362.
  51. Li, W.; Zhang, C.; Chi, H.; Li, L.; Lan, T.; Han, P.; Chen, H.; Qin, Y. Development of antimicrobial packaging film made from poly(lactic acid) incorporating titanium dioxide and silver nanoparticles. Molecules 2017, 22, 1170.
  52. De Falco, G.; Porta, A.; Petrone, A.M.; Del Gaudio, P.; El Hassanin, A.; Commodo, M.; Minutolo, P.; Squillace, A.; D’Anna, A. Antimicrobial activity of flame-synthesized nano-TiO2 coatings. Environ. Sci. Nano 2017, 4, 1095–1107.
  53. Lian, Z.; Zhang, Y.; Zhao, Y. Nano-TiO2 particles and high hydrostatic pressure treatment for improving functionality of polyvinyl alcohol and chitosan composite films and nano-TiO2 migration from film matrix in food simulants. Innov. Food Sci. Emerg. Technol. 2016, 33, 145–153.
  54. Ana M. Díez-Pascual; Angel L. Díez-Vicente; Effect of TiO2nanoparticles on the performance of polyphenylsulfone biomaterial for orthopaedic implants. Journal of Materials Chemistry B 2014, 2, 7502-7514, 10.1039/c4tb01101e.
  55. Feng, S.; Zhang, F.; Ahmed, S.; Liu, Y. Physico-mechanical and antibacterial properties of PLA/TiO2 composite materials synthesized via electrospinning and solution casting processes. Coatings 2019, 9, 525.
  56. Gupta, K.K.; Mishra, P.K.; Srivastava, P.; Gangwar, M.; Nath, G.; Maiti, P. Hydrothermal in situ preparation of TiO2 particles onto poly(lactic acid) electrospun nanofibers. Appl. Surf. Sci. 2013, 264, 375–382.
  57. Toniatto, T.V.; Rodrigues, B.V.M.; Marsi, T.C.O.; Ricci, R.; Marciano, F.R.; Webster, T.J.; Lobo, A.O. Nanostructured poly (lactic acid) electrospun fiber with high loadings of TiO2 nanoparticles: Insights into bactericidal activity and cell viability. Mater. Sci. Eng. C 2017, 71, 381–385.
  58. Dural-Erem, A.; Erem, H.H.; Ozcan, G.; Skrifvars, M. Anatase titanium dioxide loaded polylactide membranous films: Preparation, characterization, and antibacterial activity assessment. J. Text. I. 2015, 106, 571–576.
  59. Luo, Y.; Lin, Z.; Guo, G. Biodegradation assessment of poly (lactic acid) filled with functionalized Titania nanoparticles (PLA/TiO2) under compost conditions. Nanoscale Res. Lett. 2019, 14, 56–65.
  60. Williams, D.F. Enzymatic hydrolysis of polylactic acid. Eng. Med. 1981, 10, 5–7.
  61. Oda, Y.; Yonetsu, A.; Urakami, T.; Tonomura, K. Degradation of polylactide by commercial proteases. J. Polym. Environ. 2000, 8, 29–32.
  62. Luo, Y.B.; Cao, Y.Z.; Guo, G. Effects of TiO2 nanoparticles on the photodegradation of poly (lactic acid). J. Appl. Polym. Sci. 2018, 135, 1–8.
  63. Marra, A.; Cimmino, S.; Silvestre, C. Effect of TiO2 and ZnO on PLA degradation in various media. Adv. Mater. Sci. 2017, 2, 1–8.
  64. Man, C.; Zhang, C.; Liu, Y.; Wang, W.; Ren, W.; Jiang, L.; Reisdorffer, F.; Nguyen, T.P.; Dan, Y. Poly (lactic acid)/titanium dioxide composites: Preparation and performance under ultraviolet irradiation. Polym. Degrad. Stab. 2012, 97, 856–862.
  65. Chi, H.; Song, S.; Luo, M.; Zhang, G.; Li, W.; Li, L.; Qin, Y. Effect of PLA nanocomposite films containing bergamot essential oil, TiO2 nanoparticles, and Ag nanoparticles on shelf life of mangoes. Sci. Hortic. 2019, 249, 192–198.
  66. Segura Gonzalez, E.A.; Olmos, D.; Angel Lorente, M.; Velaz, I.; Gonzalez-Benito, J. Preparation and characterization of polymer composite materials based on PLA/TiO2 for antibacterial packaging. Polymers 2018, 10, 1365.
  67. Buzarovska, A.; Qualandi, C.; Parrilli, A.; Scandola, M. Effect of TiO2 nanoparticle loading on poly(L-lactic acid) porous scaffolds fabricated by TIPS. Compos. Part. B. Eng. 2015, 81, 189–195.
  68. Buzarovska, A.; Dinescu, S.; Chitoiu, L.; Costache, M. Porous poly(L-lactic acid) nanocomposite scaffolds with functionalized TiO2 nanoparticles: Properties, cytocompatibility and drug release capability. J. Mater. Sci. 2018, 53, 11151–11166.
  69. Song, M.; Pan, C.; Li, J.Y.; Wang, X.M.; Gu, Z.Z. Electrochemical study on synergistic effect of the blending of nano TiO2 and PLA polymer on the interaction of antitumor drug with DNA. Electroanalysis 2006, 18, 1995–2000.
  70. Song, M.; Pan, C.; Chen, C.; Li, J.Y.; Wang, X.M.; Gu, Z.Z. The application of new nanocomposites: Enhancement effect of polylactide nanofibers/nano-TiO2 blends on biorecognition of anticancer drug daunorubicin. Appl. Surf. Sci. 2008, 255, 610–612.
  71. Shebi, A.; Lisa, S. Evaluation of biocompatibility and bactericidal activity of hierarchically porous PLA-TiO2 nanocomposite films fabricated by breath-figure method. Mater. Chem. Phys. 2019, 230, 308–318.
  72. Lizundia, L.; Vilas, J.L.; Sangroniz, A.; Etxeberria, A. Light and gas barrier properties of PLLA/metallic nanoparticles composite films. Eur. Polym. J. 2017, 91, 10–20.
  73. Wang, Z.; Pan, Z.J.; Wang, J.G.; Zhao, R.Z. A novel hierarchical structured poly(lactic acid)/titania fibrous membrane with excellent antibacterial activity and air filtration performance. J. Nanomater. 2016, 2016, 1–17.
  74. Wu, W.; Liu, T.; Zhang, D.; Sun, Q.; Cao, K.; Zha, J.; Lu, Y.; Wang, B.; Cao, X.; Feng, Y.; et al. Significantly improved dielectric properties of polylactide nanocomposites via TiO2 decorated carbon nanotubes. Comp. Part A Appl. Sci. 2019, 127, 105650.
  75. Barut, N.; Shaikh, T.; Kaur, H. A PLA–TiO2 particle brush as a novel support for CuNPs: A catalyst for the fast-sequential reduction and N-arylation of nitroarenes. New J. Chem. 2017, 41, 5347–5354.
More
Video Production Service