Your browser does not fully support modern features. Please upgrade for a smoother experience.
Metal Binding Prteins: Comparison
Please note this is a comparison between Version 3 by Dean Liu and Version 9 by Dean Liu.

Metal ions play several major roles in proteins: structural, regulatory, and enzymatic. The binding of some metal ions increase stability of proteins or protein domains. Some metal ions can regulate various cell processes being first, second, or third messengers. Some metal ions, especially transition metal ions, take part in catalysis in many enzymes. From ten to twelve metals are vitally important for activity of living organisms: sodium, potassium, magnesium, calcium, manganese, iron, cobalt, zinc, nickel, vanadium, molybdenum, and tungsten. This short review is devoted to structural, physical, chemical, and physiological properties of proteins, which specifically bind these metal cations.

  • metal binding protein
  • metal binding site
  • structure
  • function
Please wait, diff process is still running!

References

  1. Permyakov, E.A. Metalloproteomics; Wiley: Hoboken, NJ, USA, 2009. Permyakov, Permyakov, E.A. Metalloproteomics; Wiley: Hoboken, NJ, USA, 2009.
  2. Permyakov, E.A.; Kretsinger, R.H. Calcium Binding Proteins; Wiley: Hoboken, NJ, USA, 2010. Permyakov, E.A.; Kretsinger, R.H. Calcium Binding Proteins; Wiley: Hoboken, NJ, USA, 2010.
  3. Kretsinger, R.H.; Uversky, V.N.; Permyakov, E.A. Encyclopedia of Metalloproteins; Springer: New York, NY, USA, 2013. Kretsinger, R.H.; Uversky, V.N.; Permyakov, E.A. Encyclopedia of Metalloproteins; Springer: New York, NY, USA, 2013.
  4. Dudev, T.; Lim, C. Principles Governing Mg, Ca, and Zn Binding and Selectivity in Proteins. Rev. 2003, 103, 773–788, doi:10.1021/cr020467n.
  5. Christianson, D.W. Structural Biology of Zinc. Protein Simul. 1991, 42, 281–355, doi:10.1016/s0065-3233(08)60538-0.
  6. Tang, S.; Deng, X.; Jiang, J.; Kirberger, M.; Yang, J.J. Design of Calcium-Binding Proteins to Sense Calcium. Molecular 2020, 25, 2148, doi:10.3390/molecules25092148.
  7. Elíes, J.; Yáñez, M.; Pereira, T.M.C.; Gil-Longo, J.; MacDougall, D.A.; Campos-Toimil, M. An Update to calcium binding pro-teins. Exp. Med. Biol. 2020, 1131, 183–213.
  8. Kretsinger, R.H.; Nockolds, C.E. Carp muscle calcium binding protein. Structural determination and general description. J. Biol. Chem. 1973, 248, 3313–3326.
  9. Permyakov, E.A. Parvalbumin; Nova Science Publishers: New York, NY, USA, 2006.
  10. Permyakov, E.A.; Uversky, V.N.; Permyakov, S.E. Parvalbumin as a Pleomorphic Protein. Protein Pept. Sci. 2017, 18, 780–794, doi:10.2174/1389203717666161213115746.
  11. Babu, Y.S.; Sack, J.S.; Greenhough, T.J.; Bugg, C.E.; Means, A.R.; Cook, W.J. Three-dimensional structure of calmodulin. Cell Biol. 1985, 315, 37–40, doi:10.1038/315037a0.
  12. Dürvanger, Z.; Harmat, V. Structural Diversity in Calmodulin—Peptide Interactions. Protein Pept. Sci. 2019, 20, 1102–1111, doi:10.2174/1389203720666190925101937.
  13. Sharma, R.K.; Parameswaran, S. Calmodulin-binding proteins: A journey of 40 years. Cell Calcium 2018, 75, 89–100, doi:10.1016/j.ceca.2018.09.002.
  14. Haiech, J.; Moreau, M.; Leclerc, C.; Kilhoffer, M.-C. Facts and conjectures on calmodulin and its cousin proteins, parvalbumin and troponin C. Biophys. Acta (BBA)-Bioenerg. 2019, 1866, 1046–1053, doi:10.1016/j.bbamcr.2019.01.014.
  15. Donato, R.; Geczy, C.L.; Weber, D.J. S100 proteins. In Encyclopedia of Metalloproteins; Kretsinger, R.H.; Uversky, V.N.; Permyakov. A. Eds.; Springer: New York, NY, USA, 2013; pp. 1863–1874.
  16. Gonzalez, L.L.; Garrie, K.; Turner, M.D. Role of S100 proteins in health and disease. Biophys. Acta (BBA)-Bioenerg. 2020, 1867, 118677, doi:10.1016/j.bbamcr.2020.118677.
  17. Philippov, P.; Koch, K. Neuronal Calcium Sensor Proteins, Nova Science Publishers: New York, NY, USA, 2006.
  18. Burgoyne, R.D.; Helassa, N.; McCue, H.V.; Haynes, L.P. Calcium Sensors in Neuronal Function and Dysfunction. Cold Spring Harb. Perspect. Biol. 2019, 11, a035154, doi:10.1101/cshperspect.a035154.
  19. Vysotski, E.S.; Lee, J. Ca2+-Regulated Photoproteins: Structural Insight into the Bioluminescence Mechanism. Accounts Chem. Res. 2004, 37, 405–415, doi:10.1021/ar0400037.
  20. Eremeeva, E.V.; Vysotski, E.S. Exploring Bioluminescence Function of the Ca2+ -regulated Photoproteins with Site-directed Mutagenesis. Photobiol. 2018, 95, 8–23, doi:10.1111/php.12945.
  21. Schloer, S.; Pajonczyk, D.; Rescher, U. Annexins in Translational Research: Hidden Treasures to Be Found. J. Mol. Sci. 2018, 19, 1781, doi:10.3390/ijms19061781.
  22. Moss, S.E.; Morgan, R.O. The annexins. Genome Biol. 2004, 5, 1–8, doi:10.1186/gb-2004-5-4-219.
  23. Rizo, J.; Südhof, T.C. C2-domains, Structure and Function of a Universal Ca2+-binding Domain. Biol. Chem. 1998, 273, 15879–15882, doi:10.1074/jbc.273.26.15879.
  24. Corbalan-Garcia, S.; Gómez-Fernández, J.C. Signaling through C2 domains: More than one lipid target. Biophys. Acta (BBA)-Biomembr. 2014, 1838, 1536–1547, doi:10.1016/j.bbamem.2014.01.008.
  25. Young, H.; Stokes, D. The Mechanics of Calcium Transport. Membr. Biol. 2004, 198, 55–63, doi:10.1007/s00232-004-0666-y.
  26. Chen, J.; Sitsel, A.; Benoy, V.; Sepúlveda, M.R.; Vangheluwe, P. Primary Active Ca2+Transport Systems in Health and Disease. Cold Spring Harb. Perspect. Biol. 2020, 12, a035113, doi:10.1101/cshperspect.a035113.
  27. Gouaux, E.; MacKinnon, R. Principles of selective ion transport in channels and pumps. Science 2005, 310, 1461–1465.
  28. Lunin, V.V.; Dobrovetsky, E.; Khutoreskaya, G.; Zhang, R.; Joachimiak, A.; Doyle, D.A.; Bochkarev, A.; Maguire, M.E.; Edwards, A.M.; Koth, C.M. Crystal structure of the CorA Mg2+ transporter. Cell Biol. 2006, 440, 833–837, doi:10.1038/nature04642.
  29. Auld, D.S. Zinc coordination sphere in biochemical zinc sites. BioMetals 2001, 14, 271–313, doi:10.1023/a:1012976615056.
  30. Kochańczyk, T.; Drozd, A.; Krężel, A. Relationship between the architecture of zinc coordination and zinc binding affinity in proteins—Insights into zinc regulation. Metallomics 2015, 7, 244–257, doi:10.1039/c4mt00094c.
  31. McCall, K.A.; Huang, C.-C.; Fierke, C.A. Function and Mechanism of Zinc Metalloenzymes. Nutr. 2000, 130, 1437S–1446S, doi:10.1093/jn/130.5.1437s.
  32. Shrimpton, C.N.; Smith, A.I.; Lew, R.A. Soluble Metalloendopeptidases and Neuroendocrine Signaling. Rev. 2002, 23, 647–664, doi:10.1210/er.2001-0032.
  33. Raeeszadeh-Sarmazdeh, M.; Do, L.D.; Hritz, B.G. Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics. Cells 2020, 9, 1313, doi:10.3390/cells9051313.
  34. Bond, J.S.; Beynon, R.J. The astacin family of metalloendopeptidases. Protein Sci. 1995, 4, 1247–1261, doi:10.1002/pro.5560040701.
  35. Bond, J.S. Proteases: History, discovery, and roles in health and disease. Biol. Chem. 2019, 294, 1643–1651, doi:10.1074/jbc.tm118.004156.
  36. Tripp, B.C.; Smith, K.; Ferry, J.G. Carbonic anhydrase: New insights for an ancient enzyme. Biol. Chem. 2001, 276, 48615–48618.
  37. Di Fiore, A.; Supuran, C.T.; Scaloni, A.; De Simone, G. Human carbonic anhydrases and post-translational modifications: A hidden world possibly affecting protein properties and functions. Enzym. Inhib. Med. Chem. 2020, 35, 1450–1461, doi:10.1080/14756366.2020.1781846.
  38. Culotta, V.c.; Yanga, M.; O’Halloran, T.V. Activation of superoxide dismutases: Putting the metal to the pedal. Bio-chim. Biophys. Acta. 2006, 1763, 747–758.
  39. Lee, S.R. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems. Med. Cell. Longev. 2018, 2018, 1–11, doi:10.1155/2018/9156285.
  40. Beyersmann, D.; Haase, H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. BioMetals 2001, 14, 331–341, doi:10.1023/a:1012905406548.
  41. Nakamura, K.; Go, N. Function and molecular evolution of multicopper blue proteins. Mol. Life Sci. 2005, 62, 2050–2066.
  42. Fukai, T.; Ushio-Fukai, M.; Kaplan, J.H. Copper transporters and copper chaperones: Roles in cardiovascular physiology and disease. J. Physiol. Physiol. 2018, 315, C186–C201, doi:10.1152/ajpcell.00132.2018.
  43. Ariöz, C.; Wittung-Stafshede, P.Q. Folding of copper proteins: Role of the metal? Biophys. 2018, 51, e4.
  44. Warren, J.J.; Lancaster, K.M.; Richards, J.H.; Gray, H.B. Inner- and outer-sphere metal coordination in blue copper proteins. Inorg. Biochem. 2012, 115, 119–126, doi:10.1016/j.jinorgbio.2012.05.002.
  45. Pérez-Henarejos, S.A.; Alcaraz, L.A.; Donaire, A. Blue Copper Proteins: A rigid machine for efficient electron transfer, a flexible device for metal uptake. Biochem. Biophys. 2015, 584, 134–148, doi:10.1016/j.abb.2015.08.020.
  46. MacPherson, I.S.; Murphy, M.E.P. Type-2 copper-containing enzymes. Mol. Life Sci. 2007, 64, 2887–2899, doi:10.1007/s00018-007-7310-9.
  47. Claus, H.; Decker, H. Bacterial tyrosinases. Appl. Microbiol. 2006, 29, 3–14, doi:10.1016/j.syapm.2005.07.012.
  48. Gray, H.B.; Malmström, B.G.; Williams, R. Copper coordination in blue proteins. JBIC J. Biol. Inorg. Chem. 2000, 5, 551–559, doi:10.1007/s007750000146.
  49. De Rienzo, F.; Gabdoulline, R.R.; Wade, R.C.; Sola, M.; Menziani, M.C. Computational approaches to structural and functional analysis of plastocyanin and other blue copper proteins. Mol. Life Sci. 2004, 61, 1123–1142.
  50. Choi, M.; Davidson, V.L. Cupredoxins—A study of how proteins may evolve to use metals for bioenergetic processes. Metallomics 2011, 3, 140–151, doi:10.1039/c0mt00061b.
  51. Redinbo, M.R.; Yeates, T.O.; Merchant, S. Plastocyanin: Structural and functional analysis. Bioenerg. Biomembr. 1994, 26, 49–66, doi:10.1007/bf00763219.
  52. Wittung-Stafshede, P. Role of Cofactors in Folding of the Blue-Copper Protein Azurin. Chem. 2004, 43, 7926–7933, doi:10.1021/ic049398g.
  53. Burstein, E.; Permyakov, E.; Yashin, V.; Burkhanov, S.; Agrò, A.F. The fine structure of luminescence spectra of azurin. Biophys. Acta (BBA)-Protein Struct. 1977, 491, 155–159, doi:10.1016/0005-2795(77)90051-4.
  54. Chen, P.; Solomon, E.I. O2 activation by binuclear Cu sites: Noncoupled versus exchange coupled reaction mechanisms. Natl. Acad. Sci. USA 2004, 101, 13105–13110, doi:10.1073/pnas.0402114101.
  55. Capitanio, G.; Palese, L.L.; Papa, F.; Papa, S. Allosteric Cooperativity in Proton Energy Conversion in A1-Type Cytochrome c Oxidase. Mol. Biol. 2020, 432, 534–551, doi:10.1016/j.jmb.2019.09.027.
  56. Llases, M.E.; Morgada, M.N.; Vila, A.J. Biochemistry of copper site assembly in heme-copper oxidases: A theme with varia-tions. J. Mol. Sci. 2019, 20, 3830.
  57. Tavares, P.; Pereira, A.S.; Moura, J.; Moura, I. Metalloenzymes of the denitrification pathway. Inorg. Biochem. 2006, 100, 2087–2100, doi:10.1016/j.jinorgbio.2006.09.003.
  58. Coates, C.J.; Costa-Paiva, E.M. Multifunctional Roles of Hemocyanins. Regulated Proteolysis in Microorganisms 2020, 94, 233–250, doi:10.1007/978-3-030-41769-7_9.
  59. Dameron, C.T.; Harrison, M.D. Mechanisms for protection against copper toxicity. J. Clin. Nutr. 1998, 67, 1091S–1097S, doi:10.1093/ajcn/67.5.1091s.
  60. Fernandes, M.A.; Hanck-Silva, G.; Baveloni, F.G.; Junior, J.A.O.; De Lima, F.T.; Eloy, J.O.; Chorilli, M. A Review of Properties, Delivery Systems and Analytical Methods for the Characterization of Monomeric Glycoprotein Transferrin. Rev. Anal. Chem. 2020, 1–12, doi:10.1080/10408347.2020.1743639.
  61. Zhang, C.; Zhang, X.; Zhao, G. Ferritin Nanocage: A Versatile Nanocarrier Utilized in the Field of Food, Nutrition, and Medicine. Nanomaterials 2020, 10, 1894, doi:10.3390/nano10091894.
  62. Ordway, G.A.; Garry, D.J. Myoglobin: An essential hemoprotein in striated muscle. Exp. Biol. 2004, 207, 3441–3446.
  63. Linberg, R.; Conover, C.D.; Shum, K.L.; Shorr, R.G. Hemoglobin based oxygen carriers: How much methemoglobin is too much? Cells Blood Substit. Immobil. Biotechnol. 1998, 26, 133–148.
  64. Olson, J.S. Lessons Learned from 50 Years of Hemoglobin Research: Unstirred and Cell-Free Layers, Electrostatics, Baseball Gloves, and Molten Globules. Redox Signal. 2020, 32, 228–246, doi:10.1089/ars.2019.7876.
  65. Brittain, T. Root effect hemoglobins. Inorg. Biochem. 2005, 99, 120–129, doi:10.1016/j.jinorgbio.2004.09.025.
  66. González-Arzola, K.; Velázquez-Cruz, A.; Guerra-Castellano, A.; Casado-Combreras, M.Á.; Pérez-Mejías, G.; Díaz-Quintana, A.; Díaz-Moreno, I.; De la Rosa, M.Á. New moonlighting functions of mitochondrial cytochrome c in the cytoplasm and nu-cleus. FEBS Lett. 2019, 593, 3101–3119.
  67. Santucci, R.; Sinibaldi, F.; Cozza, P.; Polticelli, F.; Fiorucci, L. Cytochrome c: An extreme multifunctional protein with a key role in cell fate. J. Biol. Macromol. 2019, 136, 1237–1246, doi:10.1016/j.ijbiomac.2019.06.180.
  68. Bertini, I.; Cavallaro, G.; Rosato, A. Cytochrome c: Occurrence and Functions. Rev. 2006, 37, 90–115, doi:10.1002/chin.200616270.
  69. Zeida, A.; Trujillo, M.; Ferrer-Sueta, G.; DeNicola, A.; Estrin, D.A.; Radi, R. Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols. Rev. 2019, 119, 10829–10855, doi:10.1021/acs.chemrev.9b00371.
  70. Nandi, A.; Yan, L.-J.; Jana, C.K.; Das, N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Med. Longev. 2019, 2019, 1–19, doi:10.1155/2019/9613090.
  71. Gomme, P.T.; McCann, K.B.; Bertolini, J. Transferrin: Structure, function and potential therapeutic actions. Drug Discov. Today 2005, 10, 267–273, doi:10.1016/s1359-6446(04)03333-1.
  72. Baker, E.N.; Baker, H.M.; Kidd, R.D. Lactoferrin and transferrin: Functional variations on a common structural framework. Cell Biol. 2002, 80, 27–34, doi:10.1139/o01-153.
  73. Carrondo, M.A. New Embo Member’s Review: Ferritins, iron uptake and storage from the bacterioferritin viewpoint. EMBO J. 2003, 22, 1959–1968, doi:10.1093/emboj/cdg215.
  74. Theil, E.C. Ferritin. In Handbook of Metalloproteins; Messerschmidt, A., Poulos, H.R., Weighardt, K. Eds.; Wiley: Chichester, UK, 2001; Volume 2, pp. 771-781.
  75. Braymer, J.J.; Freibert, S.A.; Rakwalska-Bange, M.; Lill, R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. Biophys. Acta (BBA)-Bioenerg. 2021, 1868, 118863, doi:10.1016/j.bbamcr.2020.118863.
  76. Johnson, D.C.; Dean, D.R.; Smith, A.D.; Johnson, M.K. Structure, Function, and Formation of Biological Iron-Sulfur Clusters. Rev. Biochem. 2005, 74, 247–281, doi:10.1146/annurev.biochem.74.082803.133518.
  77. Gerber, J.; Lill, R. Biogenesis of iron-sulfur proteins in eukaryotes: Components, mechanism and pathology. Mitochondrion 2002, 2, 71–86.
  78. Rees, D.C. Great Metalloclusters in Enzymology. Rev. Biochem. 2002, 71, 221–246, doi:10.1146/annurev.biochem.71.110601.135406.
  79. Meyer, J. Ferredoxins of the third kind. FEBS Lett. 2001, 509, 1–5.
  80. Sticht, H.; Rösch, P. The structure of iron-sulfur proteins. Biophys. Mol. Biol. 1998, 70, 95–136.
  81. Lill, R.; Freibert, S.A.; Mechanisms of mitochondrial iron-sulfur protein biogenesis. Rev. Biochem. 2020, 89, 471-499.
  82. Jarrett, J.T. The novel structure and chemistry of iron–sulfur clusters in the adenosylmethionine-dependent radical enzyme biotin synthase. Biochem. Biophys. 2005, 433, 312–321, doi:10.1016/j.abb.2004.10.003.
  83. Mendel, R.R.; Bittner, F. Cell biology of molybdenum. Biophys. Acta (BBA)-Bioenerg. 2006, 1763, 621–635, doi:10.1016/j.bbamcr.2006.03.013.
  84. Hille, R. Molybdenum and tungsten in biology. Trends Biochem. Sci. 2002, 27, 360–367, doi:10.1016/s0968-0004(02)02107-2.
  85. Brondino, C.D.; Romão, M.J.; Moura, I.; Moura, J.J. Molybdenum and tungsten enzymes: The xanthine oxidase family. Opin. Chem. Biol. 2006, 10, 109–114, doi:10.1016/j.cbpa.2006.01.034.
  86. Feng, C.; Tollin, G.; Enemark, J.H. Sulfite oxidizing enzymes. Biophys. Acta (BBA)-Proteins Proteom. 2007, 1774, 527–539, doi:10.1016/j.bbapap.2007.03.006.
  87. Zambelli, B.; Uversky, V.N.; Ciurli, S. Nickel impact on human health: An intrinsic disorder perspective. Biophys. Acta (BBA)-Proteins Proteom. 2016, 1864, 1714–1731, doi:10.1016/j.bbapap.2016.09.008.
  88. Volbeda, A.; Fontecilla-Camps, J.C.; Frey, M. Novel metal sites in protein structures. Opin. Struct. Biol. 1996, 6, 804–812, doi:10.1016/s0959-440x(96)80011-x.
  89. Kobayashi, M.; Shimizu, S. Cobalt proteins. JBIC J. Biol. Inorg. Chem. 1999, 261, 1–9, doi:10.1046/j.1432-1327.1999.00186.x.
  90. Barondeau, D.P.; Getzoff, E.D. Structural insights into protein–metal ion partnerships. Opin. Struct. Biol. 2004, 14, 765–774, doi:10.1016/j.sbi.2004.10.012.
  91. Wuerges, J.; Lee, J.-W.; Yim, Y.-I.; Yim, H.-S.; Kang, S.-O.; Carugo, K.D. Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Natl. Acad. Sci. USA 2004, 101, 8569–8574, doi:10.1073/pnas.0308514101.
  92. Christianson, D.W.; Cox, J.D. Catalysis By Metal-Activated Hydroxide in Zinc and Manganese Metalloenzymes. Rev. Biochem. 1999, 68, 33–57, doi:10.1146/annurev.biochem.68.1.33.
  93. Sproviero, E.M.; Gascón, J.A.; McEvoy, J.P.; Brudvig, G.W.; Batista, V.S. Quantum mechanics/molecular mechanics structural models of the oxygen-evolving complex of photosystem II. Opin. Struct. Biol. 2007, 17, 173–180, doi:10.1016/j.sbi.2007.03.015.
  94. Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in Plants: From Acquisition to Subcellular Allocation. Plant Sci. 2020, 11, 300, doi:10.3389/fpls.2020.00300.
  95. Siddappa, S.; Marathe, G.K. What we know about plant arginases? Plant Physiol. Biochem. 2020, 156, 600–610.
  96. Roux, B. Ion channels and ion selectivity. Essays Biochem. 2017, 61, 201-209.
  97. Burdette, S.C.; Lippard, S.J. Meeting of the minds: Metalloneurochemistry. Natl. Acad. Sci. USA 2003, 100, 3605–3610.
  98. Robertson, J.L.; Roux, B. One Channel: Open and Closed. Structure 2005, 13, 1398–1400, doi:10.1016/j.str.2005.09.004.
  99. Zhorov, B.S.; Tikhonov, D.B. Potassium, sodium, calcium and glutamate-gated channels: Pore architecture and ligand action. Neurochem. 2004, 88, 782–799, doi:10.1111/j.1471-4159.2004.02261.x.
  100. Rakowski, R.F.; Sagar, S. Found: Na+ and K+ Binding Sites of the Sodium Pump. News Physiol. Sci. 2003, 18, 164–168, doi:10.1152/nips.01441.2003.
  101. Di Cera, E. A Structural Perspective on Enzymes Activated by Monovalent Cations. Biol. Chem. 2006, 281, 1305–1308, doi:10.1074/jbc.r500023200.
  102. Page, M.J.; Di Cera, E. Role of Na+and K+in Enzyme Function. Rev. 2006, 86, 1049–1092, doi:10.1152/physrev.00008.2006.
  103. Krem, M.M.; Di Cera, E. Molecular markers of serine protease evolution. EMBO J. 2001, 20, 3036–3045, doi:10.1093/emboj/20.12.3036.
  104. Barkay, T.; Miller, S.M.; Summers, A.O. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 2003, 27, 355–384, doi:10.1016/s0168-6445(03)00046-9.
  105. Goering, P.L. Lead-protein interactions as a basis for lead toxicity. 1993, 14, 45–60.
  106. Magyar, J.S.; Weng, T.C.; Stern, C.M.; Dye, D.F.; Rous, B.W.; Payne, J.C.; Bridgewater, B.M.; Mijovilovich, A.; Parkin, G.; Zaleski, J.M.; et al. Reexamination of lead(II) coordination preferences in sulfur-rich sites: Implications for a critical mechanism of lead poisoning. Am. Chem. Soc. 2005, 127, 9495–9505.
  107. Fowler, B.A. Roles of lead-binding proteins in mediating lead bioavailability. Health Perspect. 1998, 106, 1585–1587, doi:10.1289/ehp.98106s61585.
  108. Zawia, N.H.; Crumpton, T.; Brydie, M.; Reddy, G.R.; Razmiafshari, M. Disruption of the zinc finger domain: A common target that underlies many of the effects of lead. Neurotoxicology 2000, 21, 1069–1080.
  109. Toscano, C.D.; Guilarte, T.R. Lead neurotoxicity: From exposure to molecular effects. Brain Res. Rev. 2005, 49, 529–554, doi:10.1016/j.brainresrev.2005.02.004.
  110. Bressler, J.P.; Olivi, L.; Cheong, J.H.; Kim, Y.; Bannona, D. Divalent Metal Transporter 1 in Lead and Cadmium Transport. N. Y. Acad. Sci. 2004, 1012, 142–152, doi:10.1196/annals.1306.011.
  111. Himeno, S.; Yanagiya, T.; Enomoto, S.; Kondo, Y.; Imura, N. Cellular Cadmium Uptake Mediated by the Transport System for Manganese. Tohoku J. Exp. Med. 2002, 196, 43–50, doi:10.1620/tjem.196.43.
  112. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochime 2006, 88, 1549–1559, doi:10.1016/j.biochi.2006.10.001.
  113. Klaassen, C.D.; Liu, J.; Choudhuri, S. Metallothionein: An Intracellular Protein to Protect Against Cadmium Toxicity. Rev. Pharmacol. Toxicol. 1999, 39, 267–294, doi:10.1146/annurev.pharmtox.39.1.267.
  114. Beyersmann, D.; Hechtenberg, S. Cadmium, Gene Regulation, and Cellular Signalling in Mammalian Cells. Appl. Pharmacol. 1997, 144, 247–261, doi:10.1006/taap.1997.8125.
  115. Filipič, M.; Fatur, T.; Vudrag, M. Molecular mechanisms of cadmium induced mutagenicity. Exp. Toxicol. 2006, 25, 67–77, doi:10.1191/0960327106ht590oa.
  116. Méplan, C.; Verhaegh, G.; Richard, M.-J.; Hainaut, P. Metal ions as regulators of the conformation and function of the tumour suppressor protein p53: Implications for carcinogenesis. Nutr. Soc. 1999, 58, 565–571.
  117. Deckert, J. Cadmium Toxicity in Plants: Is There any Analogy to its Carcinogenic Effect in Mammalian Cells? BioMetals 2005, 18, 475–481, doi:10.1007/s10534-005-1245-0.
More
Academic Video Service