Phyllodocida is a clade of errantiate annelids characterized by having ventral sensory palps, anterior enlarged cirri, axial muscular proboscis, compound chaetae (if present) with a single ligament, and of lacking dorsolateral folds. Members of most families date back to the Carboniferous, although the earliest fossil was dated from the Devonian. Phyllodocida holds 27 well-established and morphologically homogenous clades ranked as families, gathering more than 4600 currently accepted nominal species. Among them, Syllidae and Polynoidae are the most specious polychaete groups. Species of Phyllodocida are mainly found in the marine benthos, although a few inhabit freshwater, terrestrial and planktonic environments, and occur from intertidal to deep waters in all oceans.
The order Phyllodocida was first formulated as monophyletic by Dales [1], based on the muscular pharynx shared by the members of the clade. Later it was supported based on characters such as the ventral position of sensory palps, the presence of anterior enlarged cirri, the loss of dorsolateral folds (i.e., protrusible dorsolateral walls of the foregut), the presence of an axial muscular proboscis and the presence of compound chaetae with a single ligament [2]. It was further considered paraphyletic [3], but its monophyly has been recovered with strong support by modern molecular approaches [4][5]. Phyllodocida, like most soft-bodied polychaetes, is not well represented in the fossil record, but fossil specimens have been described from several families [3][6]. Most extant groups first appear in the Carboniferous [7], although Arkonips topororum Farrell & Briggs, 2007 [8], from the Devonian, seems to group within Phyllodocida, thus possibly constituting the earliest known member of the clade.
As currently delimited, Phyllodocida is one of the largest and most diverse polychaete clades. It includes Aphroditiformia, Glyceriformia, Nereidiformia, and Phyllodociformia, each with several generally well-defined clades interpreted with the taxonomic hierarchical level of family, but also several unplaced taxa (as Phyllodocida incertae sedis). In total, Phyllodocida holds more than 6600 species-level taxa, of which around 4627 are currently considered valid in the World Polychaeta Database (WPD) [6], where 28 families (excluding Pholoidae, a synonym of Sigalionidae [9]) and 566 valid genera are listed. However, higher taxa are constantly being revised as more insights from molecular methods and new morphological data (e.g., through microCT, confocal imaging, etc.) become available [10][11].
Phyllodocida is a ubiquitous group of annelids. Most members are typically marine benthic, but a small fraction also inhabit brackish waters, freshwater, and even terrestrial environments, and a few are holoplanktonic [12]. Benthic forms live as in- or epifauna in muddy and sandy bottoms, mixed sediments, under rocks, or hiding in crevices in hard surfaces, from shallow littoral to the deepest marine bottoms [3], including extreme environments such as hydrothermal vents [13][14][15]. Most species are free living (especially within Nereidiformia and Phyllodociformia), some burrowing in sediments (e.g., Glyceriformia), and some are tubicolous (e.g., some Aphroditiformia) [12]. Most species are ‘active-searching’ or ‘sit-and-wait’ predators, feeding on other invertebrates (e.g., among Nereidiformia, Phyllodociformia, Glyceriformia, or Aphroditiformia); some may be carrion-feeders and herbivorous, rarely alternate these trophic guilds with filter feeding (e.g., among Nereidiformia) [12]. Moreover, a large number of species (particularly within Aphroditiformia) live symbiotically with other benthic species (including echinoderms, cnidarians, decapods and, even, other polychaetes) [16][17].
Phyllodocida are among the most phylogenetically diverse groups of organisms [18][19], while the key roles they play in marine ecosystems lead them to be a demanding component for morphology-based biomonitoring [20], but also in regular and large-scale biomonitoring initiatives based on molecular tools like high-throughput sequencing [21][22]. Taking this into account, we have analysed the ocurrence records for the species of Phyllodocida included in Ocean Biodiversity Information System (OBIS) [23] to asses their biogeographic distribution and the relevance of non-indignous species, and we have analyzed all public Barcode Of Life Data System (BOLD) [24] data to assess the worldwide DNA barcode coverage for the species of the Order. This has allowed us to evaluate taxonomic uncertainties, as well as to analyze species phylogenetic diversity, to improve DNA metabarcoding studies at the taxonomic assignment step [25] and to highlight the existing knowledge gaps and the main still-pending taxonomic revisions.