Geochemical Characteristics of Oceanic Carbonatites: Comparison
Please note this is a comparison between Version 2 by Lily Guo and Version 1 by Gabriele Carnevale.

The occurrence of carbonatites in oceanic settings is very rare if compared with their continental counterpart, having been reported only in Cape Verde and Canary Islands. This entry provides an overview of the main geochemical characteristics of oceanic carbonatites, around which many debates still exist regarding their petrogenesis.

  • trace elements
  • noble gases isotopes
Please wait, diff process is still running!

References

  1. Le Maitre, R.; Streckeisen, A.; Zanettin, B.; Le Bas, M.J.; Bonin, B.; Bateman, P. Igneous Rocks: A Classification and Glossary of Terms (Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks), 2nd ed.; Cambridge University Press: Cambridge, UK, 2002.
  2. Wolley, A.R.; Kjarsgaard, B.A. Carbonatite occurrences of the world: Map and database. Geol. Surv. Canada 2008, 5796, 1–28.
  3. Jones, A.P.; Genge, M.; Carmody, L. Carbonate melts and carbonatites. Rev. Mineral. Geochem. 2013, 75, 289–322.
  4. Wyllie, P.J.; Huang, W.L. Peridotite, kimberlite, and carbonatite explained in the system CaO-MgO-SiO2-CO2. Geology 1975, 3, 621–624.
  5. Wallace, M.E.; Green, D.H. An experimental determination of primary carbonatite magma composition. Nature 1988, 335, 343–346.
  6. Wyllie, P.J.; Lee, W.J. Model system controls on conditions for formation of magnesiocarbonatite and calciocarbonatite magmas from the mantle. J. Petrol. 1998, 39, 1885–1893.
  7. Brooker, R.A. The effect of CO2 saturation on immiscibility between silicate and carbonate liquids: An experimental study. J. Petrol. 1998, 39, 1905–1915.
  8. Brooker, R.A.; Kjarsgaard, B.A. Silicate-carbonate liquid immiscibility and phase relations in the system SiO2-Na2O-Al2O3-Cao-CO2 at 0·1-2·5 GPa with applications to carbonatite genesis. J. Petrol. 2011, 52, 1281–1305.
  9. Lee, W.J.; Wyllie, P.J. Experimental data bearing on liquid immiscibility, crystal fractionation, and the origin of calciocarbonatites and natrocarbonatites. Int. Geol. Rev. 1994, 36, 797–819.
  10. Veksler, I.V.; Nielsen, T.F.D.; Sokolov, S.V. Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: Implications for carbonatite genesis. J. Petrol. 1998, 39, 2015–2031.
  11. Demény, A.; Ahijado, A.; Casillas, R.; Vennemann, T.W. Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): A C, O, H isotope study. Lithos 1998, 44, 101–115.
  12. Doucelance, R.; Hammouda, T.; Moreira, M.; Martins, J.C. Geochemical constraints on depth of origin of oceanic carbonatites: The Cape Verde case. Geochim. Cosmochim. Acta 2010, 74, 7261–7282.
  13. Park, J.; Rye, D.M. Broader Impacts of the Metasomatic Underplating Hypothesis. Geochem. Geophys. Geosyst. 2019, 20, 4180–4829.
  14. Doucelance, R.; Bellot, N.; Boyet, M.; Hammouda, T.; Bosq, C. What coupled cerium and neodymium isotopes tell us about the deep source of oceanic carbonatites. Earth Planet. Sci. Lett. 2014, 407, 175–186.
  15. Hammouda, T.; Chantel, J.; Manthilake, G.; Guignard, J.; Crichton, W. Hot mantle geotherms stabilize calcic carbonatite magmas up to the surface. Geology 2014, 42, 911–914.
  16. Dalton, J.A.; Wood, B.J. The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet. Sci. Lett. 1993, 119, 511–525.
  17. Hammouda, T. High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet. Sci. Lett. 2003, 214, 357–368.
  18. Yaxley, G.M.; Brey, G.P. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: Implications for petrogenesis of carbonatites. Contrib. Mineral. Petrol. 2004, 146, 606–619.
  19. Dasgupta, R.; Hirschmann, M.M.; Withers, A.C. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet. Sci. Lett. 2004, 227, 73–85.
  20. Hoernle, K.; Tilton, G.; Le Bas, M.J.; Duggen, S.; Garbe-Schönberg, D. Geochemistry of oceanic carbonatites compared with continental carbonatites: Mantle recycling of oceanic crustal carbonate. Contrib. Mineral. Petrol. 2002, 142, 520–542.
  21. De Ignacio, C.; Muñoz, M.; Sagredo, J.; Fernández-Santín, S.; Johansson, Å. Isotope geochemistry and FOZO mantle component of the alkaline-carbonatitic association of Fuerteventura, Canary Islands, Spain. Chem. Geol. 2006, 232, 99–113.
  22. De Ignacio, C.; Muñoz, M.; Sagredo, J. Carbonatites and associated nephelinites from São Vicente, Cape Verde Islands. Mineral. Mag. 2012, 76, 311–355.
  23. Mata, J.; Moreira, M.; Doucelance, R.; Ader, M.; Silva, L.C. Noble gas and carbon isotopic signatures of Cape Verde oceanic carbonatites: Implications for carbon provenance. Earth Planet. Sci. Lett. 2010, 291, 70–83.
  24. Hoernle, K.A.; Tilton, G.R. Sr–Nd–Pb isotope data for Fuerteventura (Canary Islands). Schweizerische Mineral. Petrogr. Mitteilungen 1991, 71, 3–18.
  25. Mourão, C.; Mata, J.; Doucelance, R.; Madeira, J.; Millet, M.A.; Moreira, M. Geochemical temporal evolution of Brava Island magmatism: Constraints on the variability of Cape Verde mantle sources and on carbonatite-silicate magma link. Chem. Geol. 2012, 334, 44–61.
  26. Zindler, A.; Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571.
  27. Allègre, C.J. Isotope geodynamics. Earth Planet. Sci. Lett. 1987, 86, 175–203.
  28. Porcelli, D.; Wasserburg, G.J. Mass transfer of helium, neon, argon, and xenon through a steady-state upper mantle. Geochim. Cosmochim. Acta 1995, 59, 4921–4937.
  29. Montelli, R.; Nolet, G.; Dahlen, F.A.; Masters, G. A catalogue of deep mantle plumes: New results from finite frequency tomography. Geochem. Geophys. Geosyst. 2006, 7, 1–69.
  30. Zhao, D. Seismic images under 60 hotspots: Search for mantle plumes. Gondwana Res. 2007, 12, 335–355.
  31. Roeser, H.A. Magnetic anomalies in the magnetic quiet zone off Morocco. In Proceedings of the Geology of the Northwest African Continental Margin; von Rad, U., Hinz, K., Sarnthein, M., Seibold, E., Eds.; Springer: Berlin, Heidelberg, 1982.
  32. Klitgord, K.D.; Schouten, H. Plate kinematics of the central Atlantic. In The Western North Atlantic Region; Vogt, P.R., Tucholke, B.E., Eds.; Geological Society of America: Boulder, CO, USA, 1986; pp. 351–378.
  33. Roest, W.R.; Dañobeitia, J.J.; Verhoef, J.; Collette, B.J. Magnetic anomalies in the canary basin and the Mesozoic evolution of the central North Atlantic. Mar. Geophys. Res. 1992, 14, 1–24.
  34. Hoernle, K. Geochemistry of Jurassic oceanic crust beneath Gran Canaria (Canary Islands): Implications for crustal recycling and assimilation. J. Petrol. 1998, 39, 859–880.
  35. Martinez-Arevalo, C.; Mancilla, F.d.L.; Helffrich, G.; Garcia, A. Seismic evidence of a regional sublithospheric low velocity layer beneath the Canary Islands. Tectonophysics 2013, 608, 586–599.
  36. Sagan, M.; Heaman, L.M.; Pearson, D.G.; Luo, Y.; Stern, R.A. Removal of continental lithosphere beneath the Canary archipelago revealed from a U―Pb Age and Hf/O isotope study of modern sand detrital zircons. Lithos 2020, 362–363, 1–18.
  37. Fúster, J.M.; Cendrero, A.; Gastesi, P.; Ibarrola, E.; Lopez Ruiz, J. Geología y Volcanología de las Islas Canarias-Fuerteventura; Consejo Superior de Investigaciones Científicas, Instituto “Lucas Mallada”: Madrid, Spain, 1968.
  38. Stillman, C.J.; Bennell-baker, M.J.; Smewing, J.D.; Fúster, J.M.; Muñoz, M.; Sagredo, J. Basal complex of Fuerteventura (Canary Islands) is an oceanic intrusive complex with rift-system affinities. Nature 1975, 257, 469–471.
  39. Le Bas, M.J.; Rex, D.C.; Stillman, C.J. The early magmatic chronology of Fuerteventura, Canary Islands. Geol. Mag. 1986, 123, 287–298.
  40. Coello, J.; Cantagrel, J.M.; Hernán, F.; Fúster, J.M.; Ibarrola, E.; Ancochea, E.; Casquet, C.; Jamond, C.; Díaz de Téran, J.R.; Cendrero, A. Evolution of the eastern volcanic ridge of the Canary Islands based on new KAr data. J. Volcanol. Geotherm. Res. 1992, 53, 251–274.
  41. Ancochea, E.; Brändle, J.L.; Cubas, C.R.; Hernán, F.; Huertas, M.J. Volcanic complexes in the eastern ridge of the Canary Islands: The Miocene activity of the island of Fuerteventura. J. Volcanol. Geotherm. Res. 1996, 70, 183–204.
  42. Steiner, C.; Hobson, A.; Favre, P.; Stampfli, G.M.; Hernandez, J. Mesozoic sequence of Fuerteventura (Canary Islands): Witness of early Jurassic sea-floor spreading in the central Atlantic. Bull. Geol. Soc. Am. 1998, 110, 1304–1317.
  43. Balogh, K.; Ahijado, A.; Casillas, R.; Fernández, C. Contributions to the chronology of the Basal Complex of Fuerteventura, Canary Islands. J. Volcanol. Geotherm. Res. 1999, 90, 81–102.
  44. Muñoz, M.; Sagredo, J.; de Ignacio, C.; Fernández-Suárez, J.; Jeffries, T.E. New data (U-Pb, K-Ar) on the geochronology of the alkaline-carbonatitic association of Fuerteventura, Canary Islands, Spain. Lithos 2005, 85, 140–153.
  45. Fernández, C.; Casillas, R.; García-Navarro, E.; Gutiérrez, M.; Camacho, M.A.; Ahijado, A. Miocene rifting of Fuerteventura (Canary Islands). Tectonics 2006, 5, 127–140.
  46. Gutiérrez, M.; Casillas, R.; Fernández, C.; Balogh, K.; Ahijado, A.; Castillo, C.; Colmenero, J.R.; García-Navarro, E. The submarine volcanic succession of the basal complex of Fuerteventura, Canary Islands: A model of submarine growth and emergence of tectonic volcanic islands. Bull. Geol. Soc. Am. 2006, 118, 785–804.
  47. Gutiérrez, M. Estudio Petrológico, Geoquímico y Estructural de la Serie Volcánica Submarina del Complejo Basal de Fuerteventura (Islas Canarias): Caracterización del Crecimiento Submarino y de la Emersión de la Isla; Universidad de La Laguna: La Laguna, Spain, 2000.
  48. Hobson, A.; Bussy, F.; Hernandez, J. Shallow-level migmatization of gabbros in a metamorphic contact aureole, Fuerteventura basal complex, Canary Islands. J. Petrol. 1998, 39, 125–137.
  49. Casillas, R.; Demény, A.; Nagy, G.; Ahijado, A.; Fernández, C. Metacarbonatites in the Basal Complex of Fuerteventura (Canary Islands). The role of fluid/rock interactions during contact metamorphism and anatexis. Lithos 2011, 125, 503–520.
  50. Carnevale, G.; Arroyo Rey, X.; Correale, A.; Rotolo, S.G. Procesos hidrotermales con enriquecimiento en REE en las carbonatitas de Fuerteventura: Evidencias en minerales accesorios. Geogaceta 2020, 69, 23–26.
  51. Zazo, C.; Goy, J.L.; Hillaire-Marcel, C.; Gillot, P.Y.; Soler, V.; González, J.Á.; Dabrio, C.J.; Ghaleb, B. Raised marine sequences of Lanzarote and Fuerteventura revisited—A reappraisal of relative sea-level changes and vertical movements in the eastern Canary Islands during the Quaternary. Quat. Sci. Rev. 2002, 21, 2019–2046.
  52. Williams, C.A.; Hill, A.; Young, R.; White, R.S. Fracture zones across the Cape Verde Rise, NE Atlantic. J. Geol. Soc. London 1990, 147, 851–857.
  53. Lodge, A.; Helffrich, G. Depleted swell root beneath the Cape Verde Islands. Geology 2006, 34, 449–452.
  54. Pim, J.; Peirce, C.; Watts, A.B.; Grevemeyer, I.; Krabbenhoeft, A. Crustal structure and origin of the Cape Verde Rise. Earth Planet. Sci. Lett. 2008, 272, 422–428.
  55. Holm, P.M.; Grandvuinet, T.; Friis, J.; Wilson, J.R.; Barker, A.K.; Plesner, S. An 40Ar-39Ar study of the Cape Verde hot spot: Temporal evolution in a semistationary plate environment. J. Geophys. Res. Solid Earth 2008, 113, 1–22.
  56. Torres, P.; Silva, L.C.; Munhá, J.; Caldeira, R.; Mata, J.; Tassinari, C. Petrology and geochemistry of lavas from Sal Island: Implications for the variability of the Cape Verde magmatism. Comun. Geol. 2010, 97, 35–62.
  57. Mitchell, J.G.; Le Bas, M.J.; Zielonka, J.; Furnes, H. On dating the magmatism of Maio, Cape Verde Islands. Earth Planet. Sci. Lett. 1983, 64, 61–76.
  58. Plesner, S.; Holm, P.M.; Wilson, J.R. 40-39Ar geochronology of Santo Antão, Cape Verde Islands. J. Volcanol. Geotherm. Res. 2003, 120, 103–121.
  59. Huertas, M.J.; Hernán, F.; Ancochea, E.; Brändle, J.L. El Edificio Antiguo de la isla de San Vicente (Cabo Verde): Características del sector occidental. Geogaceta 2006, 40, 95–98.
  60. Ancochea, E.; Huertas, M.J.; Hernán, F.; Brändle, J.L. Volcanic evolution of São Vicente, Cape Verde Islands: The Praia Grande landslide. J. Volcanol. Geotherm. Res. 2010, 198, 143–157.
  61. Mata, J.; Martins, S.; Mattielli, N.; Madeira, J.; Faria, B.; Ramalho, R.S.; Silva, P.; Moreira, M.; Caldeira, R.; Moreira, M.; et al. The 2014–15 eruption and the short-term geochemical evolution of the Fogo volcano (Cape Verde): Evidence for small-scale mantle heterogeneity. Lithos 2017, 288–289, 91–107.
  62. Holm, P.M.; Wilson, J.R.; Christensen, B.P.; Hansen, L.; Hansen, S.L.; Hein, K.M.; Mortensen, A.K.; Pedersen, R.; Plesner, S.; Runge, M.K. Sampling the Cape Verde Mantle Plume: Evolution of melt compositions on Santo Antão, Cape Verde Islands. J. Petrol. 2006, 47, 145–189.
  63. Duprat, H.I.; Friis, J.; Holm, P.M.; Grandvuinet, T.; Sørensen, R.V. The volcanic and geochemical development of São Nicolau, Cape Verde Islands: Constraints from field and 40Ar/39Ar evidence. J. Volcanol. Geotherm. Res. 2007, 162, 1–19.
  64. Mourão, C.; Mata, J.; Doucelance, R.; Madeira, J.; da Silveira, A.B.; Silva, L.C.; Moreira, M. Quaternary extrusive calciocarbonatite volcanism on Brava Island (Cape Verde): A nephelinite-carbonatite immiscibility product. J. African Earth Sci. 2010, 56, 59–74.
  65. Kogarko, L.N. Geochemical characteristics of oceanic carbonatites from the Cape Verde Islands. South Afr. J. Geol. 1993, 96, 119–125.
  66. Amsellem, E.; Moynier, F.; Moynier, F.; Bertrand, H.; Bouyon, A.; Mata, J.; Tappe, S.; Day, J.M.D. Calcium isotopic evidence for the mantle sources of carbonatites. Sci. Adv. 2020, 6, 1–6.
  67. Hart, S.R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 1984, 309, 753–757.
  68. Thirlwall, M.F. Pb isotopic and elemental evidence for OIB derivation from young HIMU mantle. Chem. Geol. 1997, 139, 51–74.
  69. Bouabdellah, M.; Hoernle, K.; Kchit, A.; Duggen, S.; Hauff, F.; Klügel, A.; Lowry, D.; Beaudoin, G. Petrogenesis of the Eocene Tamazert continental carbonatites (Central High Atlas, Morocco): Implications for a common source for the Tamazert and Canary and Cape Verde Island carbonatites. J. Petrol. 2010, 51, 1655–1686.
  70. Duggen, S.; Hoernle, K.A.; Hauff, F.; Klügel, A.; Bouabdellah, M.; Thirlwall, M.F. Flow of Canary mantle plume material through a subcontinental lithospheric corridor beneath Africa to the Mediterranean. Geology 2009, 37, 283–286.
More
Video Production Service