Scour Protections Design Optimization: Comparison
Please note this is a comparison between Version 2 by Bruce Ren and Version 1 by Tiago João Marques Fazeres-Ferradosa.

The offshore wind is the sector of marine renewable energy with the highest commercial development at present. The margin to optimise offshore wind foundations is considerable, thus attracting both the scientific and the industrial community. Due to the complexity of the marine environment, the foundation of an offshore wind turbine represents a considerable portion of the overall investment. An important part of the foundation’s costs relates to the scour protections, which prevent scour effects that can lead the structure to reach the ultimate and service limit states. Presently, the advances in scour protections design and its optimisation for marine envi-ronments face many challenges, and the latest findings are often bounded by stakeholder’s strict confidential policies.

  • scour
  • protection
  • wave energy
  • tidal energy
  • offshore wind energy
Please wait, diff process is still running!

References

  1. Matutano, C. Caracterizatión de los Sistemas de Protección Baseados en Materiales Naturales Destinados al Control de la Socavación en Obras Marítimas Presentes en Instalaciones Eólicas Marinas. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 12 September 2013.
  2. Negro, V.; López-Gutiérez, J.-S.; Esteban, M.D.; Matutano, C. Uncertainties in the design of support structures and foundations for offshore wind turbines. Renew. Energy 2014, 63, 125–132.
  3. Fazeres-Ferradosa, T. Reliability Analysis Applied to the Optimization of Dynamic Scour Protections for Offshore Windfarm Foundations. Ph.D. Thesis, University of Porto, Porto, Portugal, 10 September 2018.
  4. Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Rosa-Santos, P.; Chambel, J. A review of reliability analysis of scour protections. Proc. Inst. Civ. Eng. Marit. Eng. 2019, 172, 104–117.
  5. McKenna, R.; Leye, P.O.; Fichtner, W. Key challenges and prospects for large wind turbines. Renew. Sustain. Energy Rev. 2016, 53, 1212–1221.
  6. WindEurope. Wind Energy in Europe: Scenarios for 2030; WindEurope: Brussels, Belgium, 2017.
  7. Morthorst, P.E.; Kitzing, L. Economics of Building and Operating Offshore Wind Farms. In Offshore Wind Farms: Technologies, Design and Operation; Woodhead Publishing Series in Energy: Cambridge, UK, 2016; pp. 9–28.
  8. Matutano, C.; Negro, V.; López-Gutiérez, J.-S.; Esteban, M.D. Scour predictions and scour protections in offshore wind farms. Renew. Energy 2013, 57, 356–365.
  9. Bhattacharya, S. Challenges in Design of Foundations for Offshore Wind Turbines. Eng. Technol. Ref. 2014, 1, 1–9.
  10. Chambel, J. Analysis of Long-Term Damage of Offshore Wind Turbine Foundations. Master’s Thesis, University of Porto, Porto, Portugal, 25 September 2019.
  11. Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Romão, X.; Vanem, E.; Reis, T.; das Neves, L. Probabilistic Design and Reliability Analysis of Scour Protections for Offshore Windfarms. Eng. Fail. Anal. 2018, 91, 291–305.
  12. Schendel, A.; Goseberg, N.; Schlurmann, T. Experimental study on the performance of coarse grain materials as scour protection. In Proceedings of the Coastal Engineering—34th International Conference on Costal Engineering, Seoul, Korea, 15–20 June 2014.
  13. Wu, M.; De Vos, L.; Arboleda Chavez, C.E.; Stratigaki, V.; Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Troch, P. Large Scale Experimental Study of the Scour Protection Damage Around a Monopile Foundation Under Combined Wave and Current Conditions. J. Mar. Sci. Eng. 2020, 8, 417.
  14. Sakar, A.; Gudmestad, O. Bottom Supported Tension Leg Tower for Offshore Wind Turbines. In Proceedings of the 36th International Conference on Ocean, Offshore and Artic Engineering, Volume 10: Ocean Renewable Energy, Trondheim, Norway, 25–30 June 2017.
  15. Wan, L.; Ren, N.; Zhang, P. Numerical investigation on the dynamic responses of three integrated concepts of offshore wind and wave energy converter. Ocean Eng. 2020, 217, 107896.
  16. Fazeres-Ferradosa, T.; Welzel, M.; Schendel, A.; Baelus, L.; Santos, P.R.; Taveria-Pinto, T. Extended characterization of damage in rubble mound scour protections. Coast. Eng. 2020, 158, 103671.
  17. Corvaro, S.; Marini, F.; Mancinelli, A.; Lorenzoni, C.; Brocchini, M. Hydro- and Morpho-dynamics induced by a vertical slender pile under regular an-d random waves. J. Waterw. Port Coast. Ocean Eng. 2018, 144, 4018018.
  18. Taveira-Pinto, F.; Rosa-Santos, P.; Fazeres-Ferradosa, T. Marine Renewable Energy. Renew. Energy 2020, 150, 1160–1164.
  19. Corvaro, S.; Marini, F.; Mancinelli, A.; Lorenzoni, C. Scour protection around a single slender pile exposed to waves. Coast. Eng. Proc. 2020, 36, 6.
  20. Vahdati, V.J.; Yaghoubi, S.; Torabipour, A.; Correia, J.A.F.O.; Fazeres-Ferradosa, T.; Taveira-Pinto, F. Combined solutions to reduce scour around complex foundations: An experimental study. Mar. Syst. Ocean Technol. 2020, 15, 81–93.
  21. Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Rosa-Santos, P.; Chambel, J. Probabilistic comparison of static and dynamic failure criteria of scour protections. J. Mar. Sci. Eng. 2019, 7, 400.
  22. De Vos, L.; De Rouck, J.; Troch, P.; Frigaard, P. Empirical design of scour protections around monopile foundations. Part 1: Static approach. Coast. Eng. 2011, 58, 540–553.
  23. De Vos, L.; De Rouck, J.; Troch, P.; Frigaard, P. Empirical design of scour protections around monopile foundations. Part 2: Dynamic approach. Coast. Eng. 2012, 60, 286–298.
  24. Schendel, A. Wave-Current-Induced Scouring Processes and Protection by Widely Graded Material. Ph.D. Thesis, Leibniz University Hannover, Hannover, Germany, 1 June 2018.
  25. De Vos, L. Optimisation of Scour Protection Design for Monopiles and Quantification of Wave Run-Up—Engineering the Influence of an Offshore Wind Turbine on Local Flow Conditions. Ph.D. Thesis, University of Ghent, Ghent, Belgium, 2008.
  26. Den Boon, J.H.; Sutherland, J.; Whitehouse, R.; Soulsby, R.; Stam, C.J.M.; Verhoeven, K.; Høgedal, M.; Hald, T. Scour behaviour and scour protection for monopile foundations of offshore wind turbines. In Proceedings of the European Wind Energy Conference & Exhibition, London, UK, 22–25 November 2004.
  27. Soulsby, R. Dynamics of Marine Sands: A Manual for Practical Applications; Thomas Telford: London, UK, 1997.
  28. Esteban, M.D.; López-Gutiérrez, J.-S.; Negro, V.; Sanz, L. Riprap Scour Protection for Monopiles in Offshore Wind Farms. J. Mar. Sci. Eng. 2019, 7, 440.
  29. Sumer, M.B.; Fredsøe, J. Hydrodynamics around Cylindrical Structures; World Scientific: Jersey City, NJ, USA, 1997.
  30. Whitehouse, R. Scour at Marine Structures: A Manual for Practical Applications; Thomas Telford: London, UK, 1998.
  31. European Comission, CORDIS EU Research Results. Fifth Research and Technological Development Framework Programme 2002–2004; EU Comission: Brissels, Belgium, 2004.
  32. Whitehouse, R.; Harris, J.; Sutherland, J.; Rees, J. The nature of scour development and scour protection at offshore windfarm foundations. Mar. Pollut. Bull. 2011, 62, 73–88.
  33. Van der Meer, J.W. Rock Slopes and Gravel Beaches under Wave Attack; Delft Hydraulics: Emmeloord, The Netherlands, 1998.
  34. De Schoesitter, P.; Audenart, S.; Baelus, L.; Bolle, A.; Brown, A.; das Neves, L.; Fazeres-Ferradosa, T.; Haerens, P.; Taveira-Pinto, F.; Troch, P.; et al. Feasibility of a dynamically stable rock armour layer scour protection for offshore wind farms. In Proceedings of the International Conference on Ocean, Offshore and Artic Engineering, San Francisco, CA, USA, 8–13 June 2014.
  35. Whitehouse, R.; Brown, A.; Audenaert, S.; Bolle, A.; de Schoesitter, P.; Haerens, P.; Baelus, L.; Troch, P.; das Neves, L.; Ferradosa, T.; et al. Optimising scour protection stability at offshore foundations. Scour and Erosion. In Proceedings of the 7th International Conference on Scour and Erosion, Perth, Australia, 2–4 December 2014; pp. 593–600.
  36. Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Reis, M.T.; das Neves, L. Physical modelling of dynamic scour protections: Analysis of the damage number. Proc. Inst. Civ. Eng. Mar. Eng. 2018, 171, 11–24.
  37. Schendel, A.; Goseberg, N.; Schlurmann, T. Erosion Stability of Wide-Graded QuarryStone Material Under Unidirectional Current. J. Waterw. Port Coast. Ocean Eng. 2016, 142, 1–19.
  38. Schendel, A.; Goseberg, N.; Schlurmann, T. Influence of reversing currents on the erosion stability and bed degradation of widely graded grain material. Int. J. Sediment Res. 2018, 33, 68–83.
  39. Petersen, T.; Nielsen, A.; Hansen, D.A.; Christensen, E.; Fredsoe, J. Stability of single-graded scour protection around a monopile in current. In Proceedings of the Scour and Erosion IX–9th International Conference on Scour and Erosion, ICSE 2018, Taipei, Taiwan, 5–8 November 2019; pp. 175–181.
  40. Nielsen, A.W.; Probst, T.; Petersen, T.U.; Sumer, B.M. Sinking of armour layer around a vertical cylinder exposed to waves and current. Coast. Eng. 2015, 100, 58–66.
  41. Nielsen, A.W.; Petersen, T.U. Onset of Motion of Sediment underneath Scour Protection around a Monopile. J. Mar. Sci. Eng. 2018, 6, 100.
More
Video Production Service